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Abstract. Two problems are addressed: reduction of an arbitrary degree non-special divisor
to the equivalent divisor of the degree equal to genus of a curve, and addition of divisors
of arbitrary degrees. The hyperelliptic case is considered as the simplest model. Explicit
formulas defining reduced divisors for some particular cases are found. The reduced divisors
are obtained in the form of solution of the Jacobi inversion problem which provides the way
of computing Abelian functions on arbitrary non-special divisors. An effective reduction
algorithm is proposed, which has the advantage that it involves only arithmetic operations
on polynomials. The proposed addition algorithm contains more details comparing with the
known in cryptography, and is extended to divisors of arbitrary degrees comparing with the
known in the theory of hyperelliptic functions.
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1 Introduction

In the paper we propose a method of adding arbitrary divisors on a hyperelliptic curve. We often
refer to a non-special divisor, which we define by means of Riemann theorem, more accurate
definition is given below in Section 2.3. However, the method covers addition of special divisors
as well.

Before stating the goal we introduce the notion of reduced divisor corresponding to any non-
special divisor on an algebraic curve. Suppose g is genus of the curve. Any non-special divisor
can be represented by a collection of points of number greater than or equal to the genus, that is

D =
g+m∑
k=1

Pk, m > 0. A reduced divisor is a non-special divisor composed of g points: D̃ =
g∑

k=1

Pk.

It follows from the Riemann–Roch theorem that every non-special divisor of the form D −
(degD)∞ is equivalent to D̃− g∞, where D̃ is a reduced divisor. This immediately leads to the
following

Reduction Problem. Given a non-special divisor D of degree g +m, m > 0, on an algebraic
curve of genus g find the corresponding reduced divisor D̃ such that D− (g +m)∞ is equivalent
to D̃ − g∞.

Addition of two special divisors can be considered as a reduction problem, if the sum forms
a non-special divisor. Non-special divisors are used in the problem statement to avoid ambiguity.

The reduction problem has a close relation to
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Addition Problem. Given two non-special divisors D1 and D2 of degrees g+m1 and g+m2,
m1,m2 > 0 respectively find a reduced divisor D̃ such that D1+D2−(2g+m1+m2)∞ ∼ D̃−g∞.

Note that solving the reduction problem we immediately solve the addition problem since we
can assume that D1, D2 together compose a non-special divisor D of degree 2g+m1 +m2, and
then come to the reduction problem for the new divisor D. On the other hand, the standard
addition problem arises when the both divisors D1, D2 are firstly reduced to divisors D̃1, D̃2 of
degree g each, then addition of D̃1, D̃2 can be accomplished by any approach to addition law.

Much work has been done on the reduction problem starting with the classical work [1], where
the Jacobi inversion problem was solved in hyperelliptic case [1, p. 32, Section 216] (briefly
recalled in preliminaries). The Jacobi inversion problem is stated for a non-special divisor
of degree g, that is for a reduced divisor. Points of the divisor serve as roots of two rational
functions defined on a curve. Coefficients of the rational functions are expressed through multiply
periodic functions ℘ evaluated at a point of Jacobian of the curve, and this point corresponds to
the divisor. So a solution of the reduction problem coincides by the form with a solution of the
Jacobi inversion problem, which provides a method of solving the generalised Jacobi inversion
problem stated for divisor of degree greater than g.

The first solution of reduction problem was given in [4]. This algorithm was inspired by
reduction of quadratic forms. For low genera (g = 2, 3) many authors worked on giving more
explicit solutions to the reduction problem due to potential application in cryptography, see [6]
and [9] and the literature cited there. The explicit realisation of addition law should also have
applications to the theory of heights on hyperelliptic Jacobians. In [10] ℘ functions are used to
produce formulas for division polynomials on hyperelliptic curves of low genera which was later
applied in [5] to compute canonical heights on genus 2 curves. Though the question of division
polynomials isn’t treated explicitly in the present paper it is strongly related to the reduction
algorithm we propose as it is essentially equivalent to reduced divisors of the form nP on the
curve.

In preliminaries the Jacobi inversion problem is recalled and a detailed description of non-
special and special divisors is given. The reduction problem is addressed in Sections 3 and 4.
The proposed method of reduction is based on the ideas of [3] and [7]. A new and essential result
achieved here consists in finding explicit functions defining reduced divisors in some particular
cases, which are presented in Section 3. An iterative reduction algorithm is given in Section 4, as
well as some comments on its application in cryptography. Section 5 is devoted to the addition
problem.

In our setup we often suppose that points of divisors are known, and we use them to con-
struct polynomials and functions defining the divisors. This approach guarantees that a divisor
arising from the definition through polynomials is located on the curve. On the other hand, the
reader can forget that the polynomial coefficients were computed from points, and use symbolic
notations for them. All operations are applicable to polynomials in this form as well.

In this paper we tie together two directions where addition of divisors was investigated: hyper-
elliptic cryptography, and theory of Abelian functions on hyperelliptic curves. The viewpoint of
cryptographic applications describes divisors in terms of polynomials in quite an abstract man-
ner, when the structure of divisors is left out of consideration. Analysis of divisors by means of
meromorphic functions on hyperelliptic curves helps a lot in understanding a relation between
the structure of a divisor and the form of functions which define it. On the other hand, the addi-
tion law known in the theory of Abelian functions on hyperelliptic curves is established for two
non-special divisors of degree g, which seems to be enough. In the present paper we extend the
addition law to non-special divisors of arbitrary degree. Though we restrict our consideration
to non-special divisors and use reduction to divisors of degree g, we provide some new results in
computation of Abelian functions on arbitrary non-special divisors, which arise from addition
of divisors.
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2 Preliminaries

2.1 Hyperelliptic curve and Sato weights

In the paper we deal with the family of hyperelliptic curves with a branch point at infinity.
A genus g curve is defined by the equation

0 = f(x, y) = −y2 + P(x) = −y2 + λ0x
2g+1 +

2g∑
n=0

λ4g+2−2nx
n, (2.1)

where λk are parameters of the curve, λ0 = 1, and x, y ∈ C. We use Sato weights as indices, since
they are respected by the theory of rational functions, that simplifies many considerations. Sato
weight equals the opposite to the exponent of the leading term in the expansion near infinity.
Namely,

x = ξ−2, y = ξ−2g−1(1 +O(λ)), (2.2)

where ξ is a local parameter, and Sato weights of x and y are wgtx = 2, wgt y = 2g + 1. The
weight is also assigned to every function, for example f has weight 4g + 2.

