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Abstract. We give a complete classification of analytic equivalence of germs of parametric
families of systems of complex linear differential equations unfolding a generic resonant
singularity of Poincaré rank 1 in dimension n = 2 whose leading matrix is a Jordan bloc.
The moduli space of analytic equivalence classes is described in terms of a tuple of formal
invariants and a single analytic invariant obtained from the trace of monodromy, and analytic
normal forms are given. We also explain the underlying phenomena of confluence of two
simple singularities and of a turning point, the associated Stokes geometry, and the change
of order of Borel summability of formal solutions in dependence on a complex parameter.
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1 Introduction

A system of meromorphic linear differential equations with a singularity at the origin can be
written locally as ∆0(x)y = 0, y(x) ∈ Cn, with

∆0(x) = xk+1 d

dx
−A0(x), x ∈ (C, 0), (1.1)

where A0(x) is a (n× n)-matrix with analytic entries in a neighborhood of 0, A0(0) 6= 0, (C, 0)
stands for a germ of a neighborhood of the origin in C, and k is a non-negative integer, called
the Poincaré rank. An unfolding of (1.1) is a germ at 0 of a parametric family of systems
∆(x,m)y = 0, y(x,m) ∈ Cn, with

∆(x,m) = h(x,m)
d

dx
−A(x,m), (x,m) ∈

(
C× Cl, 0

)
, (1.2)

such that ∆(x, 0) = ∆0(x), where the scalar function h(x,m) and the (n × n)-matrix function
A(x,m) depend analytically on both the variable x and the parameter m. Two families of linear
systems (1.2) depending on the same parameter m are analytically equivalent if there exists an
invertible analytic linear gauge transformation bringing solutions of the first system to solutions
of the second one.

The analytic classification of singularities of single systems (1.1) is now well known in full
generality (see, e.g., [1, 2, 4, 5, 18]). While for singularities of Poincaré rank k = 0, called
Fuchsian singularities, the analytic classification coincide with the formal one: a formal power
series transformation between two Fuchsian singularities always converges, this is no longer true
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in the case of irregular singularities1 of higher Poincaré rank k > 0, for which formal gauge
transformations are generally divergent.

The geometric description of this divergence is known as the Stokes phenomenon. The essence
of this phenomenon is the following: formal gauge transformations to a normal form are always
asymptotic to some true analytic ones, which also conjugate the systems, but only over cer-
tain sectors in the x-space, the union of which covers a full neighborhood of the singularity. If
continued to larger sectors, these transformations would in general explode near the singularity
and loose their asymptoticity. The mismatch between the different sectoral transformations
on the overlapping of the sectors constitutes an obstruction to the convergence of the formal
transformation. This obstruction may be expressed in terms of the transition automorphisms
between the different sectoral gauge transformations, and represented by, so called, Stokes ma-
trices. Roughly speaking, the set of these Stokes matrices forms together with a set of formal
invariants a complete analytic invariant of the irregular singularity.

Since the discovery of the Stokes phenomenon, it has always been tempting to try to under-
stand it from the point of view of confluence of singularities in perturbed families (1.2). The
investigation of parametric unfoldings of singularities has several goals:

1) to provide the modulus of analytic equivalence and/or analytic normal forms for germs of
parametric systems,

2) to explain the Stokes phenomenon of irregular singularities through confluence of several
Fuchsian ones,

3) to understand the degeneration of linear problems (such as isomonodromic systems asso-
ciated to Painlevé equations), and the limits in moduli spaces of meromorphic connections
over Riemann surfaces.

It has been conjectured independently by V.I. Arnold, A.A. Bolibruch and J.-P. Ramis, that
Stokes matrices of the limit problem can be obtained as limits of transition matrices between
the canonical solution bases at each of the regular singular points of a generically perturbed
system with respect to which the corresponding local monodromy is diagonal. This was later
proved by A. Glutsyuk for non-resonant [13] and certain resonant irregular singularities [14].
But such approach covers only the sectors in the parameter space, on which the deformation
is generic: where all the singularities (roots of h(x,m)) and non-resonant Fuchsian. Being
able to cover also the parameter values for which some of the singularities may be resonant
Fuchsian or irregular is essential for analytic classification. This problem was recently resolved
by J. Hurtubise, C. Lambert and C. Rousseau [15, 16, 28], and independently by L. Parise [31],
for germs of parametric families of systems unfolding a non-resonant irregular singularity, that
is one for which the leading matrix coefficient A0(0) in (1.1) has all eigenvalues distinct. Their
approach is based on forming, so called, mixed solution bases associated to pairs of different
singularities in the unfolding (1.2), a method previously known to be fruitful when applied to
hypergeometric systems and their generalizations [12, 27, 34, 40]. The natural domains on which
such mixed bases are defined, while rather complicated, are closely related to the real dynamics
of the complex vector field eiθh(x,m) ∂

∂x for some θ ∈ R, or equivalently, to the horizontal

foliation of the meromorphic Abelian differential e−iθ dx
h(x,m) . As in the nonparametric case, on

the overlapping of these domains the different mixed bases can be related by unfolded Stokes
matrices, the set of which constitute the analytic part of the invariant [15, 28]. Furthermore, as
a byproduct, such description provides a canonical decomposition of the monodromy matrices

1A singularity of a system (1.1) is Fuchsian if it has Poincaré rank 0, and it is regular if it is meromorphically
gauge equivalent to a Fuchsian singularity, otherwise it is irregular. A Fuchsian singularity is non-resonant if
no two eigenvalues of the leading matrix A0(0) differ by a (non-zero) integer, while an irregular singularity is
non-resonant if the eigenvalues of the leading matrix A0(0) are all distinct.
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into products of these unfolded Stokes matrices (which are unipotent) and diagonal matrices
determined by the formal invariant.

