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Abstract. Mumford’s well-known characterization of the hyperelliptic locus of the mo-
duli space of ppavs in terms of vanishing and non-vanishing theta constants is based on
Neumann’s dynamical system. Poor’s approach to the characterization uses the cross ratio.
A key tool in both methods is Frobenius’ theta formula, which follows from Riemann’s theta
formula. In a 2004 paper Grushevsky gives a different characterization in terms of cubic
equations in second order theta functions. In this note we first show the connection between
the methods by proving that Grushevsky’s cubic equations are strictly related to Frobenius’
theta formula and we then give a new proof of Mumford’s characterization via Gunning’s
multisecant formula.
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1 Introduction

We denote by Hg the Siegel upper half-space – the space of complex symmetric g × g matrices
with positive definite imaginary part. An element τ ∈ Hg is called a period matrix and defines
the complex abelian variety Xτ := Cg/Zg + τZg. It is a well-known fact that the moduli space
of principally polarized abelian varieties (ppavs for short) can be identified with the quotient
of Hg by an action of the symplectic group Sp(2g,Z) which is a generalization of the standard
action of SL(2,Z) on the complex upper-half plane, namely,

γ · τ := (aτ + b) · (cτ + d)−1, ∀ γ =

(
a b
c d

)
∈ Sp(2g,Z),

where a, b, c, d are g× g blocks. A ppav is called irreducible if it is not isomorphic to a product
of two lower-dimensional ppavs.

For ε, δ ∈ Zg2 and z ∈ Cg we define the first order theta function with characteristic [ε, δ] to
be

θ

[
ε
δ

]
(τ, z) :=

∑
m∈Zg

expπi

[(
m+

ε

2

)t
τ
(
m+

ε

2

)
+ 2

(
m+

ε

2

)t(
z +

δ

2

)]
.

Characteristics can be defined for ε, δ in Zg, but the reduction formula

θ

[
ε+ 2ε′

δ + 2δ′

]
(τ, z) = (−1)〈ε,δ

′〉θ

[
ε
δ

]
(τ, z)

(where the symbol 〈·, ·〉 stands for the standard inner product) shows that these functions are
uniquely determined up to a sign by considering ε and δ as vectors of zeros and ones. Hence-
forward we shall work with reduced characteristics with the agreement that a theta function
associated with a sum of characteristics is meant to be non-reduced.
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Characteristics are defined even or odd depending on whether respectively 〈ε, δ〉 = 0, = 1
mod 2. A straightforward computation shows there are 2g−1

(
2g + 1

)
even characteristics and

2g−1
(
2g − 1

)
odd ones. It is easily seen that theta functions associated with even characteristics

are even functions in the variable z, whereas those associated with odd characteristics are odd
functions. Triplets of characteristics [ε, δ], [ε′, δ′], [ε′′, δ′′] are also called azygetic if 〈ε, δ〉+〈ε′, δ′〉+
〈ε′′, δ′′〉+〈ε+ε′+ε′′, δ+δ′+δ′′〉 = 1. More generally, a k-tuple of characteristics is called azygetic
if its subtriplets are azygetic.

Theta functions satisfy an addition formula (cf. [12] for a general formulation and [9] or [10]
for the specific version we use here)

θ

[
ε
δ

]
(2τ, 2z)θ

[
ε+ ε′

δ

]
(2τ, 2w) =

1

2g

∑
σ∈Zg

2

(−1)〈ε,σ〉θ

[
ε′

δ + σ

]
(τ, z + w)θ

[
ε′

σ

]
(τ, z − w).

For a given τ ∈ Hg we denote by Xτ [2] the group of points of order two on Xτ and by Lτ
a symmetric line bundle on Xτ defining the principal polarization. Note that

θ

[
ε
δ

]
(τ, z) = expπi

[
εt

2
τ
ε

2
+
ε

2

(
z +

δ

2

)]
θ

[
0
0

](
τ, z + τ

ε

2
+
δ

2

)
and the function z → θ [ εδ ] (τ, z) defines the unique (up to scalar multiplication) section of t∗xLτ ,
i.e., the translate of the line bundle Lτ by the point of order two x = (τε+ δ)/2. Because of the
duplication map, the functions z → θ [ εδ ] (τ, 2z) are a basis of H0

(
Xτ , L

⊗4
τ

)
.

For ε ∈ Zg2 we also define the second order theta function with characteristic ε to be

Θ[ε](τ, z) := θ

[
ε
0

]
(2τ, 2z).