2.2 Jacobi inversion problem

The Jacobi inversion problem gives the answer how to find g points {(xk, yk)}gk=1 on a curve
which unambiguously map into a point u of Jacobian Jac of the curve. Solution of the Jacobi
inversion problem for a hyperelliptic curve is given by two rational functions

R2g(x;u) = xg −
g∑

k=1

xg−k℘1,2k−1(u), (2.3a)

R2g+1(x, y;u) = 2y +

g∑
k=1

xg−k℘1,1,2k−1(u). (2.3b)

Here multiply periodic ℘ functions as in [1] are defined by

℘i,j(u) = − ∂2

∂ui∂uj
log σ(u),

℘i,j,k(u) = − ∂3

∂ui∂uj∂uk
log σ(u)

through g-variable σ function which can be constructed by the method given in [2]. More details
about rational functions can be found in [3].

Components of u ∈ Jac are indexed by Sato weights: u = (u1, u3, . . . , u2g−1), wgtun = −n,
and the standard holomorphic differentials are employed

du2k−1 =
xg−kdx

−2y
, k = 1, . . . , g.

The function R2g is a polynomial in x and has g roots {xk}gk=1. At the same time, R2g is
rational on the curve (2.1) with 2g roots, namely, {(xk, yk), (xk,−yk)}gk=1, where {yk}gk=1 are
defined by the function R2g+1. That is divisor Dg = {(xk, yk)}gk=1 solves uniquely the following
system

R2g(x;u) = 0, R2g+1(x, y;u) = 0,



4 J. Bernatska and Y. Kopeliovich

and serves as the preimage of u

Jac 3 u =

g∑
k=1

A(xk, yk)

under Abel’s map

A(x, y) =

∫ (x,y)

∞
du,

where du = (du1,du3, . . . ,du2g−1)
t. As usual, A(Dg) =

g∑
k=1

A(xk, yk).

Note that R2g+1 has 2g+ 1 roots on the curve, but only g are common of two functions R2g

and R2g+1. Points {(xk,−yk)}gk=1 form a divisor which is inverse to {(xk, yk)}gk=1, and satisfy
R2g+1(x,−y;u) = 0.

On the other hand, R2g and R2g+1 can be obtained by determinant formulas

R2g(x, y;u) = xg +

g∑
k=1

α2g+2−2kx
k−1,

1

2
R2g+1(x, y;u) = y +

g∑
k=1

β2g+3−2kx
k−1,

similar to (3.2), and coefficients αn and βn are expressed in terms of coordinates of points
{(xk, yk)}gk=1.

2.3 Non-special divisors

First, we recall the Riemann theorem, which is used here to define a non-special divisor. Let ω
and ω′ be matrices of periods along the standard homology a- and b-cycles, namely,

ω2k−1,j =

∮
aj

du2k−1, ω′2k−1,j =

∮
bj

du2k−1,

where k, j = 1, . . . , g, and du2k−1 are holomorphic differentials introduced above. In this notation
θ
(
ω−1u;ω−1ω′

)
is the Riemann theta function on Jacobian of a curve defined by (2.1). K denotes

the vector of Riemann constants. Then

θ
(
A(P )−A(D)−K

)
as a function of a point P vanishes if D is a special divisor, and has g roots if D is a non-special
divisor.

The same statement holds with multivariable σ-function, namely,

σ
(
A(P )−A(D)

)
as a function of P vanishes if D is a special divisor, and has g roots if D is a non-special divisor.

Let Dg =
g∑

k=1

(xk, yk) and all points of Dg are parameterised as in (2.2) with parameters ξk. As

shown in [3, Theorem 2.7 in Russian version]

σ
(
A(Dg)−A(x(ξ), y(ξ))

)
=

(
g∏

k=1

(ξ − ξk)
g∏

i,j=1
j>i

(ξi + ξj)

)
exp

(
H(−ξ, ξ1, . . . , ξg;λ)

)
, (2.4)

where H(0;λ) = H(−ξ, ξ1, . . . , ξg; 0) = 0.
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From (2.4) it is evident that a non-special divisor Dg contains no pair of points related by the
hyperelliptic involution: ξi = −ξj . This is applicable to a degree g divisor. If a divisor Dg+m of
degree g+m contains a pair in the hyperelliptic involution, we delete this pair from the divisor,
and do the same with all pairs in involution, so obtain a truncated divisor D̂g+m equivalent

to Dg+m. The divisor Dg+m is non-special if its truncated version D̂g+m has a degree equal to
or greater than g. In what follows divisors containing points in involution are not considered.

In a divisor Dg−n of degree less than g, say g − n with 0 < n < g, the absent n points are
assigned to infinity, that is the corresponding parameters ξk vanish. Putting (x, y) to infinity,
that is ξ = 0, one computes σ

(
A(Dg−n)

)
, and see that sigma function vanishes on a divisor

of degree less than g, and so ℘ functions are not defined on such a divisor. In this case non-
vanishing derivatives of sigma function are used instead of ℘ functions. Formula (2.4) is also
applicable to a divisor of degree greater than g, when the divisor is replaced by the equivalent
reduced divisor.

2.4 Special divisors

In what follows special divisors are always considered as containing less than g points of a curve.

Proposition 2.1. A divisor Dm of degree m, m < g, is defined uniquely by the system

H(x) = 0, y = I(x) (2.5)

with polynomials H of degree m and I of degree m− 1 or greater, the both vanishing on Dm.

The proof is evident if the points are given. For example one can use determinant formulas
to construct such polynomials, at that I has degree m− 1.

Now consider the system (2.5) in detail. Equation H(x) = 0 defines 2m points of the curve,
namely {(xk, yk), (xk,−yk)}mk=1 such that xk are roots of H. Coordinates yk can be found from
the equation of the curve (2.1), but only m points are contained in Dm. These points are singled
out by the second equation of the system (2.5). It represents a rational function of weight 2g+1,
equal to wgt y, if deg I 6 g, and so has 2g+1 roots on the curve, m of which are common with H.
Polynomial I of degree greater than g is also eligible.

Obviously, a divisor with points in involution can not be covered by the definition (2.5) since
the equation for y is linear and defines only one value of y for each x.

The reduction problem is not applicable to special divisors, which are in the most reduced
form. However one can consider the addition problem for two or more special divisors, and the
addition algorithm given in Section 5 is applicable to such divisors as well.