This article provides the first results on analytic classification of parametric families unfolding
a resonant irregular singularity. We consider germs of parametric families of (2 × 2)-systems
∆(x,m) in a neighborhood of (x,m) = 0, that unfold a system ∆0(x) = ∆(x, 0) of the form

∆0(x) = x2 d

dx
−A0(x), with A0(0) =

(
λ

(0)
0 1

0 λ
(0)
0

)
, (1.3)

which has a resonant singularity of Poincaré rank 1 at the origin, under a generic condition that

the element a
(1)
21 on the position (2, 1) of the matrix Res

x=0

A0(x)
x2 = d

dxA0(x)
∣∣
x=0

is non-zero:

a
(1)
21 = − d

dx
det
(
A0(x)− λ(0)

0 I
)∣∣
x=0
6= 0. (1.4)

No restriction will be imposed on the nature of the analytic deformation ∆(x,m) of ∆0(x) or on
the complex parameter m ∈

(
Cl, 0

)
.

We will provide a complete analytic classification of all germs of parametric systems ∆(x,m)
unfolding such a ∆0(x) (Theorem 2.6) in terms of a set of formal invariants and a single analytic
invariant obtained from the trace of monodromy. We also provide an explicit analytic normal
form, i.e., a universal unfolding for any system ∆0 (1.3) satisfying (1.4) (Theorem 2.8), which is
closely related to the biconfluent hypergeometric equation and to the modified Bessel’s equation
(Example 2.5).

More importantly, we will explain both the phenomena of confluence of singularities, and
of confluence of the eigenvalues of the principal matrix A(0,m) of the system, resulting in
change of order of Borel summability of formal solutions, and corresponding to the apparition
of a resonance in the irregular singularity. To the best of our knowledge, this phenomenon has
not been studied before. The geometric explanation that we shall offer is that of a confluence
of a singularity and of a “turning point” (Section 2.3).

Our approach follows the same footsteps as that of Hurtubise, Lambert and Rousseau [15, 16,
28], by constructing a set of canonical mixed solution bases on certain domains in the (x,m)-space
(Theorem 2.17), which, in turn, is equivalent to constructing “sectoral” gauge transformations
on these domains between formally equivalent families (Corollary 2.18). While the form of
these domains is again rather complicated, they are determined by the demand on the sectoral
gauge transformations to be bounded, a condition that is related to the asymptotic behavior
of the solutions near the singularities. In the end, the form of these domains is determined
by the geometry of the horizontal foliation associated to the polar part (principal part) of the
meromorphic quadratic differential (see Section 2.3)

det
(
A(x,m)− 1

2 trA(x,m)
)

h(x,m)2
(dx)2.

The unfolded Stokes matrices defined on the overlappings of these domains can be in our
situation expressed almost explicitly (Theorem 2.17) as functions of formal invariants and of the
trace of monodromy. In fact, it turns out that aside of the formal invariants there is a single
additional analytic invariant given by the trace of the monodromy around all the singularities
(this would no longer be true for more complicated parametric systems (1.2) of Poincaré rank
k > 1 or dimension n > 2).

Let us remark that while the class of systems investigated here is relatively special, the
geometric intuition behind our treatment provides a first glimpse of a general description of un-
foldings of 2×2 meromorphic linear differential systems or connections, that should be developed
in a future study.
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Finally, it is worth mentioning, that confluences of the kind studied here appear naturally
not only in the aforementioned biconfluent hypergeometric equation, but also in other important
settings such as in the isomonodromic deformation problems associated to certain Painlevé
equations. Namely, a system (1.2) with h(x,m) = x2 unfolding (1.3), (1.4), appears in the
degeneration of the traceless 2 × 2 isomonodromic problem associated to the Fifth Painlevé
equation PV → P deg

V , and also in the degeneration Sixth Painlevé equation PVI → PV, where it
appears as a formal (2× 2)-bloc of a 3× 3 isomonodromic problem in Birkhoff normal form [23,
Appendix].

2 Statement of results

Definition 2.1. Throughout the text ∆(x,m) will denote a germ at 0 of a parametric family
of systems (1.2) unfolding (1.3) satisfying (1.4). For brevity, we call it a parametric system. We
denote

∆m := ∆(·,m)

the restriction of ∆ to a fixed parameter m.

Definition 2.2 (gauge transformations). Let y = T (x,m)y′ be a linear transformation of the
dependent variable. Let us define a transformed system

T ∗∆ := h
d

dx
−
[
T−1AT − hT−1 dT

dx

]
, (2.1)

which satisfies (T ∗∆)y′ = 0 if and only if ∆y = 0.

Two parametric systems ∆(x,m) = h(x,m) d
dx − A(x,m) and ∆′(x,m) = h′(x,m) d

dx −
A′(x,m), depending on the same parameter m, are analytically equivalent, if there exists a germ
of invertible linear gauge transformation T (x,m), depending analytically on (x,m), such that
h′−1 ·∆′ = h−1 · T ∗∆.

Definition 2.3 (the invariants).

