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Abstract. Let Λrn be the path algebra of the linearly oriented quiver of type A with n

vertices modulo the r-th power of the radical, and let Λ̃rn be the path algebra of the cyclically

oriented quiver of type Ã with n vertices modulo the r-th power of the radical. Adachi gave
a recurrence relation for the number of τ -tilting modules over Λrn. In this paper, we show

that the same recurrence relation also holds for the number of τ -tilting modules over Λ̃rn.
As an application, we give a new proof for a result by Asai on recurrence formulae for the
number of support τ -tilting modules over Λrn and Λ̃rn.
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1 Introduction

The starting point of tilting theory was the introduction of tilting modules over a hereditary
algebra by Happel and Ringel in [10]. Ever since, the study of tilting modules and their endo-
morphism algebras has been an important branch of representation theory.

About 25 years later, cluster-tilting theory, introduced in [7] (and [8] in type A), brought
a new perspective to the subject by replacing the hereditary algebra by its cluster category, and
a direct relation between tilted and cluster-tilted algebras was then established in [4].

In 2014, Adachi, Iyama and Reiten [2] introduced τ -tilting theory replacing the rigidity con-
dition Ext1

Λ(T, T ) = 0 for a tilting module by the weaker condition HomΛ(T, τΛT ) = 0 for
a τ -tilting module, where τ denotes the Auslander–Reiten translation, and Λ is any finite-
dimensional algebra. They showed that, in contrast to tilting modules but in agreement with
cluster-tilting objects, it is always possible to exchange a given indecomposable summand of
a support τ -tilting module for a unique other indecomposable and obtain a new support τ -
tilting module. This process, called mutation, is essential in cluster theory.

In the same paper, the authors also showed that the support τ -tilting modules are in bijection
with several other important classes in representation theory including functorially finite torsion
classes introduced in [6], 2-term silting complexes introduced in [11], and cluster-tilting objects
in the cluster category when the algebra Λ is hereditary, or, more generally, cluster-tilted.

Therefore, it is natural to ask what is the number of support τ -tilting modules over a given
algebra.

For a hereditary algebra, the support τ -tilting modules are exactly the support tilting mo-
dules. Moreover they are in bijection with the cluster-tilting objects in the cluster category and

This paper is a contribution to the Special Issue on Cluster Algebras. The full collection is available at
https://www.emis.de/journals/SIGMA/cluster-algebras.html
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hence with the clusters in the corresponding cluster algebra. For Dynkin type, these numbers
were first calculated in [9] via cluster algebras, and later in [12] via representation theory. In
particular, over a hereditary algebra of type An, the number of tilting modules is Cn, and the
number of support tilting modules is Cn+1 where Ci denotes the i-th Catalan number 1

i+1

(
2i
i

)
.

In this paper, we study this question over finite-dimensional Nakayama algebras. Recall
that a finite-dimensional K-algebra is said to be a Nakayama algebra if every indecomposable
projective module and every indecomposable injective module has a unique composition series.
Nakayama algebras come in two types, in fact, a finite-dimensional algebra is Nakayama if and
only if its quiver is one of the following

An : 1 // 2 // 3 // · · · // n, Ãn : 1 // 2 // 3 // · · · // n,
yy

see [5, Section V.3.2]. Throughout the paper, we use the following notation

Λrn = KAn/ radr and Λ̃rn = KÃn/ radr .

Moreover, we let tr(n) and t̃r(n) denote the number of τ -tilting modules over Λrn and Λ̃rn, and
let sr(n) and s̃r(n) denote the number of support τ -tilting modules over Λrn and Λ̃rn, respectively.
We also set tr(n) := 0 and sr(n) := 0 for n < 0.

Adachi classified τ -tilting modules over Nakayama algebras in [1]. Under the assumption that
the Loewy length of every indecomposable projective module is at least n, Adachi showed that
the number of τ -tilting modules is exactly

(
2n−1
n−1

)
and the number of support τ -tilting modules

is
(

2n
n

)
. Moreover, he also gave the following recurrence relation for the number tr(n) of τ -tilting

modules over Λrn

tr(n) =
r∑
i=1

Ci−1 · tr(n− i).