3 Addition on a curve

3.1 Reduction of g + 1 degree divisor

Theorem 3.1. Let D̃ be a divisor of degree g such that D̃−g∞ is equivalent to Dg+1−(g+1)∞,

where Dg+1 =
g+1∑
k=1

Pk is a non-special divisor, and {Pk = (xk, yk)}g+1
k=1 are distinct points. Then D̃

is defined by the system

H(x) = 0, y = −I(x), (3.1a)

where

H(x) = −1

2

g+1∑
k,l=1
l 6=k

(yk − yl)2

(xk − xl)2
g+1∏
i=1
i 6=k,l

(x− xi)
(xl − xi)(xk − xi)

+

g∑
n=0

xn
g−n∑
j=0

λ2g−2n−2jhj , (3.1b)
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I(x) =

g+1∑
k=1

yk

g+1∏
i=1,i 6=k

(x− xi)−H(x)

g+1∏
i=1,i 6=k

(xk − xi)
, (3.1c)

and hn denotes the complete symmetric polynomial of degree n in {xk}g+1
k=1.

Proof. Define a rational function R2g+1 with g+ 1 fixed roots at points {Pk = (xk, yk)}g+1
k=1 by

the determinant formula∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xg y
1 x1 x21 · · · xg1 y1
1 x2 x22 · · · xg2 y2
...

...
...

. . .
...

...
1 xg+1 x2g+1 · · · xgg+1 yg+1

∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.2)

which can be written in a different form

y = G(x) (3.3)

with the help of interpolation polynomial G of degree g

G(x) =

g+1∑
k=1

ykLk(x), (3.4)

where Lk have the form of Lagrange interpolating polynomials, namely

Lk(x) =

g+1∏
i=1,i 6=k

(x− xi)
(xk − xi)

. (3.5)

Note that

g+1∑
k=1

Lk(x) = 1.

Intersection of (3.3) with the curve produces the unknown g roots of R2g+1. So, substi-
tute (3.4) for y into (2.1), and take into account that Lk(x)Lj(x) with k 6= j is divisible by

F(x) =
g+1∏
n=1

(x− xn)

−G(x)2 + P(x) = −

(
g+1∑
k=1

ykLk(x)

)2

+ P(x)

(
g+1∑
k=1

Lk(x)

)2

=

g+1∑
k,j=1, k 6=j

(
P(x)− ykyj

)
Lk(x)Lj(x) +

g+1∑
k=1

(
P(x)− P(xk)

)
Lk(x)2

=

g+1∑
k,j=1, k 6=j

(
P(xk)− ykyj

)
Lk(x)Lj(x) +

g+1∑
k=1

(
P(x)− P(xk)

)
Lk(x)

= F(x)

(
g+1∑

k,j=1, k 6=j

y2k − ykyj
g+1∏

i=1,i 6=k
(xk − xi)

g+1∏
i=1,i 6=j

(xj − xi)

g+1∏
i=1
i 6=k,j

(x− xi)
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+

g+1∑
k=1

1
g+1∏

i=1,i 6=k
(xk − xi)

P(x)− P(xk)

x− xk

)
,

with an arbitrary natural N it is straightforward to check

N∑
k=1

xnk
N∏

j=1,j 6=k
(xk − xj)

= hn−N+1, (3.6)

where hn is the complete symmetric polynomial of degree n in {xk}Nk=1, and hn = 0 as n < 0.
Then one finds

Q(x) =

g+1∑
k=1

1
g+1∏
i=1
i 6=k

(xk − xi)

P(x)− P(xk)

x− xk
=

g∑
n=0

xn
g−n∑
j=0

λ2g−2n−2jhj .

Finally,

H(x) = −1

2

g+1∑
k,l=1
l 6=k

(yk − yl)2

(xk − xl)2
g+1∏
i=1
i 6=k,l

(x− xi)
(xl − xi)(xk − xi)

+Q(x).

Note that coefficient at xg is h0 = λ0 = 1, which arises from Q.
PolynomialH has g roots, say {x̃k}gk=1, and points

{(
x̃k, ỹk = G(x̃k)

)}g
k=1

give the unknown g
roots of R2g+1 defined by (3.2). Let g0 be the coefficient of G at xg, then

I(x) = G(x)− g0
h0
H(x) =

g+1∑
k=1

yk

g+1∏
i=1,i 6=k

(x− xi)−H(x)

g+1∏
i=1,i 6=k

(xk − xi)
.

Polynomial I has degree g − 1, and y − I(x) vanishes at the same g points as H(x). These
points

{(
x̃k, ỹk

)}g
k=1

map into −u ∈ Jac, which is inverse to the Abel image u of the reduced

divisor D̃ =
g∑

k=1

P̃k. Therefore, the reduced divisor D̃ corresponding to Dg+1 consists of points{
P̃k =

(
x̃k,−ỹk

)}
. �

Remark 3.2. System (3.1) coincides with the solution of Jacobi inversion problem given by the
rational functions (2.3), namely

R2g(x;u) = H(x), R2g+1(x, y;u) = 2y + 2I(x).

Therefore, polynomials H and I allow to compute ℘ functions at divisor Dg+1.

3.2 Reduction of g + 2 degree divisor

Theorem 3.3. Let D̃ be a divisor of degree g such that D̃−g∞ is equivalent to Dg+2−(g+2)∞,

where Dg+2 =
g+2∑
k=1

Pk is a non-special divisor, and {Pk = (xk, yk)}g+2
k=1 are distinct points. Then D̃

is defined by the system

H(x) = 0, y = −I(x), (3.7a)
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where

H(x) = −1

2

g+2∑
k,l=1
l 6=k

(yk − yl)2

(xk − xl)2
g+2∏
i=1
i 6=k,l

(x− xi)
(xl − xi)(xk − xi)

+

g−1∑
n=0

xn
g−1−n∑
j=0

λ2g−2−2n−2jhj , (3.7b)

I(x) =
1

h0

(
g0

(
1

h0
H(x)− x

g−1∑
n=0

xn
g−1−n∑
j=0

λ2g−2−2n−2jhj

)

+
1

2

g+2∑
k,l=1
l 6=k

g+2∑
n=1
n6=k,l

yn(yk − yl)2
g+2∏
j=1
j 6=n

(xn − xj)
g+2∏
i=1
i 6=l

(xl − xi)
∏g+2
i=1
i 6=k

(xk − xi)

×
(

(xn − xk − xl)
(
x

g+2∏
j=1

j 6=n,k,l

(x− xj)−
1

h0
H(x)

)
+ xkxl

g+2∏
j=1

j 6=n,k,l

(x− xj)
)

−
g+2∑
k,l=1
l 6=k

(yk − yl)2xlyk
g+2∏
i=1
i 6=l

(xl − xi)
g+2∏
i=1
i 6=k

(xk − xi)2

( g+2∏
j=1
j 6=k,l

(x− xj)−
1

h0
H(x)

))
, (3.7c)

where h0 and g0 are defined by (3.10a) and (3.11a), and hn denotes the complete symmetric
polynomial of degree n in {xk}g+2

k=1.