The functions z → Θ[ε](τ, z) are a basis of H0
(
Xτ , L

⊗2
τ

)
. Since these functions are even, i.e.,

Θ[ε](τ,−z) = Θ[ε](τ, z), they induce a map

Th2 : Xτ → P2g−1

that factorizes along the Kummer variety Kτ := Xτ/± 1.
By evaluating first order theta functions at z = 0 we get the so-called theta constants

θ [ εδ ] (τ, 0); because of the parity of theta functions, theta constants associated with odd charac-
teristics are clearly trivial. Analogously, second order theta functions evaluated at z = 0 yield
second order theta constants Θ[ε](τ, 0). As functions of τ these are not well defined on the moduli
space of ppavs but, as a consequence of how they transform under the action of Sp(2g,Z), they
induce maps on finite covers of the moduli space. More precisely, if we introduce the following
family of subgroups of finite index in Sp(2g,Z)

Γg[n] := Ker(Sp(2g,Z)→ Sp(2g,Zn)), n ∈ N,

Γg[n, 2n] :=

{
γ =

(
a b
c d

)
∈ Γg[n] | diag

(
atb
)
≡ diag

(
ctd
)
≡ 0 mod 2n

}
,

first order theta constants are seen to transform as follows (cf. [12] and [18] for the general
formula)

θ

[
ε
δ

]
(γ · τ, 0) = κ(γ)χε,δ(γ) det (cτ + d)

1
2 θ

[
ε
δ

]
(τ, 0) ∀ γ ∈ Γg[2],

where κ(γ) is an eighth root of the unity for any γ and χε,δ are characters of the group
Γg[2, 4]/Γg[4, 8]; in particular, an action of Γg[2, 4]/Γg[4, 8] is naturally induced on theta con-
stants and can be described in terms of these characters χε,δ, which span the character group of
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Γg[2, 4]/ ± Γg[4, 8] (cf. [19]). Thanks to the transformation formula, first order theta constants
induce a map of Hg/±Γg[4, 8] into the projective space; this map is known to be an immersion,
cf. [12]. Second order theta constants also induce a map on a finite cover of the moduli space of
ppavs

T : Hg/Γg[2, 4]→ P2g−1,

which is generically injective for any g, cf. [19]. Once a basis ω1, . . . , ωg for the cohomology of an
algebraic curve of genus g is chosen together with a symplectic basis of cycles δ1, . . . , δg, δ

′
1, . . . , δ

′
g,

the g× 2g matrix
( ∫

δj
ωi,
∫
δ′j
ωi
)

defines a complex torus which is isomorphic to a ppav Xτ ; this

complex torus is known as the Jacobian variety of the curve and the locus in the moduli space
of ppavs defined by those ppavs that are isomorphic to Jacobians of curves is known as the
Jacobian locus. Because of the existence of the map T , one knows that the Jacobian locus and
the hyperelliptic locus (i.e., the locus defined by those ppavs that are isomorphic to Jacobians of
hyperelliptic curves) can be described in terms of equations involving theta constants by taking
the preimages of these loci under the covering map Hg/Γg[2, 4] → Hg/Sp(2g,Z); the preimage
of the hyperelliptic locus has several irreducible components in Hg/Γg[2, 4].

As for the hyperelliptic locus, we know from the result in [15] that the irreducible compo-
nents are defined in terms of vanishing and non-vanishing conditions for certain theta constants
θ [ εδ ] (τ, 0). Mumford’s result is based on Neumann’s dynamical system. In [17] Poor used the
cross ratio to prove that the vanishing conditions alone are sufficient to characterize the hyper-
ellipitic locus, once the irreducibility of the principally polarized abelian variety is assumed. In
both cases a fundamental tool is the so-called Frobenius theta formula, which is a consequence
of Riemann’s theta formula (cf. [8] and [15]). A few years ago in [9], a characterization of the
hyperelliptic abelian varieties was given in terms of cubic equations in the second order theta
functions. These cubics were obtained by using the explicit coefficients for the addition formula
from [4].

The aim of this note is twofold: we first relate Grushevsky’s approach to the others’ by
proving that his cubic equations are related to Frobenius’ theta formula; we then give a new
proof of Mumford’s characterization by applying Gunning’s multisecant formula (cf. [11]), which
is a remarkable geometrical characterization of the locus of Jacobians in terms of intersections
of g-dimensional linear subspaces with the Kummer variety of an abelian variety.

In this way we have an explicit relation between various approaches; in particular, we get
an immediate link between the geometrical characterization and the explicit equations for the
hyperelliptic locus.

Incidentally, we also prove that Grushevsky’s cubics are induced by the quadratic relations
related to the theta vanishing.

2 Theta functions

Throughout the rest of the paper we shall omit the subscript τ whenever it is clear that τ is
fixed. For the topics introduced here we shall follow Section 1 in [21] closely. Once we set
M := L⊗2, as t∗xM

∼= M if and only if x ∈ X[2], the following group is well defined

G(M) :=
{

(x, φ) |x ∈ X[2], φ : t∗xM
∼=−→M

}
and an irreducible action of G(M) on the space of global sections of M is also defined by setting
(x, φ)s := φ(t∗xs).