The aim of this paper is study the number of τ -tilting modules over Λ̃rn. We show that there
is a close relationship between the number t̃r(n) of τ -tilting Λ̃rn-modules and the number tr(n)
of τ -tilting Λrn-modules.

Proposition 1.1 (see Proposition 3.7).

t̃r(n) =

r∑
i=1

i · Ci−1 · tr(n− i).

Next, we prove that the functions t and t̃ satisfy the same recurrence relation.

Theorem 1.2 (see Theorem 3.8). We have the following recurrence relation

t̃r(n) =
r∑
i=1

Ci−1 · t̃r(n− i).

As an application, we obtain a new proof for the following result by Asai on the numbers of
support τ -tilting modules sr(n) and s̃r(n).

Theorem 1.3 ([3, Theorem 4.1]).

(1) sr(n) = 2sr(n− 1) +
r∑
i=2

Ci−1 · sr(n− i).

(2) s̃r(n) = 2s̃r(n− 1) +
r∑
i=2

Ci−1 · s̃r(n− i).
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Asai used a bijection between support τ -tilting modules and semibricks to obtain his result
in the context of semibricks. Our proof is combinatorial.

The paper is organized as follows. In Section 2, we fix the notation and recall several results
of Adachi that are relevant to this paper. We study the Nakayama algebras of type An and Ãn
and prove Theorem 1.2 in Section 3. Theorem 1.3 is proved in Section 4. We include tables of
the numbers of τ -tilting and support τ -tilting modules in Section 5.

2 Preliminaries

Throughout this paper, all algebras will be basic, connected, finite-dimensional algebras over
an algebraically closed field K and all modules will be finitely generated right modules. For an
algebra Λ, we denote by mod Λ the category of finitely generated right Λ-modules and by τΛ the
Auslander–Reiten translation of Λ. Let {e1, e2, . . . , en} be a complete set of primitive orthogonal
idempotents of Λ. We put Pi = eiΛ the indecomposable projective module and Si = Pi/ radPi
the simple module of Λ for i = 1, 2, . . . , n. For M ∈ mod Λ, we denote by `(M) the Loewy length
of M and by |M | the number of pairwise nonisomorphic indecomposable summands of M . For
a finite set X, we denote by |X| the cardinality of X. For details on representation theory of
finite-dimensional algebras we refer to [5, 13].

Let Λ be an algebra. In this section, we recall results about support τ -tilting modules that
are needed later.

Definition 2.1. Let M ∈ mod Λ.

(1) M is called τ -rigid if HomΛ(M, τΛM) = 0.

(2) M is called τ -tilting if it is τ -rigid and |M | = |Λ|.
(3) M is called support τ -tilting if it is a τ -tilting Λ/ΛeΛ-module for some idempotent e of Λ.

(4) M is called proper support τ -tilting if it is a support τ -tilting but not a τ -tilting Λ-module.

Recall that M ∈ mod Λ is called sincere if every simple Λ-module appears as a composition
factor in M . It is well-known that the τ -tilting modules are exactly the sincere support τ -tilting
modules [2, Proposition 2.2(a)].

We will denote by τ -tilt Λ (respectively, sτ -tilt Λ, psτ -tilt Λ) the set of isomorphism classes of
basic τ -tilting (respectively, support τ -tilting, proper support τ -tilting) Λ-modules. Obviously,
we have | sτ -tilt Λ| = | τ -tilt Λ|+ |psτ -tilt Λ|.

Let psτ -tiltnp Λ := {M ∈ psτ -tilt Λ |M has no projective direct summands}. We recall the
following results proved by Adachi in [1].

Theorem 2.2 ([1, Theorem 2.6]). Let Λ be a Nakayama algebra. There is a bijection between
τ -tilt Λ and psτ -tiltnp Λ.

The following result is very useful.

Proposition 2.3 ([1, Proposition 2.32]). Let Λ be a Nakayama algebra of type An. Then each
τ -tilting Λ-module has P1 as a direct summand.