Proof. Define a rational function R2g+2 with g+ 2 fixed roots at points {Pk = (xk, yk)}g+2
k=1 by∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xg y xg+1

1 x1 x21 · · · xg1 y1 xg+1
1

1 x2 x22 · · · xg2 y2 xg+1
2

...
...

...
. . .

...
...

...

1 xg+2 x2g+2 · · · xgg+2 yg+2 xg+1
g+2

∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.8)

Interpolation polynomial G such that (3.8) acquires the form y = G(x), is defined by

G(x) =

g+2∑
k=1

ykLk(x), (3.9)

where

Lk(x) =

g+2∏
i=1,i 6=k

(x− xi)
(xk − xi)

.

Intersection of y = G(x) with the curve produces the unknown g roots of R2g+2. Substi-

tute (3.9) for y into (2.1) and divide by F(x) =
g+2∏
n=1

(x−xn). Computation similar to that given

in Section 3.1 leads to

H(x) = −1

2

g+2∑
k,l=1
l 6=k

(yk − yl)2

(xk − xl)2
g+2∏
i=1
i 6=k,l

(x− xi)
(xl − xi)(xk − xi)

+

g−1∑
n=0

xn
g−1−n∑
j=0

λ2g−2−2n−2jhj .
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In this case coefficient at xg is

h0 = −1

2

g+2∑
k,l=1
l 6=k

(yk − yl)2

(xk − xl)2
1

g+2∏
i=1
i 6=k,l

(xl − xi)(xk − xi)
, (3.10a)

which does not vanish, and the coefficient at xg−1 is

h1 = λ0 +
1

2

g+2∑
k,l=1
l 6=k

(yk − yl)2

(xk − xl)2

g+2∑
i=1
i 6=k,l

xi

g+2∏
i=1
i 6=k,l

(xl − xi)(xk − xi)
. (3.10b)

Let {x̃k}gk=1 be roots of polynomial H, then {
(
x̃k, ỹk = G(x̃k)

)
}gk=1 are the unknown g roots

of R2g+2. In this case G is a polynomial of degree g + 1, and with the help of polynomial H it
is reduced to I of degree g − 1, namely,

I(x) = G(x)−
(
g0
h0
x− g0h1

h20
+

g1
h0

)
H(x),

where

g0 =

g+2∑
n=1

yn
g+2∏

j=1,j 6=n
(xn − xj)

, (3.11a)

g1 = −
g+2∑
n=1

yn
g+2∑

j=1,j 6=n
xj

g+2∏
j=1,j 6=n

(xn − xj)
. (3.11b)

The expression for I is simplified to (3.7c).
Finally, the reduced divisor D̃ corresponding toDg+2 consists of points

{
P̃k =

(
x̃k,−ỹk

)}
. �

Remark 3.4. Similarly to the case of g + 1 points, system (3.7) coincides with the solution
of Jacobi inversion problem (2.3), and coefficients of polynomials H and I provide values of ℘
functions at divisor Dg+2.

3.3 Reduction of g + 1 degree divisor with duplication

Theorem 3.5. Let D̃ be a divisor of degree g such that D̃−g∞ is equivalent to Dg+1−(g+1)∞,

where Dg+1 = 2P1 +
g∑

k=2

Pk is a non-special divisor, and {Pk = (xk, yk)}gk=1 are distinct points.

Then D̃ is defined by the system

H(x) = 0, y = −I(x), (3.12a)

where

H(x) =

g∑
n=0

xn
g−n∑
j=0

λ2g−2n−2jhj
∣∣
xg+1→x1
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− P ′(x1)
g∏
i=2

(x1 − xi)2

( g∏
i=2

(x− xi)−
g∏
i=2

(x1 − xi)

(x− x1)
−

g∏
i=2

(x− xi)
g∑
ι=2

(x1 − xι)−1
)

− P ′(x1)

2y1
g∏
i=2

(x1 − xi)

(
g∑

k=2

2yk
g∏
i=1
i 6=k

(x− xi)

(xk − x1)
g∏
i=1
i 6=k

(xk − xi)
+
P ′(x1)

2y1

g∏
i=2

(x− xi)
g∏
i=2

(x1 − xi)

)

+

g∑
j=2

(y1 − yj)2
g∏
i=2
i 6=j

(x− xi)

(xj − x1)
g∏
i=1
i 6=j

(xj − xi)
g∏
i=2

(x1 − xi)

(
1− (x− x1)

g∑
ι=2

(x1 − xι)−1
)

+

g∑
k,j=2
k 6=j

(y2k − ykyj)(x− x1)2
g∏
i=2
i 6=k,j

(x− xi)

(xk − x1)(xj − x1)
g∏
i=1
i 6=k

(xk − xi)
g∏
i=1
i 6=j

(xj − xi)
, (3.12b)

I(x) =

(x− x1)
g∏
i=2

(x− xi)−H(x)

g∏
i=2

(x1 − xi)

(
P ′(x1)

2y1
− y1

g∑
ι=2

(x1 − xι)−1
)

+ y1

g∏
i=2

x− xi
x1 − xi

+

g∑
k=2

yk

(x− x1)
g∏
i=1
i 6=k

(x− xi)−H(x)

(xk − x1)
g∏
i=1
i 6=k

(xk − xi)
, (3.12c)

and hn denotes the complete symmetric polynomial of degree n in {xk}g+1
k=1.

Proof. Define a rational function R2g+1 with g + 1 fixed roots at points 2P1 +
g∑

k=2

Pk, Pk =

(xk, yk), by the determinant formula∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xg y
1 x1 x21 · · · xg1 y1
1 x2 x22 · · · xg2 y2
...

...
...

. . .
...

...
1 xg x2g · · · xgg yg
0 1 2x1 · · · gxg−11 y′1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.13)

where y′1 denotes dy1/dx1, at that P1 = (x1, y1) is a point of the curve defined by (2.1). Rewri-
te (3.13) as y = G(x), and find the interpolation polynomial

G(x) =

g∑
k=1

ykL̃k(x) + y′1L̃g+1(x), (3.14)
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where

L̃1(x) = (x− x1)2
d

dx1

(
1

(x− x1)
g∏
i=2

(x1 − xi)

)
g∏
i=2

(x− xi),

L̃k(x) =
(x− x1)2

(xk − x1)2
g∏

i=2,i 6=k

x− xi
xk − xi

, 2 6 k 6 g,

L̃g+1(x) = (x− x1)
g∏
i=2

x− xi
x1 − xi

.