A theta structure is an isomorphism between G(M) and the Heisenberg group, namely the
set

H := C∗ × Zg2 ×Hom(Z2,C∗)g,
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provided with the group law

(t, x, x∗) · (s, y, y∗) := (tsy∗(x), x+ y, x∗ + y∗).

Now, let Bn := Γ(X,Mn) for any n ≥ 1. The action of {±1} ⊂ End(X) decomposes each
of these spaces into the direct sum of two factors B+

n and B−n . One has B1 = B+
1 and B1 is

an irreducible representation of H. Moreover, B1 admits a basis {Xσ} with σ ∈ Zg2 such that
(t, x, x∗)Xσ = tx∗(x + σ)Xx+σ. The Heisenberg group naturally acts on the n-fold symmetric
products SnB1 as well. To decompose SnB1 we introduce the two following subgroups of H:

K = {(t, x, x∗) : t = 1, x = 0}, K∗ = {(t, x, x∗) : t = 1, x∗ = 0},

and we recall from [21] the following:

Proposition 2.1.

(i) A basis of eigenvectors for the action of H on S2B1 is given by the 2g−1
(
2g + 1

)
elements

Q[ε, ε′] =
∑

(−1)〈σ,ε
′〉XσXσ+ε, where σ, ε, ε′ ∈ Zg2, the symbol 〈·, ·〉 stands for the standard

inner product and 〈ε, ε′〉 = 0. The action of H on the elements of the basis is given by

(t, x, x∗)Q[ε, ε′] = t2(−1)〈x,ε
′〉x∗(ε)Q[ε, ε′].

(ii) The space S3B1 is a direct sum of
(
2g+1

)(
2g−1+1

)
/3 copies of a 2g-dimensional irreducible

representation of H.

(iii) Let X(H) be the group of characters of Zg2 ×Hom(Z2,C∗)g. Then

S4B1 =
⊕

χ∈X(H)

S4
χ(B1).

The dimension of the eigenspace associated with the trivial character is equal to
(
2g +

1
)(

2g−1 + 1
)
/3, whereas the dimension of the other eigenspaces is

(
2g−1 + 1

)(
2g−2 + 1

)
/3.

Moreover, a basis for S3B1 as an H-module is given by a basis of the K-invariant elements
and a basis for S4

0(B1) is also described in [21].

Maps between these spaces can be defined. Let S3
0(B1) be the subspace of K-invariant

elements of S3(B1). For F ∈ S3
0(B1) and σ ∈ Zg2 let

Fσ := (1, σ, 0)F.

For χ = (y∗, y) ∈ X(H) (so that χ(x, x∗) = y∗(x)x∗(y)) we define

M(χ) : S3
0(B1)→ S4

χ(B1),

M(χ)(F ) =
∑
σ∈Zg

2

y∗(σ)Xσ+yFσ.

Proposition 2.2. The maps M(χ) are surjective. In the case χ = 0 the map M(0) is an
isomorphism and the inverse is given by 4−1 ∂

∂X0
. Moreover(

∂

∂Xσ

)
(M(0)F ) = 4Fσ, ∀σ ∈ Zg2.
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We will briefly discuss the case of the quartics; more details on the subject can be found
in [21].

The decomposition of S4B1 is given in Proposition 2.1(iii); a similar decomposition holds for
the space

S2
(
S2B1

)
=
⊕
χ

(
S2
(
S2B1

))
χ
.

In this case the dimensions of the eigenspaces are respectively equal to 2g−1
(
2g + 1

)
and

2g−2
(
2g−1 + 1

)
. Obviously, we have a surjective map

Φ4 : S2
(
S2B1

)
→ S4B1.

According to [7] (cf. also [1] or [6]), the relations are generated by a particular case of the
so-called Riemann relations, namely those of the form∑

〈ε,δ〉=0

(−1)〈σ,δ〉vε,δQ[ε, δ]Q[ε+ σ, δ + ρ]. (2.1)

Here the vector v = (vε,δ) varies in a suitable space of dimension
(
22g − 1

)
/3. We say

that these are biquadratic relations. By evaluating at the theta functions Xσ = Θ[σ](τ, z) and
applying the addition formula, we get

Q[ε, ε′](. . . ,Θ[σ](τ, z), . . . ) := Q[ε, ε′](τ, z) = θ

[
ε
ε′

]
(τ, 0)θ

[
ε
ε′

]
(τ, 2z). (2.2)

Hence, a basis for the quadrics containing the Kummer variety is given by those Q[ε, ε′] such
that θ [ εε′ ] (τ, 0) = 0.

To sum up, we can also state the following:

Proposition 2.3. All biquadratic Riemann relations induce trivial relations between second
order theta functions.

We know there also exist highly non-trivial relations like the equation defining the Kummer
surface in genus 2 or the Coble quartic in genus 3. These are in the kernel of the map

Ψ4 : S4B1 → B+
4 .