The following recurrence relations are very useful to calculate the number of τ -tilting modules
over Nakayama algebras of type An.

Lemma 2.4 ([1, Corollary 2.34]). Let Λ be a Nakayama algebra of type An. Then

| τ -tilt Λ| =
`(P1)∑
i=1

Ci−1 · | τ -tilt(Λ/〈e6i〉)|,
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where e6i := e1 + e2 + · · ·+ ei. In particular, for Λ = Λrn, we have

tr(n) =

r∑
i=1

Ci−1 · tr(n− i),

where tr(n) is the number of τ -tilting modules over Λrn.

See Table 1 in Section 5 for explicit values of tr(n).

Remark 2.5. If r ≥ n then Λrn is hereditary, and we have tr(n) = Cn. On the other hand,

Lemma 2.4 yields the equation tn(n) =
n∑
i=1

Ci−1 · tn(n − i). Hence we recover the well-known

combinatorial identity

Cn =
n∑
i=1

Ci−1 · Cn−i.

3 The number of τ -tilting modules over Nakayama algebras

In this section, Λ will be any Nakayama algebra of type An. As usual, we use the notation tr(n)
for the number of τ -tiling modules over Λrn = KAn/radr and t̃r(n) for the number of τ -tiling
modules over Λ̃rn = KÃn/radr. We will show that the functions t and t̃ satisfy the same
recurrence relation.

We denote by Wi (i = 1, 2, . . . , n) the set of support τ -tilting Λ-modules which have the
simples S1, S2, . . . , Si−1 as composition factor but not Si. We also write Λ>i := Λ/〈e6i〉 and
Λ<i := Λ/〈e>i〉 where e6i := e1 + e2 + · · ·+ ei and e>i := ei + ei+1 + · · ·+ en.

Lemma 3.1. |Wi| = | τ -tilt Λ<i| · | sτ -tilt Λ>i|.

Proof. Since the quiver of Λ is tree, we have Λ/〈ei〉 ∼= Λ<i × Λ>i. Thus there is a bijection

τ -tilt Λ<i × sτ -tilt Λ>i −→Wi

given by (N1, N2) 7→ N1 ⊕N2 where N1 is a τ -tilting Λ<i-module and N2 is a support τ -tilting
Λ>i-module. Hence |Wi| = | τ -tilt Λ<i| · | sτ -tilt Λ>i|. �

Proposition 3.2. Let Λ be a Nakayama algebra of type An. We have

(1) |psτ -tilt Λ| =
n∑
i=1
| τ -tilt Λ<i| · | sτ -tilt Λ>i|,

(2) | sτ -tilt Λ| =
n∑
i=1
| τ -tilt Λ<i| · | sτ -tilt Λ>i|+

`(P1)∑
i=1

Ci−1 · | τ -tilt Λ>i|,

(3) | psτ -tilt Λ| =
n∑
i=1
| sτ -tilt Λ<i| · | τ -tilt Λ>i|,

(4) | sτ -tilt Λ| =
n∑
i=1
| sτ -tilt Λ<i| · | τ -tilt Λ>i|+

`(P1)∑
i=1

Ci−1 · | τ -tilt Λ>i|.

Proof. (1) Since psτ -tilt Λ =
n⋃
i=1

Wi, we have

| psτ -tilt Λ| =
n∑
i=1

|Wi| =
n∑
i=1

| τ -tilt Λ<i| · | sτ -tilt Λ>i|

by Lemma 3.1.
(2) Since | sτ -tilt Λ| = |psτ -tilt Λ|+ | τ -tilt Λ|, the statement follows from Lemma 2.4.
(3) is similar to (1) and (4) follows from (3). �
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We give an example of Proposition 3.2.

Example 3.3. Let Λ be an algebra is given by the quiver 1
α // 2

β // 3 // 4 with the relation
αβ = 0.