Polynomials L̃k(x) relate to Lk(x) defined by (3.5) as follows

L̃1(x) = lim
xg+1→x1

(
L1(x) + Lg+1(x)

)
,

L̃k(x) = lim
xg+1→x1

Lk(x), 2 6 k 6 g,

L̃g+1(x) = lim
xg+1→x1

−Lg+1(x)

d logLg+1(x)/dxg+1
.

Note that
g∑

k=1

L̃k(x) = 1.

Solutions of y = G(x) which are on the curve define the unknown g roots of R2g+1. Substi-

tute (3.14) for y into (2.1), and take into account that L̃k(x)L̃j(x) with k, j = 1, . . . , g, k 6= j,

and L̃k(x)L̃g+1(x) with k = 2, . . . , g, and L̃g+1(x)2 are divisible by F(x) = (x−x1)2
g∏

n=2
(x−xn).

Actually,

−G(x)2 + P(x) = −
( g∑
k=1

ykL̃k(x) + y′1L̃g+1(x)

)2

+ P(x)

( g∑
k=1

L̃k(x)

)2

=

g∑
k=1

(
P(x)− P(xk)

)
L̃k(x)− (y′1)

2L̃g+1(x)2 − 2

g∑
k=1

yky
′
1L̃k(x)L̃g+1(x)

+

g∑
k,j=1
k 6=j

(
P(xk)− ykyj

)
L̃k(x)L̃j(x)

= F(x)

(
d

dx1

(
P(x)− P(x1)

x− x1
1

A(x1)

)

+

g∑
k=2

P(x)− P(xk)

(x− xk)
1

(xk − x1)
g∏
i=1
i 6=k

(xk − xi)

− P
′(x1)

A(x1)2

(
A(x)−A(x1)

(x− x1)
−A(x)

d

dx1
logA(x1)

)

− P ′(x1)
2y1A(x1)

( g∑
k=2

2yk
g∏
i=1
i 6=k

(x− xi)

(xk − x1)
g∏
i=1
i 6=k

(xk − xi)
+
P ′(x1)

2y1

A(x)

A(x1)

)
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+

g∑
j=2

(y1 − yj)2
g∏
i=2
i 6=j

(x− xi)

(xj − x1)
g∏
i=1
i 6=j

(xj − xi)A(x1)

(
1− (x− x1)

d

dx1
logA(x1)

)

+

g∑
k,j=2
k 6=j

(y2k − ykyj)(x− x1)2
g∏
i=2
i 6=k,j

(x− xi)

(xk − x1)(xj − x1)
g∏
i=1
i 6=k

(xk − xi)
g∏
i=1
i 6=j

(xj − xi)

)
,

where we denote A(x) =
g∏
i=2

(x−xi), and use relation 2y1y
′
1 = P ′(x1). In the above computation

we used the following relations

L̃1(x) =
A(x)

A(x1)

(
1− (x− x1)

d

dx1
logA(x1)

)
, L̃g+1(x) = (x− x1)

A(x)

A(x1)

to obtain(
P(x)− P(x1)

)
L̃1(x)− 2y1y

′
1L̃1(x)L̃g+1(x) = (x− x1)2A(x)

×
(

d

dx1

(
P(x)− P(x1)

x− x1
1

A(x1)

)
− P

′(x1)

A(x1)2

(
A(x)−A(x1)

(x− x1)
−A(x)

d

dx1
logA(x1)

))
.

Taking the limit of (3.6) as xg+1 → x1 one finds

d

dx1

(
xn1

A(x1)

)
+

g∑
k=2

xnk

(xk − x1)
n∏
i=1
i 6=k

(xk − xi)
= lim

xg+1→x1
hn−g,

where hn is the complete symmetric polynomial of degree n in {xk}g+1
k=1, and hn−g = 0 as n < g.

Then

d

dx1

(
P(x)− P(x1)

x− x1
1

g∏
i=2

(x1 − xi)

)
+

g∑
k=2

P(x)− P(xk)

(x− xk)
1

(xk − x1)2
g∏

i=2,i 6=k
(xk − xi)

=

g∑
n=0

xn
g−n∑
j=0

λ2g−2n−2jhj
∣∣
xg+1→x1 . (3.15)

Taking into account that

d

dx1
logA(x1) =

g∑
i=2

1

x1 − xi
,

one obtains polynomial H as in (3.12b). Note that coefficient at xg is h0 = λ0 = 1, which arises
from (3.15).

Let {x̃k}gk=1 be roots of polynomial H, then points
{(
x̃k, ỹk = G(x̃k)

)}g
k=1

, where G is defined
by (3.14), are the unknown g roots of R2g+1 which is defined by (3.13). Let g0 be the coefficient
of G at xg, namely,

g0 =
1

A(x1)

(
y′1 − y1

g∑
ι=2

(x1 − xι)−1
)

+

g∑
k=2

yk

(xk − x1)
g∏
i=1
i 6=k

(xk − xi)
,
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then polynomial

I(x) = G(x)− g0
h0
H(x)

is of degree g − 1. Then y = I(x) and H(x) = 0 define points
{(
x̃k, ỹk

)}g
k=1

which map into

−u ∈ Jac, the inverse to the Abel image u of reduced divisor D̃. Therefore, the reduced divisor D̃

corresponding to 2P1 +
g∑

k=2

Pk consists of points
{
P̃k =

(
x̃k,−ỹk

)}
. �

3.4 Reduction of divisor (g + 1)P

Theorem 3.6. Let D̃ be a divisor of degree g such that D̃−g∞ is equivalent to Dg+1−(g+1)∞,

where Dg+1 = (g + 1)P1 with non-branch point P1 = (x1, y1). Then D̃ is defined by the system

H(x) = 0, y = −I(x), (3.16a)

where

H(x) = (x− x1)g + 2

g−1∑
j=0

(x− x1)j
j∑
i=0

y
(i)
1 y

(j+g+1−i)
1

i!(j + g + 1− i)!
, (3.16b)

I(x) =

g−1∑
n=0

(x− x1)n
(
y
(n)
1

n!
− 2

y
(g)
1

g!

n∑
i=0

y
(i)
1 y

(n+g+1−i)
1

i!(n+ g + 1− i)!

)
, (3.16c)

and y
(n)
1 is found from

P(n)(x1) =
n∑
k=0

n!

k!(n− k)!
y
(k)
1 y

(n−k)
1 .

Proof. Define a rational function R2g+1 with g + 1 fixed roots at points (g + 1)P1 with P1 =
(x1, y1), by the determinant formula∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xg y
1 x1 x21 · · · xg1 y1
0 1 2x1 · · · gxg−11 y′1
...