Remark 2.4. More general Riemann relations are obtained by evaluating (2.1) at the theta
functions and then at the points z + (τx+ y)/4, x, y ∈ Zg, which yields∑

〈ε,δ〉=0

(−1)〈σ+x,δ〉vε,δθ

[
ε
δ

]
(τ, 0)θ

[
ε+ σ
δ + ρ

]
(τ, 0)θ

[
ε+ x
δ + y

]
(τ, 2z)θ

[
ε+ σ + x
δ + ρ+ y

]
(τ, 2z) = 0. (2.3)

3 Cubic equations

As soon as the genus is greater than 2, there are also cubic equations defining the Kummer va-
riety. To focus on cubic relations, we first note that the spaces S3B1 andB+

3 decompose under the
action of the Heisenberg group into 2g irreducible representations that are all isomorphic to B1

(see [21] or [2]); we are interested in studying the kernel of the map Ψ3 : S3B1 → B+
3 . A simple

way of constructing cubic relations is considering quadratic relations. Quadratic relations exist
whenever we have the vanishing of some even theta constants i.e., θ [ εδ ] (τ, 0) = 0 with 〈ε, δ〉 = 0
mod 2. If none of the theta constants vanish, we can prove there always exist cubic relations
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that are not a product of a quadratic and a linear form; this is done by means of a dimensional
argument, as we have

dimC S
3B1 = 2g

(
2g + 1

)(
2g−1 + 1

)
/3 > 2g−1

(
3g + 1

)
= dimC S

3B+
3 .

In the genus 3 case there are exactly 8 cubics: in the non-hyperelliptic case (no vanishing
theta constants) these cubics can be obtained as derivatives of the Coble quartic, while in the
hyperelliptic case (one vanishing theta constant) they are obtained as a product of a quadric
Q[ε, ε′](τ, z) and a linear form in the Θ[σ](τ, z).

When the genus is higher, we need to determine a set of theta constants θ [ εε′ ] (τ, 0) that
vanish at the point τ in the hyperelliptic locus; to do this, we start with a hyperelliptic point
to which we can associate a special fundamental system of characteristics, namely an azygetic
collection of 2g+2 characteristics m1, . . . ,mg,mg+1, . . . ,m2g+2 such that the first g are odd and
the last g + 2 are even. Once we denote by {ek}k=1,...,g the elements of the natural basis in Zg2,
and set eg+1 = 0 and sk = e1 + · · · + ek, we can choose the following as special fundamental
system

m1 :=

[
s1
e1

]
, . . . , mk :=

[
sk
ek

]
, . . . , mg :=

[
sg
eg

]
,

mg+1 :=

[
0
e1

]
, . . . , m2g :=

[
sg−1
eg

]
, m2g+1 :=

[
sg
0

]
, m∞ :=

[
0
0

]
. (3.1)

To be consistent with Mumford’s notation in [15, p. 106], we set

B := {1, . . . , 2g + 1,∞}, U := {g + 1, . . . , 2g + 1}, (3.2)

and for any subset S ⊂ B we denote by CS the complementary set in B. To an even subset
T ⊂ B (modulo S ∼ CS) we associate a characteristic according to the rule

T → mT =
∑
j∈T

mj .

This actually defines a bijection.

By setting T ◦ S := (T \ S) ∪ (S \ T ), it can be checked that the parity of mT is equal to

(−1)
#(T◦U)−g−1

2 .

We then know from the characterization of the hyperelliptic locus (cf. [20] and [15]) that the
period matrix of a hyperelliptic curve always admits a conjugate τ ∈ Hg under the action of
the group Sp(2g,Z), for which the following vanishing and non-vanishing conditions for theta
constants hold

θmT (τ, 0) = 0 if #(T ◦ U) 6= g + 1, (3.3)

θmT (τ, 0) 6= 0 if #(T ◦ U) = g + 1. (3.4)

The case g = 4. To obtain all the even characteristics mT corresponding to vanishing theta
constants we have to choose T such that #T = 4 and

T ⊂ {1, 2, 3, 4,∞} or T ⊂ {5, 6, 7, 8, 9}.

Thus, we get the following characteristics[
ε0
δ0

]
=

[
0101
1111

]
,

[
ε1
δ1

]
=

[
1101
0111

]
,

[
ε2
δ2

]
=

[
1001
1011

]
,

[
ε3
δ3

]
=

[
1011
1101

]
,
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ε4
δ4

]
=

[
1010
1110

]
,

[
ε5
δ5

]
=

[
0101
0111

]
,

[
ε6
δ6

]
=

[
1101
1011

]
,

[
ε7
δ7

]
=

[
1001
1101

]
,[

ε8
δ8

]
=

[
1011
1110

]
,

[
ε9
δ9

]
=

[
1010
1111

]
. (3.5)

Note that in [13] the special fundamental system is given by a set of characteristics which is
obtained from the above collection by switching the ε with the δ. Nevertheless, we prefer to use
our form, since it is compatible with the notation in [9].