(i) Applying the Weierstrass preparation theorem on the function h(x,m) in (1.2), we can
assume that, up to multiplying ∆(x,m) by a non-vanishing germ of scalar function,

h(x,m) = x2 + h(1)(m)x+ h(0)(m), h(1)(0) = h(0)(0) = 0,

where the coefficients h(0)(m), h(1)(m) are analytic. We shall suppose that h is in this
form from now on. We then define invariant polynomials λ(x,m), α(x,m) by

λ(x,m) = 1
2 trA(x,m) mod h(x,m)

= λ(1)(m)x+ λ(0)(m),

α(x,m) = −det
[
A(x,m)− λ(x,m)I

]
mod h(x,m)

= α(1)(m)x+ α(0)(m), α(0)(0) = 0, (2.2)

using the Weierstrass division theorem. The generic condition (1.4) means that α(1)(0) 6= 0.
We call the triple h(x,m), λ(x,m), α(x,m) formal invariants of ∆ (this terminology will
be justified by Proposition 2.12).
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(ii) We define an analytic invariant γ(m) by

γ(m) = e−2πiλ(1)(m) · trM(m), (2.3)

where M(m) is a monodromy matrix of some fundamental solution matrix Y (x,m) of the
system ∆(·,m) around the two zeros of h(x,m) in the positive direction:

Y (e2πix0,m) = Y (x0,m)M(m).

The value of γ(m) is independent of the choice of the fundamental solution Y (x,m) or of
the point x0, and can be calculated point-wise for each value of m.

Proposition 2.4 (prenormal form).

(i) The invariants h(x,m), λ(x,m), α(x,m) and γ(m) are analytic in m, and are invariant
under analytic equivalence of systems.

(ii) Up to an analytic gauge transformation, the system ∆(x,m) can be written as

∆(x,m) = h(x,m)
d

dx
−
(

λ(x,m) 1
α(x,m) + h(x,m)r(x,m) λ(x,m)

)
(2.4)

for some analytic germ r(x,m).

Proof. (i) Elementary from the formula (2.1), the Weierstrass division theorem, and analytic
dependence of solutions on parameters. (ii) Since gauge transformations commute with scalar
matrices, the same gauge transformation works both for ∆ and ∆ + λI, and one can suppose
that the trace invariant λ(x,m) = 0.

Let A = (aij) be the matrix of the system ∆, A(0, 0) = ( 0 1
0 0 ). The gauge transformation

T1 : y 7→ T1(x,m)y, with T1 =
(

1 0
−a11
a12

1
a12

)
, which is analytic since a12(0, 0) = 1, brings ∆

to ∆1 =: T ∗1 ∆ = h(x,m) d
dx −

(
0 1
b21 b22

)
for some bii(x,m), i = 1, 2. Now use T2(x,m) =

e
∫ b22(x,m)

2h(x,m) dx
(

1 0
1
2
b22 1

)
to get rid of the term b22, the trace of the matrix of ∆1, which is divisible

by h(x,m) by the assumption that λ(x,m) = 0. Then T ∗2 ∆1 is in the demanded form (2.4). �

Example 2.5 (biconfluent hypergeometric equation). The hypergeometric equation is given by
the second order linear differential operator

D
(
a,b
1+c ; t

)
:= t(δt + a)(δt + b)− δt(δt + c),

where δt = t d
dt is the Euler operator. The change of variable t 7→ t

ab gives

D̃
(
a,b
1+c ; t

)
:= t

ab(δt + a)(δt + b)− δt(δt + c), (2.5)

whose limit a, b→∞ is the biconfluent hypergeometric equation

D̃
(
∞,∞
1+c ; t

)
:= t− δt(δt + c). (2.6)

This confluence was studied (for a = b + 1
2) by A. Duval [12]. A particular solution to the

equation (2.6) is known to be given by the hypergeometric function

0F1

(
−

1+c ; t
)

:=

+∞∑
n=0

tn

n!(1 + c)n
,
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()n denoting the Pochhammer symbol. Moreover, if φ(t) is any solution to D̃
(
∞,∞
1+c ; t

)
φ = 0,

then the function u(s) = scφ
(
s2

4

)
satisfies the modified Bessel equation[

c2 + s2 − δ2
s

]
u = 0.

Let y2 be a solution to (2.5), and let y1 = −(δt + c)y2, then the vector function y = ( y1
y2 )

satisfies the associated system

(
1− t

ab

)
δty =

(
ta+b−c

ab −t (a−c)(b−c)
ab

t
ab − 1 c( t

ab − 1)

)
,

which in the local coordinate x = t−1 is written as a parametric system

x
(
x− 1

ab

)dy

dx
=

(
−a+b−c

ab
(a−c)(b−c)

ab

x− 1
ab c(x− 1

ab)

)
,

which is of the considered form for any c ∈ C, with a deformation parameter m =
(

1
a ,

1
b

)
∈(

C2, 0
)
. The invariants of this system are

h(x,m) = x2 − 1
abx,

λ(x,m) = c
2x−

1
2

(
1
a + 1

b

)
,

α(x,m) =
[
1− c

(
1
a + 1

b

)
+ 9

2c
2 1
ab

]
x+ 1

4

(
1
a −

1
b

)2
+ 2c2

(
1
ab

)2
,

γ(m) = 2 cos(πc),

(see Lemma 2.10 for the invariant γ).

2.1 Analytic theory

Analytic classification of germs of single systems ∆0(x) is classical and was originally given
in [21]. Here we provide an analytic classification of parametric systems ∆(x,m) unfolding ∆0(x).

Theorem 2.6 (analytic classification).