Λ<i Λ>i | τ -tilt Λ<i| | sτ -tilt Λ>i| | sτ -tilt Λ<i| | τ -tilt Λ>i|

i = 1 0 2
β // 3 // 4 1 14 1 5

i = 2 1 3 // 4 1 5 2 2

i = 3 1
α // 2 4 2 2 5 1

i = 4 1
α // 2

β // 3 , αβ = 0 0 3 1 12 1

By Proposition 3.2(1), | psτ -tilt Λ| = 1 · 14 + 1 · 5 + 2 · 2 + 3 · 1 = 26. Note that `(P1) = 2, and
thus Lemma 2.4 implies | τ -tilt Λ| = 1 · 5 + 1 · 2 = 7. Hence, we have | sτ -tilt Λ| = 26 + 7 = 33
by Proposition 3.2(2). Moreover, we can also use part (3) of Proposition 3.2 and compute
| psτ -tilt Λ| = 1 · 5 + 2 · 2 + 5 · 1 + 12 · 1 = 26.

Corollary 3.4. Let V` (` = 1, 2, . . . , n) be the set of all support τ -tilting Λ-modules which have
S`, S`−1, . . . , S1 as composition factor. Then we have

|V`| =
n∑

i=`+1

| τ -tilt Λ<i| · | sτ -tilt Λ>i|+ | τ -tilt Λ|.

Proof. This result follows from V` =
( n⋃
i=`+1

Wi

)⋃
τ -tilt Λ. �

From now, we will study the number of τ -tilting Λ̃rn-modules. The following result is very
useful to calculate the number of proper support τ -tilting Λ̃rn-modules.

Proposition 3.5.

∣∣ psτ -tilt Λ̃rn
∣∣ =

n−1∑
i=1

i · tr(i− 1) · sr(n− i− 1) + n · tr(n− 1).

Proof. For 1 6 ` 6 n− 1, we define

Kn,` =
{
N ∈ sτ -tilt Λ̃rn |N has Sn, Sn−1, . . . , Sn−`+1 as composition factor but not Sn−`

}
and

Kn,0 =
{
N ∈ sτ -tilt Λ̃rn |N does not contain Sn as composition factor

}
.

Note that Λ̃rn/〈en−`〉 is the quotient of path algebra of the quiver

n− `+ 1 // · · · // n // 1 // 2 // · · · // n− `− 1

by the 2-sided ideal generated by paths of length r. Therefore Λ̃rn/〈en−`〉 ∼= Λrn−1. By Corol-
lary 3.4, we have

|Kn,`| = |V`| =
n−1∑
i=`+1

tr(i− 1) · sr(n− i− 1) + tr(n− 1).
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In particular, |Kn,0| = sr(n− 1) =
n−1∑
i=1

tr(i− 1) · sr(n− i− 1) + tr(n− 1). Hence,

∣∣ psτ -tilt Λ̃rn
∣∣ =

n−1∑
`=0

|Kn,`| =
n−1∑
`=0

(
n−1∑
i=`+1

tr(i− 1) · sr(n− i− 1) + tr(n− 1))

=
n−1∑
i=1

i · tr(i− 1) · sr(n− i− 1) + n · tr(n− 1). �

We set Xn = ∅, for n < 0, and for all n ≥ 0, we define

Xn =
{
N ∈ sτ -tilt Λrn |N does not contain Pn−r+1, Pn−r, . . . , P1 as direct summands

}
and

Yn,` = {N ∈ Xn |N contains S`, S`−1, . . . , S1 as composition factor}, ` = 1, 2, . . . , n.

In particular, Xn = sτ -tilt Λrn when n+ 1 6 r, and Yn,0 = Xn.

Lemma 3.6. With the above notions, we have

(1) |Xn| = tr(n+ 1),

(2) |Yn,`| =


r∑

i=`+1

Ci−1 · tr(n− i+ 1) if ` 6 r − 1,

0 if ` > r.

Proof. (1) Write Λ = Λrn, we have Λ/〈ei〉 ∼= Λ<i × Λ>i for a given i. Let Z1 be the set of
all support τ -tilting Λ<i-modules which have S1, S2, . . . , Si−1 as composition factor (they are
exactly τ -tilting Λ<i-modules) and they don’t have P1, P2, . . . , Pn−r+1 as direct summands.