For this collection of vanishing theta constants the 10 induced quadratic relations Q[ε, ε′] = 0
produce 160 generators for Ker Ψ3 that are linearly dependent, as the dimension of the space
is 144 (computed with Mathematica). Thus, there are (at least) 160 − 144 = 16 other cubic
relations.

Another known example of a point τ ∈ H4 with a set of 10 vanishing even theta constants is
given by the so-called Varley–Debarre abelian variety, which is uniquely determined modulo the
action of the integral symplectic group. For a suitable period matrix associated with this variety
the set of characteristics corresponding to vanishing theta constants can be deduced from [5]
or [3] and chosen as follows

n1 =

[
0000
0000

]
, n2 =

[
1010
0000

]
, n3 =

[
0101
0000

]
, n4 =

[
1111
0000

]
, n5 =

[
0101
1010

]
,

n6 =

[
1010
0101

]
, n7 =

[
0000
1010

]
, n8 =

[
0000
0101

]
, n9 =

[
0000
1111

]
, n10 =

[
1111
1111

]
.

These 10 characteristics can be determined as follows: they belong to a coset of a 4-dimen-
sional subspace of Z8

2 that contains all even elements and they are determined by the unique
condition that the complementary set {n11, . . . , n16} satisfies

n11 + · · ·+ n16 = 0.

This condition can be deduced from Proposition 4.5 in [5], where the 2-torsion points p1, p2, p3,
p4, p1 + p3, p2 + p4 are given, or from corollary of Proposition 3 in [3]. Here we can parametrize
the set of quadratic forms associated with the symplectic form with characteristics m of the
type mi ⊕mi with mi ∈ Z4

2. Since the condition on the Arf invariant is related to the parity of
the characteristics mi, we get the result.

For such a collection the dimension of the kernel of Ψ3 turns out to be equal to 160. This can
be seen straightforwardly on the set of the ten even characteristics [ε, α] such that ε = 0 and α
has exactly two or three entries equal to 1; as this set also satisfies the above condition, it can
actually be associated with the vanishing theta constants of a point corresponding to the Varley–
Debarre variety up to conjugates; the 160 cubics induced in this case are (X[ρ]Q[0, α])(τ, z) =
X[ρ] ·

∑
σ∈Z4

2

(−1)〈α,σ〉X2[σ] with α as before and ρ ∈ Z4
2, which are easily seen to be linearly

independent. Hence, we will not have new cubics if the map Ψ3 : S3B1 → B+
3 is surjective.

In general, we expect to find cubic equations in the hyperelliptic case that are not generated
by the quadrics. Those given in [9], however, turn out to be dependent from the quadrics; we
will discuss these cases in detail and deduce some results.

First of all, we recall the following statement from [9]:

Theorem 3.1. An irreducible period matrix τ ∈ Hg is the period matrix of a hyperelliptic
Jacobian with the basis of cycles chosen in such a way that the corresponding special fundamental
system is the one given in (3.1) if and only if the following cubic identities for second order theta
functions are satisfied for all σ ∈ Zg2 and for all z ∈ Cg:

Rσ := Q[0, 0](τ, z)Θ[σ](τ, z)−
g∑

k=0

(−1)〈σ,ek+1〉Q[sk, ek+1](τ, z)Θ[σ + sk](τ, z) = 0, (3.6)
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where we assume that not all the terms Q[0, 0](τ, z) and Q[sk, ek+1](τ, z) are identically zero
in z.

Remark 3.2. The 2g cubic polynomials appearing in (3.6) span an irreducible representation
of the Heisenberg group and are of the form

Rσ = (1, σ, 0)R0.

We recall that the result Rσ = 0 is obtained by computing the coefficients in the formula
given in [4].

Indeed, in [9] the following relations appear∑
ε∈Zg

2

Θ[ε](τ, z)Θ[ε](τ, z)Θ[σ](τ, z)

=

g∑
k=0

∑
ε∈Zg

2

(−1)〈ε+σ,ek+1〉Θ[ε](τ, z)Θ[ε+ sk](τ, z)Θ[σ + sk](τ, z). (3.7)

It is an immediate consequence of (2.2) and the definition of Q[ε, δ](τ, z), that (3.6) and (3.7)
are the same equations.

The condition on the non-identically zero terms in Theorem 3.1 turns into the assumption
that not all θ [ εδ ] (τ, 0) are null for[

ε
δ

]
=

[
0
0

]
,

[
0
e1

]
, . . .

[
sk
ek+1

]
, . . . ,

[
sg
0

]
.

We observe that this assumption is required in Mumford’s characterization of the hyperelliptic
locus in [15]. Actually, the non-vanishing assumption (3.4) is stronger.