(a) Two germs of parametric systems ∆(x,m), ∆′(x,m) are analytically gauge equivalent if
and only if their invariants h, λ, α, γ are the same:

h(x,m) = h′(x,m), λ(x,m) = λ′(x,m),

α(x,m) = α′(x,m), γ(m) = γ′(m).

(b) Any four germs of analytic functions h(x,m), λ(x,m), α(x,m), γ(m) with h(x, 0) = x2,
α(0)(0) = 0 and α(1)(0) 6= 0, are realizable as invariants of some parametric system
∆(x,m).

Corollary 2.7. Two germs of parametric systems ∆(x,m), ∆′(x,m) are analytically equivalent
if and only if there exists a product neighborhood X×M of 0 in C×Cl such that for each m ∈ M
the restricted systems ∆m(x), ∆′m(x) are analytically equivalent on X.

The following Theorem 2.8 provides an essentially unique normal form for any germ of
parametric system unfolding ∆0.

Theorem 2.8 (universal unfolding). Let ∆(x,m) be a germ of parametric system, and h(x,m),
λ(x,m), α(x,m), γ(m) its invariants.
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(i) If γ(0) 6= 2, then ∆(x,m) is analytically equivalent to a germ at 0 of a parametric system
∆̃(x,m) given by

∆̃(x,m) = h(x,m)
d

dx
−
(

λ(x,m) 1
α(x,m) + q(m)h(x,m) λ(x,m)

)
, (2.7)

where q(m) is an analytic germ such that

γ(m) = −2 cosπ
√

1 + 4q(m). (2.8)

Let us remark that ∆̃ is meromorphic in x ∈ CP1 and has a regular singular point at
infinity (which is not Fuchsian unless q(m) = 0) when considered on the trivial vector
bundle over CP1.

(ii) If γ(0) 6= −2, then ∆(x,m) is analytically equivalent to a germ at 0 of a parametric system
∆̃′(x,m) given by

∆̃′(x,m) = h(x,m)
d

dx
−
(

λ(x,m) 1 + b(m)x

β(0)(m) + xβ(1)(m) λ(x,m)

)
, (2.9)

with

β(0)(m) = α(0) + bh(0)β(1), β(1)(m) =
α(1) − bα(0)

1− bh(1) + b2h(0)
, (2.10)

where b(m) is an analytic germ such that

γ(m) = 2 cos 2π
√
b(m)β(1)(m). (2.11)

Let us remark that ∆̃′ is meromorphic in x ∈ CP1 and has a Fuchsian singular point at
infinity when considered on the trivial vector bundle over CP1.

Remark 2.9. In Theorem 2.8(i) γ(0) = −2 does not pose a problem since the function t 7→
−2 cosπ

√
t appearing in the right side of (2.8) is analytically invertible near t = 0 and one is

free to choose q(0) = −1
4 . Similarly, in (ii) for γ(0) = 2 one can find an analytic germ b with

b(0) = 0 satisfying (2.11).

Theorem 2.8 follows from Theorem 2.6(a) by a direct calculation of the invariants of the two
parametric systems ∆̃, ∆̃′ using the following lemma.

Lemma 2.10. The analytic invariant γ defined by (2.3) of a system

h(x)
d

dx
−
[
A(0) +A(1)x

]
= 0, with A(k) =

(
a

(k)
11 a

(k)
12

a
(k)
21 a

(k)
22

)
(2.12)

and h(x) = x2 + h(1)x+ h(0), is equal to

γ = 2 cos 2π

√√√√(a(1)
11 − a

(1)
22

2

)2

+ a
(1)
12 a

(1)
21 . (2.13)

Proof. This system considered on the trivial vector bundle over the Riemann sphere CP1 has
singularities only at the zero points of h(x) and at the point x =∞. Therefore the monodromy
matrix M in the formula (2.3)

γ = e−2πiλ(1)
tr(M), where λ(1) =

a
(1)
11 + a

(1)
22

2
,
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is also a matrix of monodromy around x = ∞ in the negative direction. In the coordinate
t = x−1 the system (2.12) is equivalent to

t
(
1 + h(1)t+ h(0)t2

) d

dt
+
[
A(1) +A(0)t

]
= 0, (2.14)

which has a Fuchsian singularity at t = 0. The eigenvalues of its principal matrix −A(1) are

−λ(1)±
√
D where D :=

(a(1)
11 −a

(1)
22

2

)2
+a

(1)
12 a

(1)
21 . Suppose first that the singularity is non-resonant,

i.e., that 2
√
D /∈ Z, in which case there exists a local analytic gauge transformation T (t) near

t = 0, that brings (2.14) to the diagonal system

t
d

dt
+
(
λ(1)+

√
D 0

0 λ(1)−
√
D

)
= 0,

(cf. [18, Chapter 16]), for which an associated diagonal fundamental solution has its monodromy
matrix around t = 0 in the negative direction equal to

M = e2πiλ(1)
(

e2πi
√
D 0

0 e−2πi
√
D

)
.

Therefore γ = 2 cos 2π
√
D.

The resonant case is a limit of non-resonant cases, and the formula (2.13) for γ remains valid,
because the trace of monodromy depends analytically on the coefficients of A. �

Proof of Theorem 2.8. Use (2.2) to verify that h(x), λ(x) and α(x) are indeed the formal
invariants of the system ∆̃(x,m) (2.7) and ∆̃′(x,m) (2.9).