...
...

. . .
...

...

0 0 0 · · · g!x1 y
(g−1)
1

0 0 0 · · · g! y
(g)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.17)

where y
(n)
1 denotes dny1/dx

n
1 . Then the interpolation polynomial G such that (3.17) acquires

the form y = G(x) is defined by

G(x) =

g∑
n=0

1

n!
(x− x1)ny(n)1 . (3.18)

Points (x, y) of the curve (2.1) satisfying y = G(x) are roots of R2g+1. To find them substitu-
te (3.18) for y into (2.1), and take into account that

G(x)2 =

2g∑
k=0

1

k!
(x− x1)k

dky21
dxk1

− 2

2g∑
k=g+1

k−g−1∑
i=0

(x− x1)k

i!(k − i)!
y
(i)
1 y

(k−i)
1 ,
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and y21 = P(x1). Evidently,

−G(x)2 + P(x) = (x− x1)2g+1 + 2

2g∑
k=g+1

k−g−1∑
i=0

(x− x1)k

i!(k − i)!
y
(i)
1 y

(k−i)
1

= (x− x1)g+1

(x− x1)g + 2

2g∑
k=g+1

k−g−1∑
i=0

(x− x1)k−g−1

i!(k − i)!
y
(i)
1 y

(k−i)
1


is divisible by F(x) = (x−x1)g+1. Therefore, H is defined by (3.16b), and coefficient at xg is 1.
Then

I(x) = G(x)− y
(g)
1

g!
H(x),

and one comes to (3.16c). �

3.5 Reduction of g + m degree divisor

Here we propose a solution of the reduction problem for a divisor of degree greater than g + 2.

Let a divisor Dg+m =
g+m∑
k=1

(xk, yk) be defined by a system

F(x) = 0, R(x, y) = 0, (3.19)

where F is a polynomial of degree g + m, and a rational function R of weight 2g + m has the
form

R(x, y) = yγy(x) + γx(x), deg γy = [(m− 1)/2], deg γx = g + [m/2], (3.20)

where [·] denotes the integer part. If points of Dg+m are known, R can be represented through
a determinant similar to (3.8) constructed from the first g + m + 1 elements in the list of
monomials{

1, x, . . . , xg, y, xg+1, yx, . . . , xg+[m/2], yx[m/2], . . .
}
.

Let k = [(m− 1)/2], then

γy(x) =

g+m∑
lk>···>l1=1

(
k∏
ι=1

ylι

)
Ml1,...,lk(x),

γx(x) =

g+m∑
lk+1>···>l1=1

(−1)k+1

(
k+1∏
ι=1

ylι

)
Nl1,...,lk+1

(x),

where Ml1,...,lk and Nl1,...,lk+1
with repeated indices vanish, and

Ml1,...,lk(x) =
1

k!

k∏
ι=1

(x− xlι)
g+m∏
i=1,

i 6=l1,...,lk

(xlι − xi)
,

Nl1,...,lk+1
(x) =

1

(k + 1)!

g+m∏
i=1,

i 6=l1,...,lk+1

(x− xi)
k+1∏
ι=1

(xlι − xi)
.
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Note that

g+m∑
lι=1

lι 6=l1,...,l̂ι,...,lk

M
l1,...,l̂ι,...,lk

(x) = 0,

g+m∑
lι=1

lι 6=l1,...,l̂ι,...,lk+1

Nl1,...,lι,...,lk+1
(x) =

1

k + 1
M
l1,...,l̂ι,...,lk+1

(x),

where l̂ι denotes the eliminated index. Evidently, summation of Nl1,...,lι,...,lk+1
over two or more

indices brings to zero.

Instead of interpolation polynomial the following rational function G is used

G(x) = −γx(x)

γy(x)
. (3.21)

Substitution of (3.21) for y into f from (2.1) leads to

−γx(x)2 + γy(x)2P(x),

which is divisible by F due to the construction, and the quotient polynomial H has degree g,
namely,

H(x) =
γy(x)2P(x)− γx(x)2

F(x)
. (3.22)

Finally, the reduced divisor corresponding to Dg+m is defined by

H(x) = 0, y = −G(x), (3.23)

where G is given by (3.21). If the form y + I(x) as in (3.1a) with polynomial I of degree g − 1
is required, it can be constructed by the formula

y + I(x) = H(x)
(
yνy(x) + νx(x)

)
+
(
yγy(x)− γx(x)

)
M(x), (3.24)

deg νy = deg γy − 1, deg νx = deg γx − 1, degM = g − 1.

Unknown coefficients of polynomials νy, νx, andM of number 2g+
[
m− 1

2

]
are found from the

same number of equations arising as vanishing coefficients at monomials
{
yxg+[(m−1)/2]−1, . . . ,

yx, x2g+[m/2]−1, . . . , xg
}

and the unit coefficient at y.

Remark 3.7. In the definition (3.19) of divisor Dg+m the rational functionR has weight 2g+m,
and this is the minimal weight of a function whose g +m roots can be chosen arbitrarily. This
function is required in order to obtain a polynomial of degree g in (3.22).

Below we consider also the definition of a divisor by two polynomials (5.1), which usually
occurs in cryptography oriented papers. In this case function y −L(x) has weight 2g + 2m− 2,
evidently it is greater than the minimal if m > 2. This means that the intersection of this
function with the curve contains 2g + 2m− 2 points, which is seen by substituting L for y into
f(x, y) = 0. So the complement divisor to Dg+m in the intersection has degree g +m− 2, and
with m > 2 formulas (3.21)–(3.23) with G replaced by L do not lead to a reduced divisor.
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4 The reduction algorithm

Reduction of a degree g + m divisor is realised directly in Section 3.5, which is applicable to
a divisor defined by (3.19) or given as a collection of points. This realisation involves solution
of a system of linear algebraic equations (3.24). To avoid this type of computation we suggest
an iterative algorithm of reduction, involving only arithmetic operations on polynomials.

Recall that we deal with the hyperelliptic curve defined by (2.1). Let Dg+m =
g+m∑
k=1

Pk be

a divisor to reduce, where m ≥ 1, and Pk = (xk, yk). Reduction consists in finding a divisor

D̃g =
g∑

k=1

P̃k such that D̃g − g∞ is equivalent to Dg+m − (g + m)∞. The reduced divisor is

defined by

• a polynomial H(x) of degree g, vanishing at P̃k = (x̃k, ỹk),

• and an interpolation polynomial I(x) of degree g − 1, such that ỹk = I(x̃k).

The pair of polynomials H, I defines divisor D̃g uniquely by the system

H(x) = 0, y = I(x).