As proved in [9], these equations in genus 3 are equivalent to the vanishing of one theta
constant, yet when it comes to the genus 4 case they appear to be new; however, as already
said, this is not the case, as we will explain. First of all, we need to recall from [15, Theorem 7.1],
the so-called generalized Frobenius theta formula. For U ⊂ B as in (3.2) we set εU (j) := ±1
according as j ∈ U or j /∈ U ; then we have

Theorem 3.3. Let τ ∈ Hg satisfy the vanishing conditions in (3.3). Then ∀ z1, z2, z3, z4 ∈ Cg

such that
4∑
i=1

zi = 0:

∑
j∈B

εU (j)
4∏
i=1

θ[mj ](τ, zi) = 0. (3.8)

In [15] extra variables ai actually appear, but, as shown in [17], they are redundant.

We remark that if we apply the addition formula for theta functions to Grushevsky’s cubic
equations, we obtain similar equations that are also consequence of the generalized Frobenius
theta formula; in fact, we have the following:

Proposition 3.4. If τ ∈ Hg satisfies equations (3.6), then, for all z ∈ Cg:

Q[0, 0](τ, z)Q[ε1, δ1](τ, z) =

g∑
k=0

Q[sk, ek+1](τ, z)Q[sk + ε1, ek+1 + δ1](τ, z). (3.9)
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Proof. We only need to consider

Q[0, 0](τ, z)
∑
σ

(−1)〈σ,δ1〉Θ[σ](τ, z)Θ[σ + ε1](τ, z)

=

g∑
k=0

Q[sk, ek+1](τ, z)
∑
σ

(−1)〈σ,δ1+ek+1〉Θ[σ + sk](τ, z)Θ[σ + ε1](τ, z).

Now, the l.h.s. yields Q[0, 0](τ, z)Q[ε1, δ1](τ, z). Moreover, we have

Q[sk + ε1, ek+1 + δ1](τ, z) =
∑
σ∈Zg

2

(−1)〈σ,ek+1+δ1〉Θ[σ + sk + ε1](τ, z)Θ[σ](τ, z).

Hence, in the r.h.s. we obtain

g∑
k=0

Q[sk, ek+1](τ, z)Q[sk + ε1, ek+1 + δ1](τ, z). �

Remark 3.5. As a referee correctly pointed out, in the above proposition we are computing
M(χ)R0.

As a particular yet fundamental case, we will consider M(0)R0, i.e., the case obtained by
setting ε1 = δ1 = 0; hence we get

Corollary 3.6. If τ ∈ Hg satisfies equations (3.6), for all z ∈ Cg we have

Q[0, 0]2(τ, z) =

g∑
k=0

Q[sk, ek+1]
2(τ, z). (3.10)

Remark 3.7. The important fact is that this formula is exactly the one given in [15, Corol-
lary 7.5, p. 113] when S = ∅, which is a particular case of the general formula obtained as
a consequence of the vanishing conditions (3.3).

Formula (3.10) is therefore a special case of Frobenius’ theta formula and it is fundamental
in Mumford’s investigation of Neumann’s dynamical system (see [15, Lemma 9.7]). It is worth
recalling that this formula is obtained by plugging the vanishing conditions in a particular
biquadratic Riemann relation of the type (2.1) with vε,δ = ±1 and σ = ρ = 0; in fact, we can
get it from (3.8) by setting z1 = z2 = 0, z3 = z, z4 = −z and m1 = m2 = m3 = m4.

To obtain all of Frobenius’ relations described by Mumford in the above cited Corollary, we
can evaluate equation (3.10) at the points z + (τx+ y)/4 for x, y ∈ Zg, in the same way we did
with Riemann’s relations to obtain (2.3); this leads to the following

Corollary 3.8. If τ ∈ Hg is a period matrix satisfying equation (3.10), then

θ

[
0
0

]
(τ, 0)2θ

[
x
y

]
(τ, 2z)2 =

g∑
k=0

θ

[
sk
ek+1

]
(τ, 0)2θ

[
sk + x
ek+1 + y

]
(τ, 2z)2. (3.11)

The converse of Corollary 3.6 also holds:

Proposition 3.9. Let τ ∈ Hg satisfy the vanishing conditions in (3.3); then equation (3.10)
implies equations (3.6).
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Proof. We know that equation (3.10) is obtained by evaluating a suitable biquadratic Riemann
relation of the form∑

±Q[ε, δ]2 = 0.

But this is a trivial relation among the Xσ, hence, considering the inverse of the map M(0) (cf.
Proposition 2.2) we deduce that the derivative with respect to X0 also gives a trivial relation in
the Xσ and the same holds for the derivative with respect to any of the Xσ. Evaluating at the
Θ[σ](τ, z) we get the non-trivial relations Rσ = 0. �

Another interesting consequence can be derived. As we recalled, Riemann’s relations of the
form ∑

〈ε,δ〉=0

vε,δQ[ε, δ]2 = 0

induce trivial quartic relations among the Xσ (see Proposition 2.3). We can take the suitable
equation inducing Frobenius’ formula and write it as∑

〈ε,δ〉=0/θ[ εδ ](τ,0)6=0

vε,δQ[ε, δ]2 +
∑

〈ε,δ〉=0/θ[ εδ ](τ,0)=0

vε,δQ[ε, δ]2 = 0,

hence ∑
〈ε,δ〉=0/θ[ εδ ](τ,0)6=0

vε,δQ[ε, δ]2 = −
∑

〈ε,δ〉=0/θ[ εδ ]εδ(τ,0)=0

vε,δQ[ε, δ]2.