To verify (2.8), set Q := 1
2

(
−1±

√
1 + 4q

)
, so that q = Q2 +Q, and let T (x) :=

(
1 0
Qx 1

)
, then

T ∗∆̃(x,m) = h(x)
d

dx
−
(

λ(x) +Qx 1

α(x) +
(
h(0) + h(1)x

)
Q2 λ(x)−Qx

)
.

Now the system is in the form (2.12), and γ = 2 cos 2πQ = −2 cosπ
√

1 + 4q using (2.13).
The identity (2.11) follows directly from the formula (2.13). If γ(0) 6= −2, then the equa-

tion (2.11) with β(1)(m) = α(1)(0) + O(m) given by (2.10), α(1)(0) 6= 0, has an analytic solu-
tion b(m) for small m. �

Remark 2.11. A. Bolibrukh showed that any irreducible system on a neighborhood of 0 ∈ C
is analytically gauge equivalent on this neighborhood to a global system on the trivial vector
bundle over CP1 with a Fuchsian singularity at∞ and no other additional singularities (see [7, 8]
or [17]). One can show that the restriction ∆m of a parametric system ∆ considered here to any
parameter m from some neighborhood of 0 is irreducible, and that the global system to which
it is then gauge equivalent by the Bolibrukh’s theorem will necessarily have the form (2.9). The
problem of Theorem 2.8(ii) is to be able to do this analytically in m on a neighborhood of origin
in the parameter space Cl, which is where the condition γ(0) 6= −2 becomes necessary. Aside of
the irreducibility condition, one of the essential ingredients in Bolibrukh’s proof is triangularity
of the total monodromy matrix M(m) (Definition 2.3(ii)). If this matrix can be triangularized
analytically in m, then Bolibrukh’s theorem holds also with local analytic dependence on m
(using the local rigidity of trivial vector bundles over CP1 [33, Corollary 5.4]). Let us remark
that, in particular, γ(0) 6= ±2 will insure analytic diagonalizability of M(m).

V. Kostov has showed [26] for a general system ∆0(x) = ∆(x, 0) (1.1) in a Birkhoff normal
form, that is a system ∆(x, 0) = xk+1 d

dx −
[
A(0)(0) + · · · + A(k)(0)xk

]
, whose eigenvalues of

A(k)(0) = Res
x=0

A(x,0)
xk+1 do not differ by a non-zero integer, that any its unfolding is analytically

gauge equivalent to a parametric system in a generalized Birkhoff normal form ∆(x,m) =
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xk+1 + h(k)(m)xk + · · ·+ h(0)(m)

)
d

dx −
[
A(0)(m) + · · ·+A(k)(m)xk

]
. Theorem 2.8(ii) confirms

this for the parametric systems ∆ studied here. In the case of γ(0) = −2, if the system ∆0

is in a Birkhoff normal form (which can always be assumed by the Bolibrukh’s theorem), then
by (2.13) the eigenvalues of A(1) differ by an odd integer and the condition of Kostov is violated.
Correspondingly, also the equation (2.8) may fail to have an analytic solution with given q(0), in
which case the parametric family fails to be analytically equivalent to the generalized Birkhoff
normal form (2.9).

2.2 Formal theory

Proposition 2.12 (formal classification). A parametric system ∆(x,m) is formally equivalent
to its formal normal form

∆̂(x,m) = h(x,m)
d

dx
−
(
λ(x,m) 1
α(x,m) λ(x,m)

)
, (2.15)

by means of a unique formal gauge transformation in (x,m)

T̂ (x,m) =
+∞∑

j,|k|=0

T (j,k)xjmk, mk = mk1
1 · · ·m

kl
l ,

with T (0,0) = I. Generically, this series is divergent in both x and m.
In this sense, two parametric systems ∆(x,m) and ∆′(x,m) are formally equivalent if and

only if their formal invariants are the same: h = h′, λ = λ′, α = α′.

Remark 2.13. Linear gauge transformations T (x,m) commute with scalar matrix functions

T ∗(∆− λI) = T ∗∆− λI,

i.e., two systems ∆, ∆′ are analytically (resp. formally) gauge equivalent if and only if the
systems ∆ − λI, ∆′ − λI are. Hence we can restrict our discussion to traceless systems whose
formal invariant

λ(x,m) = 0.

Definition 2.14 (reduced invariants ε(m), µ(m)). Let ∆(x,m) be a traceless parametric system
whose formal invariants are h(x,m), λ(x,m) = 0 and α(x,m). After an analytic translation and
dilatation of the x-coordinate

x 7→ α(1)x− h(1)

2

and an introduction of new parameters

ε(m) =
(

1
α(1)

)2((h(1)

2

)2 − h(0)
)
, µ(m) = α(0)

(α(1))2 − h(1)

2α(1) (2.16)

we obtain a parametric system with whose formal invariants are

h(x,m) = x2 − ε(m), λ(x,m) = 0, α(x,m) = µ(m) + x. (2.17)

By Proposition 2.4, this system can be written up to analytic equivalence as

∆(x,m) =
(
x2 − ε

) d

dx
−
(

0 1
µ+ x+

(
x2 − ε

)
r(x,m) 0

)
. (2.18)
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To simplify the discussion, from now on we will assume that ∆(x,m) is in the form (2.18),
and correspondingly its formal normal form of Proposition 2.12 is

∆̂(x,m) =
(
x2 − ε

) d

dx
−
(

0 1
µ+ x 0

)
. (2.19)

Proof of Proposition 2.12. Let ∆(x,m) be a parametric system in the prenormal form (2.18).
We will show that there exists a formal gauge transformation T̂ (x,m) in form of a power series
in (x, µ, ε) whose coefficients depends analytically on m, that brings ∆(x,m) to the reduced
formal normal form ∆̂(x,m) (2.19). We shall be looking for T̂ written as

T̂ (x,m) = a(x,m)I + b(x,m)

(
0 1

µ+ x 0

)
+
(
x2 − ε

)( 0 0
c(x,m) d(x,m)

)
.