If i 6 r, then Z1 = τ -tilt Λ<i.
If i > r + 1, then all τ -tilting Λ<i-modules have P1 as direct summand by Proposition 2.3,

and hence Z1 = ∅.
Let Z2 be the set of all support τ -tilting Λ>i-modules who do not have P1, P2, . . . , Pn−r+1

as direct summands. Then Z2 consists of exactly all support τ -tilting Λ>i -modules which do
not contain Pi+1, Pi+2, . . . , Pn−r+1 as direct summands. Denoted by Xn,i ⊆ Xn (i = 1, 2, . . . , n)
the subset of all support τ -tilting modules having S1, S2, . . . , Si−1 as composition factor but
not Si and by Xn,n+1 ⊆ Xn the subset of all support τ -tilting modules having S1, S2, . . . , Sn as
composition factor (hence, they are exactly τ -tilting). We have |Z2| = |Xn−i|, since Λ>i ∼= Λrn−i.
There is a bijection between Z1×Z2 and Xn,i given by (N1, N2)→ N1⊕N2 where N1 ∈ Z1 and
N2 ∈ Z2. Therefore, |Xn,i| = |Z1| · |Z2|. Thus, we have

|Xn,i| =

{
| τ -tilt Λ<i| · |Xn−i| if i 6 r,

0 if i > r + 1.

If r 6 n, we have

|Xn| =
n+1∑
i=1

|Xn,i| =
r∑
i=1

| τ -tilt Λ<i| · |Xn−i| =
r∑
i=1

Ci−1 · |Xn−i|.

Note that, if r ≥ n + 1 then Xn = sτ -tilt Λrn and hence |Xn| = Cn+1 since Λrn is hereditary, we
get |Xn| = tr(n+ 1). On the other hand, Lemma 2.4 says that tr(n) and |Xn| satisfy the same
recursive formula. Thus we have |Xn| = tr(n+ 1) for all n, by induction.

(2) follows from (1) and the fact Yn,` =
n+1⋃
i=`+1

Xn,i. �
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As a result of Lemma 3.6, we have the following relationship between t̃r(n) and tr(n).

Proposition 3.7. We have

t̃r(n) =

r∑
i=1

i · Ci−1 · tr(n− i).

Proof. Considering the set Knp
n,` consisting of all modules in Kn,` which do not have projective

Λ̃rn-modules as direct summands.
Note that the indecomposable projective Λ̃rn/〈en−`〉-modules corresponding to the last r − 1

points (the length of them is at most r − 1) are not projective Λ̃rn-modules, we have
∣∣Knp

n,`

∣∣ =

|Yn−1,`| since Λ̃rn/〈en−`〉 ∼= Λrn−1. Thus,

∣∣psτ -tiltnp Λ̃rn
∣∣ =

n−1∑
`=0

∣∣Knp
n,`

∣∣ =
n−1∑
`=0

|Yn−1,`|

=

r−1∑
`=0

r∑
i=l+1

Ci−1 · tr(n− i) (by Lemma 3.6)

=
r∑
i=1

i · Ci−1 · tr(n− i).

Therefore, the assertion follows from Theorem 2.2. �

Now, we are ready to prove our main result of this section.

Theorem 3.8. We have

t̃r(n) =

r∑
i=1

Ci−1 · t̃r(n− i).

Proof. By Proposition 3.7, we have t̃r(n) =
r∑̀
=1

` · C`−1 · tr(n− `). Thus,

t̃r(n)−
r∑
i=1

Ci−1 · t̃r(n− i) =

r∑
`=1

` · C`−1 · tr(n− `)

−
r∑
i=1

Ci−1 ·

(
r∑
`=1

` · C`−1 · tr(n− i− `)

)

=
r∑
`=1

` · C`−1 ·

(
tr(n− `)−

r∑
i=1

Ci−1 · tr(n− `− i)

)
= 0. (by Lemma 2.4)

Hence, t̃r(n) =
r∑
i=1

Ci−1 · t̃r(n− i). �

The following proposition and its proof are similar to [3, Theorem 4.1 (3)]. For convenience,
we include a proof here. We shall use the following notation.