We can now take the derivatives of both sides with respect to any of the Xσ and evaluate
them at the Θ[σ](τ, z); we get Grushevsky’s relations on the left side and a linear combination of
terms that are products of a quadratic and a linear form in the Θ[σ](τ, z) on the right side. This
means Grushevsky’s relations are contained in the ideal generated by those quadrics Q[ε, δ](τ, z)
such that θ [ εδ ] (τ, 0) = 0, hence we have the following:

Corollary 3.10. Grushevsky’s cubics lie in the space spanned by linear forms and the above
vanishing quadratic forms.

Thus, in the hyperelliptic case we have more cubic relations in genus g = 4; we expect this
to be true for any g ≥ 4.

One is led to suppose that Frobenius’ formula might imply the vanishing of the suitable
theta constants. Let us discuss this formula in low genera. In the genus 3 case let us assume
θ [ 00 ] (τ, 0) 6= 0, and evaluate formula (3.11) at x = (1, 0, 1)t, y = (1, 1, 1)t and z = 0. Because of
the vanishing of the theta constants with odd characteristics we obtain

θ

[
0
0

]
(τ, 0)2θ

[
x
y

]
(τ, 0)2 = 0,

hence θ [ 1 0 1
1 1 1 ] (τ, 0) = 0.

It is a well-known fact that this equation characterizes a component of the hyperelliptic locus
in genus 3.

In genus 4 we can use the same method or equation (3.9) evaluated at the ten character-
istics described in (3.5), i.e., x = εi and y = δi. Again, we assume θ [ 00 ] (τ, 0) 6= 0, and use
formula (3.9); we get

θ

[
εi
δi

]
(τ, 0) = 0, i = 1, 2, 3, 4, (3.12)
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and six more equations, namely

θ

[
0
0

]
(τ, 0)2θ

[
ε0
δ0

]
(τ, 0)2 −

4∑
k=0

θ

[
sk
ek+1

]
(τ, 0)2θ

[
εk+5

δk+5

]
(τ, 0)2 = 0,

θ

[
sk
ek+1

]
(τ, 0)2θ

[
ε0
δ0

]
(τ, 0)2 − θ

[
0
0

]
(τ, 0)2θ

[
εk+5

δk+5

]
(τ, 0)2 = 0, k = 0, 1, 2, 3, 4.

Thus, we are left with a system of 6 equations in the six variables θ
[ εk
δk

]
(τ, 0)2 for k =

0, 5, 6, 7, 8, 9. The matrix of the coefficients is

A =



θ

[
0
0

]2
−θ
[

0
e1

]2
−θ
[
e1
e2

]2
−θ
[
s2
e3

]2
−θ
[
s3
e4

]2
−θ
[
s4
0

]2
−θ
[

0
e1

]2
θ

[
0
0

]2
0 0 0 0

−θ
[
e1
e2

]2
0 θ

[
0
0

]2
0 0 0

...
...

...
. . .

...
...

...
...

. . .
...

−θ
[
s4
0

]2
0 0 0 0 θ

[
0
0

]2



,

which unfortunately has rank 5, since the determinant is

θ

[
0
0

]8(
Q[0, 0]2(τ, 0)−

4∑
k=0

Q[sk, ek+1]
2(τ, 0)

)
= 0.

Hence, a priori, the system can admit a non-trivial solution; one expects this solution to be
ruled out by using Frobenius’ formula in its full generality, i.e., the equation in (3.8).

As we are dealing with the genus 4 case, we actually know that the vanishing obtained
in (3.12) means the point is hyperelliptic; Max Noether actually proved that the vanishing of
three azygetic theta constants implies the vanishing of seven other forming an azygetic 10-tuple
with them, although this 10-tuple is not uniquely determined by the three (cf. [16, Section 14];
in [16] the vanishing of these ten theta constants is said to imply that the period matrix is
hyperelliptic via a result by Weierstrass.

A complete proof that the vanishing of four azygetic theta constants implies that the point
is hyperelliptic can be also found in [14]; we have to mention that Igusa’s proof makes use of
Riemann’s relations of the form described in (2.3).

4 Characterization of the Hyperelliptic locus

Whenever τ is the period matrix of a hyperelliptic curve, a classical result (cf. [20]) states that
a system of characteristics as in (3.1) with the vanishing and non-vanishing properties (3.3)
and (3.4) can be associated with τ or with a conjugate of τ via the action of Sp(2g,Z).