We want that ∆̂ = T̂ ∗∆, which means[(
0 1

µ+ x 0

)
,

(
0 0

c(x,m) d(x,m)

)]
+

(
0 0

r(x,m) 0

)
· T̂ (x,m) =

dT̂ (x,m)

dx
,

where [·, ·] stands for the commutator of matrices. This gives a system of equations

c = a′, (2.20)

d = b′, (2.21)

−(µ+ x)d+ ar = b+ (µ+ x)b′ + 2xc+
(
x2 − ε

)
c′, (2.22)

−c+ br = a′ + 2xd+
(
x2 − ε

)
d′, (2.23)

where ′ stands for the (formal) derivative w.r.t. x. Substituting (2.20) and (2.21) in (2.22)
and (2.23) gives

b+ 2(µ+ x)b′ = ar − 2xa′ −
(
x2 − ε

)
a′′, (2.24)

2a′ = br − 2xb′ −
(
x2 − ε

)
b′′. (2.25)

Writing

a(x,m) =
∑

(j,k,l)

aj,k,l(m)µjεkxl, b(x,m) =
∑

(j,k,l)

bj,k,l(m)µjεkxl,

r(x,m) =
∑
l

rl(m)xl,

and identifying the coefficients of the term µjεkxl in (2.24) and (2.25) shows that

(2l + 1)bj,k,l + 2(l + 1)bj−1,k,l+1 is a finite linear combination

of aj̃,k̃,l̃,
(
j̃, k̃, l̃

)
≤LEX (j, k, l),

2(l + 1)aj,k,l+1 is a finite linear combination of bj̃,k̃,l̃,
(
j̃, k̃, l̃

)
≤LEX (j, k, l),

where ≤LEX is the lexicographic ordering on N3. There is no constraint on the coefficients aj,k,0,
which we choose 0 for (j, k) 6= (0, 0), and a0,0,0 = 1. All the coefficients are now uniquely
determined through a transfinite recursion with respect to the ≤LEX-ordering, which is a well-
ordering on the index set N3. �
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2.3 Stokes phenomenon and confluence

Let us assume that the system ∆(x,m) is traceless in the form (2.18). The reduced formal
invariants ε(m) and µ(m) (2.16) are responsible for two basic qualitative changes of the system:

– ε(m) corresponds to separation of the double singularity (ε = 0) into two simple (Fuchsian)
ones (ε 6= 0),

– µ(m) corresponds, when ε(m) = 0 and the singularity is irregular, to separation of the
double eigenvalue (µ = 0) of A(0,m) into two simple ones (µ 6= 0), hence to the disap-
pearance of resonance of the irregular singularity. This in turn leads to a change of order
of Borel summability of formal normalizing transformations (Remark 2.15 below).

In this section we shall describe the effect that these two qualitative changes have on the
structure of the solution space and on the Stokes phenomenon. We will explain them in terms
of the “Stokes geometry” of the natural domains of normalization, which are associated, as we
shall see, to the meromorphic quadratic differential

α(x,m)

h(x,m)2
(dx)2 =

µ+ x

(x2 − ε)2
(dx)2. (2.26)

This differential is the negative of the determinant of the meromorphic “Higgs field”

1

x2 − ε

(
0 1

µ+ x 0

)
dx

associated to the formal normal form (2.19) on the trivial vector bundle, the matrix of which

has eigenvalues ±
√
µ+x
x2−ε . The point x = −µ, at which the two eigenvalues merge is a “turning

point” in the terminology of exact WKB analysis [22]. This point is not a singularity of the
differential system, but it is a “spectral” singularity of the matrix of the formal normal form
system, and will play an equally important role in our description.

Let the multivalued function

Θ(x,m) :=

∫ x

∞

√
α(x,m)

h(x,m)
dx =

∫ x

∞

√
µ+ x

x2 − ε
dx, (2.27)

with ramification points at the zero locus of h(x,m) = x2 − ε and of α(x,m) = µ + x, be
the rectifying coordinate for the quadratic differential (2.26) which then becomes (dΘ)2. The
different solutions of the system ∆(x,m) are expected to have an asymptotic behavior near the

singular points of order that is of a combination of (µ+x)−
1
4 eΘ(x,m) and (µ+x)−

1
4 e−Θ(x,m). This

will be made explicit in the following remark, which summarizes some classical results on the
local behavior of the solutions of ∆m(x) and local normal forms near each of its singular points
for all fixed values of parameter m. The general theory of singularities of linear differential
systems has been developed by G.D. Birkhoff, W.J. Trjitzinski, J. Malmquist, M. Hukuhara,
H. Turrittin, Y. Sibuya and many others. Reader familiar with basics of this theory may skip
this Remark 2.15 and go straight to Theorem 2.17 below, which shows how these disparate
descriptions for different values of ε, µ fit into a single parametric picture.