In [3] and [7] the close addition problem is solved by means of the determinant construction.
Here we suggest a more effective solution.

Let a divisor D of degree g +m with m > 0 be given.

(I) If deg(D) = g + 1 the result is given by polynomials H and I defined by (3.1) if all g + 1
points are distinct, by (3.12) if Pg+1 = P1, and by (3.16) in the case of D = (g + 1)P1.

(II) If deg(D) = g + 2 the result is given by polynomials H and I defined by (3.7).

(III) If deg(D) > g + 2 then an iterative procedure is used.

The iterative procedure is the following. Dealing with a divisor D of degree g +m with m > 2,
one performs the following steps:

Step 1. Start with any g+ 1 points, say {Pk = (xk, yk)}g+1
k=1, and find polynomials H(1), I(1)

by formulas (3.1b) and (3.1c), or (3.12b) and (3.12c), or (3.16b) and (3.16c). Then relations

H(1)(x) = 0, y = −I(1)(x)

define g points
{
P̃

(1)
k =

(
x̃
(1)
k , ỹ

(1)
k

)}g
k=1

on curve (2.1), which replace the chosen g + 1 points of
the divisor D. In this way a new divisor Dg+m−1 of degree g +m− 1 is constructed.

Step 2. Suppose that a divisor Dg+m−l of degree g + m − l is found, which consists of g

points
{
P̃

(l)
k =

(
x̃
(l)
k , ỹ

(l)
k

)}g
k=1

defined by

H(l)(x) = 0, y = −I(l)(x), (4.1)

and the remainingm−l points ofD which form a divisorD′m−l. Let Pg+l+1 be a point fromD′m−l.

With a collection of points
{
P̃

(l)
k

}g
k=1
∪ {Pg+l+1} construct new polynomials

F (l)(x) = (x− xg+l+1)H(l)(x), (4.2a)

G(l)(x) = I(l)(x) +
(
yg+l+1 − I(l)(xg+l+1)

) H(l)(x)

H(l)(xg+l+1)
(4.2b)
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of degrees g + 1 and g, respectively. Evidently, the system

F (l)(x) = 0, y = G(l)(x) (4.3)

has g + 1 solutions at points
{
P̃

(l)
k

}g
k=1
∪ {Pg+l+1}.

Step 3. Next, reduce the polynomials F (l), G(l) to polynomials H(l+1) and I(l+1) of degrees g
and g − 1

H(l+1)(x) =
P(x)− G(l)(x)2

F (l)(x)
, (4.4a)

I(l+1)(x) = g0H(l+1)(x)− G(l)(x), (4.4b)

where g0 is the coefficient of xg in G(l)(x). Note that P(x)− G(l)(x)2 is divisible by F (l)(x) due

to (4.3) and the fact that
{
P̃

(l)
k

}g
k=1
∪ {Pg+l+1} are points of the curve y2 = P(x). The system

H(l+1)(x) = 0, y = I(l+1)(x)

defines g points
{
P̃

(l+1)
k =

(
x̃
(l+1)
k , ỹ

(l+1)
k

)}g
k=1

, which together with the remaining m − l − 1
points of D form a new divisor Dg+m−l−1. If l+ 1 < m, return to Step 2. This step is the same
as the reduction algorithm given by Cantor [4].

The iterative procedure described above uses reduction by g + 1 points at each step. One
can use a different strategy, for example with m = 2κ the shortest iterative process is to apply
reduction by g+ 2 points κ times, and with m = 2κ+ 1 is to apply one reduction by g+ 1 points
and κ reductions by g + 2 points.

Remark 4.1. Note that computation of I(l)(x) at each step is unnecessary. It is enough to
replace (4.2b) by

G(l)(x) = −G(l−1)(x) +
(
yg+l+1 + G(l−1)(x)

) H(l)(x)

H(l)(xg+l+1)
,

then (4.4b) can be skipped.

Remark 4.2. The reduction algorithm is expressed in terms of divisors since this explanation is
geometric and the most evident. Despite the description, finding divisor is not required. Instead,
coefficients of polynomials H(l) and I(l) completely define the intermediate divisor of degree g,
as well as polynomials F (l) and G(l) define the intermediate divisor of degree g + 1. So the
algorithm can be realised over any field.

Remark 4.3. Let us point out that Step 2 of the reduction algorithm provides a procedure of
adding one point to a divisor of degree g, or to any greater degree divisor defined by a system
in the form (4.1). So the reduction algorithm solves the problem of adding a non-special divisor
defined by a pair of polynomials and a special divisor given as a collection of points. A collection
of points is added by one point according to the algorithm.

Another approach to addition is presented in the next section.

Remark 4.4. One can add one point to a special divisor using formulas (4.2). The special
divisor is supposed to be defined as in Proposition 2.1. Then (4.3) represents the resulting
divisor directly.

Application in cryptography. We would like to point out two practical setups which serve
as hyperelliptic cryptography algorithms.
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I. Alice and Bob choose a non-special divisor Dg, which is public. Alice chooses a number nA
and keeps in secret, and Bob chooses a number nB and keeps in secret. Next, they are using the
reduction algorithm described above to obtain a reduced form for the divisors nADg and nBDg.
These are the divisors they exchange. Once Alice gets the divisor nBDg from Bob (reduced form),
she computes nA(nBDg). On the other hand, Bob computes the same divisor as nB(nADg). The
reduced form of this divisor is the shared secret of Bob and Alice. This is an implementation of
the Diffie–Hellman exchange with the help of the reduction algorithm introduced above.

The first step of the reduction algorithm for a scalar multiple njDg is provided by Theo-
rem 3.5. Divisor Dg is assumed to consist of distinct points, and only on the first step a collection
of g + 1 points contains two equal points. It is very unlikely, that a reduced divisor on any step
contains points coinciding with Dg. Points of the divisor Dg can be chosen from a desired finite
field to produce polynomials with coefficients from this field.

II. Alice and Bob choose a non-special divisor Dg of the form gP1. Then Alice computes the
reduced form of nA(gP1), and Bob computes the reduced form of nB(gP1). They exchange the
reduced forms of their divisors. The first step of the reduction algorithm in this case is provided
by Theorem 3.6, on further steps Theorem 3.1 or 3.3 is used. After exchange Alice and Bob
compute the reduced form of divisor nAnB(gP1) which is the shared secret.