It was not until 1984 that Mumford proved the converse statement in [15]. We will now
give a new proof of Mumford’s result with a different approach that has the merit of involving
Gunning’s multisecant formula, as expressed in the following statement (cf. [11]):

Theorem 4.1. Let X be an irreducible principally polarized abelian variety of dimension g, and
let A0, . . . , Ag+1 be distinct points of X. Suppose that ∀ z ∈ X the g + 2 points Th2(Ai + z) are
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linearly dependent. Assume moreover the following general position condition: that there exist
some k and l such that for y = (−Ak + Al)/2 the linear span of the points Th2(Ai + y) for
i = 0, . . . , g + 1 has dimension precisely equal to g + 1, and not less. Then X is the Jacobian of
some curve C, and all the points Ai are in the image of the Abel–Jacobi map.

We are now in a position to prove that the above conditions are satisfied when cases (3.3)
and (3.4) hold; indeed, we have the following:

Theorem 4.2. Let τ be a point whose vanishing and non-vanishing theta constants are those
in (3.3) and (3.4); then τ is the period matrix of a hyperelliptic Jacobian.

Proof. The period matrix turns out to be irreducible by counting the vanishing and non-
vanishing theta constants or by checking the conditions of Theorem 4 in [19], i.e., the characters
associated with the non-vanishing theta constants span the character group of Γg[2, 4]/±Γg[4, 8].

Moreover, the vanishing conditions imply that Frobenius’ formula (3.10)

Q[0, 0]2(τ, z) =

g∑
k=0

Q[sk, ek+1]
2(τ, z)

holds, hence Grushevsky’s equations (3.6) also hold with the coefficients being not all zero (see
Proposition 3.9).

We will prove that this implies the vectors Th2(Ai + z) are linearly dependent. Here we take

A0 = 0, A1 = (τs0 + e1)/2, . . . , Ak = (τsk−1 + ek)/2, . . . , Ag+1 = (τsg + eg+1)/2,

with the corresponding characteristics being[
ε
δ

]
=

[
0
0

]
,

[
s0
e1

]
, . . .

[
sk
ek+1

]
, . . . ,

[
sg
eg+1

]
.

The σ-th coefficient of the vector Th2(Ai + z) is

Θ[σ](τ, z + (τsi−1 + ei)/2) = (−1)〈σ,ei〉Θ[σ + si−1](τ, z).

Thus, the 2g polynomials Rσ in (3.6) give one non-trivial linear relation between the Th2(Ai+z)
for any z.

We are yet to prove the general position condition. We set

y = (A1 −A0)/2 = (1/4, 0, . . . , 0)t,

and collect the points Th2(Ai + y) in a (g + 2)× 2g matrix

A =


Θ[0](A0 + y) . . . . . . Θ[ε](A0 + y) . . .
Θ[0](A1 + y) . . . . . . Θ[ε](A1 + y) . . .

. . . . . . . . . . . . . . .
Θ[0](Ag+1 + y) . . . . . . Θ[ε](Ag+1 + y) . . .

 .
Now AAt = B = (bij) with

bij =
∑
ε

Θ[ε](Ai + y)Θ[ε](Aj + y) = θ

[
0
0

]
(Ai −Aj)θ

[
0
0

]
(Ai +Aj + 2y).

Up to constants we have

θ

[
0
0

]
(A0 −Aj) = θ

[
sj
ej+1

]
and θ

[
0
0

]
(A0 +Aj + 2y) = θ

[
sj

ej+1 + e1

]
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and for 1 ≤ i ≤ j ≤ g + 1

θ

[
0
0

]
(Ai −Aj) = θ

[
si + sj

ei+1 + ej+1

]
and θ

[
0
0

]
(Ai +Aj + 2y) = θ

[
si + sj

ei+1 + ej+1 + e1

]
.

Thus, the matrix B turns into

B =



θ

[
0
0

]
θ

[
0
e1

]
θ

[
0
0

]
θ

[
0
e1

]
0 0 . . . 0

θ

[
0
0

]
θ

[
0
e1

]
θ

[
0
0

]
θ

[
0
e1

]
0 0 . . . 0

0 0 θ

[
0
0

]
θ

[
0
e1

]
0 . . . 0

...
...

...
. . .

...

0 0 0 . . . θ

[
0
0

]
θ

[
0
e1

]


.

Therefore, the matrix B has rank g+ 1, hence g+ 1 ≥ rk(A) ≥ rk(B) = g+ 1, which means the
matrix A has the required rank. Then τ is the period matrix of a Jacobian. As explained in [9],
since we are using points of order 2, we get that 2Ai − 2Aj = 0 as points of the Jacobian of the
curve. By Abel’s theorem this means there exists a function on the curve whose divisor is equal
to 2Ai − 2Aj , i.e., the curve is hyperelliptic. �
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