Remark 2.15 (canonical solution bases and sectoral normalization of ∆m(x)). Let ∆(x,m) as
in (2.18) be analytic on some polydisc X×M ⊆ C× Cl, where M is small enough so that both
roots of h(x,m) = x2 − ε are in X for all m ∈ M. As before, let ∆m(x) denote the restriction
of ∆(x,m) to the fixed value of m. Depending on ε(m) and µ(m), there are the following four
possible situations (see, e.g., [2, 18, 36, 39]):
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(a) ε = µ = 0: The restricted system ∆m has a resonant irregular singularity at the origin
and a formal fundamental solution matrix

ŶO,m(x) = ĤO,m(x)

(
(µ+x)−

1
4 0

0 (µ+x)
1
4

)
i√
2

(
1 1
1 −1

) (
eΘ(x,m) 0

0 e−Θ(x,m)

)
,

where ĤO,m(x) is a formal power series in x with matrix coefficients, that is Borel 1
2 -

summable in all directions except of the direction arg x = 0 + 2πZ, which is tangent to
the curves Im Θ(x,m) = 0 at the origin. Associated to ĤO,m(x) is its Borel sum which is
a unique bounded sectoral gauge transformation HO,m(x) defined on a ramified sector

SO,m = {x ∈ X | | arg x+ π| < 2π − η}, (2.28)

with η > 0 arbitrarily small. The system ∆m is formally equivalent to ∆̂m (2.19) by means
of some formal Borel 1

2 -summable gauge transformation T̂m(x) whose Borel sum is defined
on the same sector SO,m [21].

(b) ε = 0, µ 6= 0: The restricted system ∆m has a non-resonant irregular singularity at the
origin and a formal fundamental solution matrix

ŶI,m(x) = ĤI,m(x)

(
(µ+x)−

1
4 0

0 (µ+x)
1
4

)
i√
2

(
1 1
1 −1

) (
eΘ(x,m) 0

0 e−Θ(x,m)

)
,

where ĤI,m(x) is a formal power series in x with matrix coefficients, that is Borel 1-
summable in all directions except of the directions arg x = arg

√
µ+πZ, which are tangent

to the curves Im Θ(x,m) = 0 at the origin. Associated to ĤI,m(x) are its Borel sums which
are a unique pair of bounded sectoral gauge transformations HI±,m(x) defined on a pair
of sectors

SI±,m =
{
x ∈ X | | arg x− arg

√
µ± π

2 | < π − η
}
, (2.29)

with η > 0 arbitrarily small. The system ∆m is formally equivalent to ∆̂m (2.19) by
means of some formal Borel 1-summable gauge transformation T̂I,m(x) whose Borel sums
are defined on the same pair of sectors SI±,m [20].

(c) ε 6= 0: The restricted system has two Fuchsian singularities at x1 =
√
ε and x2 = −

√
ε.

Supposing that m is such that the Fuchsian singularity at xi is non-resonant, i.e., that√
µ+xi
xi

/∈ Z, then there exists a fundamental solution matrix

Yi,m(x) = Hi,m(x)

(
(µ+x)−

1
4 0

0 (µ+x)
1
4

)
i√
2

(
1 1
1 −1

) (
eΘ(x,m) 0

0 e−Θ(x,m)

)
,

where Hi,m(x) is a convergent formal power series in x − xi with matrix coefficients, the
sum of which is defined on a neighborhood of xi

Si,m =
{
x ∈ X | |x− xi| < 2

√
|ε|
}
.

The system ∆m is locally equivalent to ∆̂m (2.19) by a convergent transformation TI,m(x)
on Si,m. The local gauge transformations Hi,m(x) and Ti,m(x) depend analytically on m
as long as the singularity stays non-resonant Fuchsian.

(d) ε 6= 0: If a Fuchsian singularity at xi is resonant,
√
µ+xi
xi

= k ∈ Z \ {0}, then there exists
a fundamental solution matrix

Ỹi,m =

H̃i,m(x)

(
(µ+x)−

1
4 0

0 (µ+x)
1
4

)
i√
2

(
1 1
1 −1

) (
eΘ(x,m) 0

0 e−Θ(x,m)

)
(x− xi)N , if k 6= 0,

H̃i,m(x)(x− xi)N , if k = 0,
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where H̃i,m(x) is a convergent formal power series in x − xi with matrix coefficients on
the neighborhood Si,m of xi, and N is an upper/lower triangular nilpotent matrix. The

system ∆m is locally equivalent to ∆̂m (2.19) by a convergent transformation of the form
T̃I,m(x) = T̃ ′i,m(x) + (x− xi)k log(x− xi)T̃ ′′i,m(x).

The change of order of summability of the formal normalizing gauge transformations in
between the cases (a) and (b) of Remark 2.15 is a phenomenon that has not been studied
previously. In the following Theorem 2.17 and its Corollary 2.18 it is explained by the form
and organization of the domains on which there naturally exist certain canonical solution bases
(“mixed bases”) as well as bounded normalizing gauge transformations. What happens is that
the sector SO,m (2.28) for ε = µ = 0 unfolds to an “outer domain” X̌O(µ, ε), while also a new
pair of “inner domains” X̌I±(µ, ε) appears for (µ, ε) 6= (0, 0) that for ε = 0 will locally agree with
the pair of sectors SI±,m (2.29). When ε = 0 and µ→ 0, the inner domains X̌I±(µ, ε) will shrink
and disappear (Fig. 1). As we shall see, their disappearance is caused by the coalescence of the
turning point x = −µ and of the irregular singularity at x = 0 of the quadratic differential (2.26).