For every positive integer r, let Fr(X) =
r∑
i=0

ci · Xr−i where c0 = 1 and ci = −Ci−1 for

i = 1, 2, . . . , r. Let

En(X1, X2, . . . , Xr) =
∑

J⊆{1,2,...,r},|J |=n

∏
j∈J

Xj
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be the n-th elementary symmetric polynomial, n = 0, 1, 2, . . . , r. Let

Hn(X1, X2, . . . , Xr) =
∑

t1,t2,...,tr∈Z>0
t1+t2+···+tr=n

Xt1
1 X

t2
2 · · ·X

tr
r for all n ∈ Z,

Pn(X1, X2, . . . , Xr) =

r∑
i=1

Xn
i for all n > 1.

In particular, we have E0 = 1, H0 = 1, and Hn = 0 for n < 0.

Proposition 3.9. Let ξ1, ξ2, . . . , ξr be the roots (not necessarily distinct) of the polynomial
Fr(X). Then we have

(1) tr(n) =
∑

t1,t2,...,tr∈Z>0
t1+t2+···+tr=n

ξt11 ξ
t2
2 · · · ξtrr ,

(2) t̃r(n) =
r∑
i=1

ξni .

Proof. Using Vieta’s formula on symmetric polynomials, we have

Ei(ξ1, ξ2, . . . , ξr) = (−1)ici

for i = 0, 1, 2, . . . , r. By [3, Lemma 4.8], we have

r∑
i=0

ciHn−i(ξ1, ξ2, . . . , ξr) = 0.

On the other hand, Lemma 2.4 yields tr(n) =
r∑
i=1

Ci−1 · tr(n− i) which implies

r∑
i=0

ci · tr(n− i) = 0.

Therefore

r∑
i=0

ci · (tr(n− i)−Hn−i(ξ1, ξ2, . . . , ξr)) = 0. (3.1)

Note that tr(0) = 1 = H0(ξ1, ξ2, . . . , ξr) and tr(n) = 0 = Hn(ξ1, ξ2, . . . , ξr) for n < 0. Therefore,
using induction and equation (3.1), we see that for all n

tr(n) = Hn(ξ1, ξ2, . . . , ξr) =
∑

t1,t2,...,tr∈Z>0
t1+t2+···+tr=n

ξt11 ξ
t2
2 · · · ξ

tr
r .

In Proposition 3.7, we have shown the following relation

t̃r(n) =

r∑
i=1

−i · ci · tr(n− i).

Hence,

t̃r(n) =

r∑
i=1

−i · ci · tr(n− i) =

r∑
i=1

−i · ci ·Hn−i(ξ1, ξ2, . . . , ξr)
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=
r∑
i=1

−i · (−1)i ·Ei(ξ1, ξ2, . . . , ξr) ·Hn−i(ξ1, ξ2, . . . , ξr)

=
r∑
i=1

(−1)i−1 · i ·Ei(ξ1, ξ2, . . . , ξr) ·Hn−i(ξ1, ξ2, . . . , ξr)

= Pn(ξ1, ξ2, . . . , ξr) (by [3, Lemma 4.8])

=
r∑
i=1

ξni . �

For r = 2, we obtain the Fibonacci recurrence t̃2(n) = t̃2(n − 1) + t̃2(n − 2); however, with
different initial conditions. Thus we obtain Lucas numbers and we have the following formula.

Corollary 3.10. t̃2(n) =
(

1+
√

5
2

)n
+
(

1−
√

5
2

)n
.

4 The number of support τ -tilting modules
over Nakayama algebras

In this section, we will apply our results to give a new proof of a theorem by Asai, see [3,
Theorem 4.1(1) and (2)]

Applying Proposition 3.2, we obtain the following recurrence relation for the number of
support τ -tilting modules over Λrn. See Table 2 in Section 5 for explicit values of sr(n).

Proposition 4.1 ([3, Theorem 4.1(1)]).

sr(n) = 2sr(n− 1) +
r∑
i=2

Ci−1 · sr(n− i).