5 The addition algorithm

Now we suggest a procedure to solve the addition problem. We start with a different setup. Let
two non-special divisors Dg+m1 and Dg+m2 of degrees g + m1 and g + m2 are defined by two
polynomials each. Namely, polynomials F1 and L1 of degrees g+m1 and g+m1−1 define Dg+m1

by the system

F1(x) = 0, y = L1(x);

and polynomials F2 and L2 of degrees g +m2 and g +m2 − 1 define Dg+m2 by the system

F2(x) = 0, y = L2(x).

Degrees of polynomials L1 and L2 are justified as follows. Suppose we are given points
g+m∑
k=1

(xk, yk)

= Dg+m, then a polynomial L such that y−L(x) vanishes on Dg+m is constructed by the determi-
nant formula on the monomials

{
1, x, . . . , xg+m−1, y

}
. Since (xk, yk) are points of a hyperelliptic

curve there is no linear relation between coordinates yk, and so the coefficient at xg+m−1 does
not vanish. Obviously, y − L(x) is not the minimal weight function to define Dg+m.

Lemma 5.1. Let a non-special divisor of degree Dg+m is defined by two polynomials: F of
degree g +m and L of degree equal to or greater than g +m− 1 as follows

F(x) = 0, y = L(x). (5.1)

Then a rational function R of the minimal weight 2g +m exists, and the system

F(x) = 0, R(x, y) = 0

defines Dg+m equivalently.

Proof. The rational function R of weight 2g+m has the form (3.20). If degL > degF , then L
in (5.1) can be replaced by L̃ = L mod F . Suppose degL = g + m − 1, then R is constructed
in the form

R(x, y) = N (x)F(x) +
(
y − L(x)

)
M(x),

degN = [(m− 1)/2]− 1, degM = [(m− 1)/2].
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On the right hand side extra powers of x arises, namely from xg+[m/2]+1 to xg+m−1+[(m−1)/2],
coefficients of which should vanish. Thus, for 2[(m− 1)/2] + 1 unknowns one obtains equations
of number

m+ [(m− 1)/2]− [m/2]− 1 = 2[(m− 1)/2].

So the function R up to a constant multiple is found. �

Lemma 5.2. Let F1, L1 and F2, L2 be two pairs of polynomials, at that degLi < degFi and
gcd(F1,F2) = 1. Then a polynomial L exists such that Li = L mod Fi, i = 1, 2.

The lemma is known as the Chinese remainder theorem, see for example [8, Theorem 16.19].
For the sake of completeness a proof is provided.

Proof. As gcd(F1,F2) = 1, there exist polynomials M1 and M2 such that

M2(x)F1(x) +M1(x)F2(x) = 1. (5.2)

A polynomial Mi can be taken of degree Fi − 1, then degF1 + degF2 unknown coefficients are
found by equating coefficients on the both sides of the relation (5.2). Then polynomial

L(x) =M2(x)F1(x)L2(x) +M1(x)F2(x)L1(x) (5.3)

satisfies the lemma conditions. Indeed,

L(x)− L1(x) =M2(x)F1(x)L2(x) +M1(x)F2(x)L1(x)− L1(x)

=M2(x)F1(x)
(
L2(x)− L1(x)

)
is divisible by F1 as required. The same is true for F2. �

The algorithm of additing two divisors Dg+m1 and Dg+m2 consists of the following steps

1. The sum D2g+m1+m2 of Dg+m1 and Dg+m2 is uniquely defined by two polynomials F and L
such that F(x) = F1(x)F2(x) at that gcd(F1,F2) = 1, and L is obtained by (5.3). Note
that degL = 3g + m1 + m2 + max(m1,m2) − 2. As seen from the proof of Lemma 5.2,
L vanishes on the both divisors. This step coincides with a special case of Cantor’s
composition algorithm [4, p. 98].

2. By Lemma 5.1 a rational function R of weight 2g +m1 +m2 vanishing on D2g+m1+m2 is
constructed from F and L.

3. The reduced problem for D2g+m1+m2 defined by the polynomial F and the rational func-
tion R is solved as in Section 3.5.

Another approach to solution of the addition problem for two divisors of degree g can be found
in [3, Theorem 1.23, p. 75–76 in Russian version].

Remark 5.3. The addition algorithm is also applicable to special divisors of degree m < g
provided that their sum is a non-special divisor of degree greater than g. If the resulting divisor
has degree equal to g or less (and has no points in involution as we explained in preliminaries),
only Step 1 is needed.
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6 Conclusion

The reduction problem is solved explicitly for divisors of degrees g + 1 and g + 2 in the case
of all distinct points (Theorems 3.1 and 3.3), for a divisor of degree g + 1 with duplication
(Theorem 3.5), for a divisor of the form (g + 1)P (Theorem 3.6). Polynomials defining a re-
duced divisor are expressed in terms of the points of an initial divisor, and their coefficients are
computed directly.

It is worth to note that the mentioned polynomials also serve as a solution of the Jacobi
inversion problem for a reduced divisor, see Remarks 3.2 and 3.4, similar relations hold in the
other cases. And so the polynomial coefficients give values ℘

(
u(D)

)
on an initial divisor D

for 2g functions which form a basis of the differential field of Abelian functions on Jacobian of
the curve. The demand for such values arises in some problems of mathematical physics. Until
now this approach to computation of ℘ functions has not appeared in the literature.

The reduction problem introduces the relation of equivalence on the space of non-special
divisors on a curve. To every non-special divisor an equivalent reduced divisor is assigned, the
latter serves as a representative of an equivalence class consisting of all divisors reduced to this
representative reduced divisor. A reduced divisor maps uniquely to a point of Jacobian of the
curve, and its equivalence class maps to the same point of Jacobian. So a many-to-one mapping
from the space of non-special divisors to Jacobian arises. This idea can be used to compute ℘
functions on arbitrary non-special divisors and solve the generalised Jacobi inversion problem.

The proposed iterative reduction algorithm has the advantage that all steps are realised in
terms of polynomials obtained by means of arithmetic operations of addition, multiplication
and division, and so the algorithm preserves the field to which coefficients of initial polynomials
belong. The initial divisor is supposed to belong to the same field. The algorithm can also be
interpreted as addition of a non-special divisor defined by a pair of polynomials and a special or
non-special divisor given as a collection of points. Two scenarios of hyperelliptic cryptography
algorithms on its base were suggested.

A solution of the reduction problem which does not involve points is also given for a deg-
ree g + m divisor. Two ways to define the divisor are considered: by two polynomials, and by
a polynomial and a rational function of the minimal weight. The relation between these two
types of definition is described, as well as the necessity to use the rational function of the minimal
weight in order to find the reduced divisor. And the proposed addition algorithm, whose first
step is the standard addition algorithm producing two polynomials for the resulting divisor, is
completed with finding a rational function of the minimal weight and the reduction problem.
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