Proof. Since Λ = Λrn, we have Λ<i ∼= Λri−1 and Λ>i ∼= Λrn−i. Thus Proposition 3.2(1) yields

sr(n) =

n∑
i=1

tr(i− 1) · sr(n− i) + tr(n).

Therefore,

sr(n)− sr(n− 1) =
n∑
i=1

tr(i− 1) · sr(n− i) + tr(n)

−

(
n−1∑
i=1

tr(i− 1) · sr(n− 1− i) + tr(n− 1)

)

= sr(n− 1) +

n−1∑
i=1

(tr(i)− tr(i− 1)) · sr(n− 1− i) + (tr(n)− tr(n− 1)).

By Lemma 2.4, for all i we have

tr(i) = tr(i− 1) +
r∑
`=2

C`−1 · tr(i− `).

Using this equality in the identity above, we get

sr(n)− sr(n− 1) = sr(n− 1) +

n−1∑
i=1

r∑
`=2

C`−1 · tr(i− `) · sr(n− 1− i)
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+
r∑
`=2

C`−1 · tr(n− `)

and since sr(n− `− i) = 0 whenever i > n− `, we obtain

sr(n)− sr(n− 1) = sr(n− 1) +
r∑
`=2

C`−1 ·
n−∑̀
i=1

tr(i− 1) · sr(n− `− i)

+
r∑
`=2

C`−1 · tr(n− `)

= sr(n− 1) +
r∑
`=2

C`−1 ·

(
n−∑̀
i=1

tr(i− 1) · sr(n− `− i) + tr(n− `)

)

= sr(n− 1) +
r∑
`=2

C`−1 · sr(n− `) by Proposition 3.2(1).

Hence, sr(n) = 2sr(n− 1) +
r∑
i=2

Ci−1 · sr(n− i). �

Remark 4.2. If r ≥ n then Λrn is a hereditary algebra of Dynkin type An and the support
τ -tilting modules are in bijection with the clusters in the corresponding cluster algebra. In
particular, sr(n) = Cn+1. This fact also can be obtained directly from Proposition 4.1 and the

identity Cn =
n∑
i=1

Ci−1 · Cn−i (see Remark 2.5). Indeed, the following equation

sn(n)− Cn+1 = 2sn(n− 1) +
n∑
i=2

Ci−1 · sn(n− i)−

(
n+1∑
i=1

Ci−1 · Cn+1−i

)

= C0 · sn(n− 1) +
n∑
i=2

Ci−1 · sn(n− i)−

(
n∑
i=1

Ci−1 · Cn+1−i

)
+ sn(n− 1)− Cn · C0

=
n∑
i=1

Ci−1 · (sn(n− i)− Cn+1−i) + (sn(n− 1)− Cn · C0)

=
n∑
i=1

Ci−1 · (sn−i(n− i)− Cn+1−i) + (sn−1(n− 1)− Cn)

implies sn(n) = Cn+1 by induction.

Applying Theorem 3.8, we obtain the following recurrence relation for the number of support
τ -tilting modules over Λ̃rn. See Table 4 in Section 5 for explicit values of s̃r(n).

Proposition 4.3 ([3, Theorem 4.1(2)]).

s̃r(n) = 2s̃r(n− 1) +

r∑
i=2

Ci−1 · s̃r(n− i).

Proof. We need to show

s̃r(n)− 2s̃r(n− 1)−
r∑
i=2

Ci−1 · s̃r(n− i) = 0.
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Using Proposition 3.5 and the equation s̃r(n) =
∣∣ psτ -tilt Λ̃rn

∣∣+ t̃r(n), we obtain

s̃r(n) =
n−1∑
`=1

` · tr(`− 1) · sr(n− `− 1) + n · tr(n− 1) + t̃r(n).

Therefore,

s̃r(n)− 2s̃r(n− 1)−
r∑
i=2

Ci−1 · s̃r(n− i)

=
n−1∑
`=1

` · tr(`− 1) · sr(n− `− 1) + n · tr(n− 1) + t̃r(n)

− 2

(
n−2∑
`=1

` · tr(`− 1) · sr(n− `− 2) + (n− 1) · tr(n− 2) + t̃r(n− 1)

)

−
r∑
i=2

Ci−1 ·

(
n−i−1∑
`=1

` · tr(`− 1) · sr(n− i− `− 1) + (n− i) · tr(n− i− 1) + t̃r(n− i)

)
.

Note that every term in the summation
r∑
i=2

Ci−1

n−2∑
`=n−i

` · tr(`− 1) · sr(n− i− `− 1) is zero, and

therefore the whole expression is equal to

=

n−2∑
`=1

` · tr(`− 1) ·

(
sr(n− `− 1)− 2sr(n− `− 2)−

r∑
i=2

Cr−1 · sr(n− `− 1− i)

)
+ n · tr(n− 1) +

(
(n− 1) · tr(n− 2)− 2(n− 1) · tr(n− 2)

)
−

r∑
i=2

(n− i) · Ci−1 · tr(n− i− 1) +

(
t̃r(n)− 2t̃r(n− 1)−

r∑
i=2

Ci−1 · t̃r(n− i)

)
.

Now, the parenthesis in the first sum is zero, by Proposition 4.1, the large parenthesis in
the second row can be included in the first sum of the third row as the i = 1 term, and the
parenthesis in the third row is equal to −t̃r(n− 1) by Theorem 3.8. So the whole expression is
equal to

= n · tr(n− 1)−
r∑
i=1

(n− i) · Ci−1 · tr(n− i− 1)− t̃r(n− 1)

= n ·

(
tr(n− 1)−

r∑
i=1

Ci−1 · tr(n− i− 1)

)
+

r∑
i=1

i · Ci−1 · tr(n− i− 1)− t̃r(n− 1)

=

r∑
i=1

i · Ci−1 · tr(n− i− 1)− t̃r(n− 1) (by Lemma 2.4)

= t̃r(n− 1)− t̃r(n− 1) (by Proposition 3.7)

= 0. �

5 Examples

In this section, we give examples of the numbers of (support) τ -tilting modules over Λrn and Λ̃rn
(see Tables 1–4).
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Table 1. The number of τ -tilting modules of Λrn.

r

tr(n) n
1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 5 8 13 21 34 55 89 144 233
3 1 2 5 9 18 37 73 146 293 585 1170 2341
4 1 2 5 14 28 62 143 331 738 1665 3780 8576
5 1 2 5 14 42 90 213 527 1326 3317 8022 19608
6 1 2 5 14 42 132 297 737 1914 5081 13566 35862

Table 2. The number of support τ -tilting modules of Λrn.

r

sr(n) n
1 2 3 4 5 6 7 8 9 10 11 12

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
2 2 5 12 29 70 169 408 985 2378 5741 13860 33461
3 2 5 14 37 98 261 694 1845 4906 13045 34686 92229
4 2 5 14 42 118 331 934 2645 7476 21120 59676 168649
5 2 5 14 42 132 387 1130 3317 9786 28932 85352 251613
6 2 5 14 42 132 429 1298 3905 11802 35862 109376 333933

Table 3. The number of τ -tilting modules of Λ̃rn.

r

t̃r(n) n
1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 3 4 7 11 18 29 47 76 123 199 322
3 1 3 10 15 31 66 127 255 514 1023 2047 4098
4 1 3 10 35 56 126 302 715 1549 3498 7897 18158
5 1 3 10 35 126 210 498 1275 3313 8398 19691 48062
6 1 3 10 35 126 462 792 1947 5203 14278 39095 104006

Table 4. The number of support τ -tilting modules of Λ̃rn.

r

s̃r(n) n
1 2 3 4 5 6 7 8 9 10 11 12

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
2 2 6 14 34 82 198 478 1154 2786 6726 16238 39202
3 2 6 20 50 132 354 940 2498 6644 17666 46972 124898
4 2 6 20 70 182 504 1430 4078 11504 32466 91742 259348
5 2 6 20 70 252 672 1920 5646 16796 49966 147028 432724
6 2 6 20 70 252 924 2508 7326 22088 67606 208012 638356
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