Definition 2.16 (bounded analytic functions on ramified parametric domains). A ramified
parametric domain Ω over the (x,m)-space C× Cl with a ramification locus

Σ :=
{
x2 − ε(m) = 0

}
∪
{
ε(m)

(
µ(m)2 − ε(m)

)
= 0
}

is a connected topological set such that Ω \ Σ is an open subdomain of a covering space of(
C× Cl

)
\ Σ. We will denote (x̌, m̌) the “ramified” coordinates on Ω that are the lifting of the

coordinates (x,m), and consider Ω as a parametric family of ramified domains over the x-plane
depending on a parameter m̌

Ω =
∐
m̌∈M̌

Ω(m̌), Ω(m̌) = {x̌ | (x̌, m̌) ∈ Ω},

where the interior of each Ω(m̌) is a subdomain of a covering space of C \
{
x2− ε(m) = 0

}
, and

the interior of M̌ is a subdomain of a covering space of Cl \
{
ε(m)

(
µ(m)2 − ε(m)

)
= 0

}
. We

allow for the ramifying locus Σ (resp.
{
ε(m)

(
µ(m)2− ε(m)

)
= 0
}

) to be included in Ω (resp. M̌)
since we want to be able to cover a full neighborhood of the origin in C× Cl (resp. Cl).

For a function f : Ω→ C, we write

f ∈ B(Ω)

if f is bounded continuous on Ω and analytic on its interior Ω \Σ and at the same time f(·, m̌)
is analytic on the interior of Ω(m̌) for each m̌ ∈ M̌.

Theorem 2.17 (fundamental solution matrix). Let ∆(x,m) be a germ of a parametric system
with invariants h(x,m), λ(x,m), α(x,m) and γ(m), and let ε(m), µ(m) be its reduced formal
invariants (2.16). There exists a covering of a neighborhood of 0 in the (x,m)-space C× Cl by
three ramified parametric domains: an outer domain X̌O and a pair of inner domains X̌I± (see
Fig. 1) the form of which depends only on (ε(m), µ(m)), and there exist bounded analytic matrix
functions H• ∈ Mat2

(
B
(
X̌•
))

, X̌• = X̌O, X̌I±, on these domains, such that the system ∆(x,m)
has canonical fundamental solution matrices Y• of the form

Y•(x,m) = H•(x,m) ·
(
α(x,m)−

1
4 0

0 α(x,m)
1
4

)
i√
2

(
1 1
1 −1

) (
eΘ•(x,m) 0

0 e−Θ•(x,m)

)
e
∫ x
∞

λ(x,m)
h(x,m)

dx
,

where Θ• is a branch of (2.27) on X̌•, and H−1
• has a pole at the zero of α(x,m) if (µ(m), ε(m))

6= 0. The form and the construction of the domains X̌O, X̌I± will be detailed below.
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(a) µ >
√
ε > 0 (b) µ >

√
ε = 0 (c) µ =

√
ε = 0

X̌O(µ̌, ε̌) X̌O(µ̌, 0) X̌O(0, 0)

−µ
−
√
ε √

ε
−µ 0 0

X̌I(µ̌, ε̌) X̌I+(µ̌, 0)

X̌I−(µ̌, 0)

X̌I(0, 0)

−µ
−
√
ε √

ε
−µ 0 0

X̌I+(µ̌, ε̌)

X̌I−(µ̌, ε̌)

−µ
−
√
ε √

ε

Figure 1. Examples of the outer and inner domains X̌O(ε, µ), X̌I(ε, µ) of Theorem 2.18 for selected

values of (µ, ε).

YI+

YI−

C3

−µ
−
√
ε √

ε

N1

C1NC2 YO

i ( 0 1
1 0 )C4

−µ
−
√
ε √

ε M = −iC0 ( 0 1
1 0 )

Figure 2. Connection matrices between the fundamental solution matrices YO, YI±, where N1, N are

as in (3.15), and Ci, i = 0, . . . , 4, are as in (3.17) in Lemma 3.17 with κ (3.31).

The connection matrices between these fundamental solutions for each fixed m̌ ∈ M̌ are as in
Fig. 2, with N1, N given by (3.15), Ci as in (3.17) with κ (3.31). In particular, the monodromy

matrix of YO(x,m) around both singular points equals M =
(
γ −i
−i 0

)
.

The linear differential system satisfied by(
α(x,m)−

1
4 0

0 α(x,m)
1
4

)
i√
2

(
1 1

1 −1

)(
eΘ•(x,m) 0

0 e−Θ•(x,m)

)
e
∫ x
∞

λ(x,m)
h(x,m)

dx
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is

∆(x,m) = h(x,m)
d

dx
−
[
λ(x,m)I +

(
0 1

α(x,m) 0

)
− h(x,m)

4α(x,m)

(
1 0
0 −1

)]
,

which has an additional singularity at the zero point of α(x,m) and therefore does not belong
to the considered class of parametric systems. It does however play an intermediate role in
comparing two parametric systems: if H• and H ′• are the gauge transformations of Theorem 2.17
for two formally equivalent parametric systems ∆ and ∆′ on the same domain X̌•, then their
composition T• = H•(H

′
•)
−1 is a gauge transformation such that T ∗∆ = ∆′, and such that

T•, T
−1
• ∈ GL2

(
B
(
X̌•
))

are both bounded and analytic on X̌•, including the zero point of α(x,m).

Corollary 2.18 (unfolded sectoral normalization). Let ∆(x,m) be a germ of a parametric
system (2.4) (resp. (2.18)), and let X̌• = X̌O, X̌I± be the parametric domains of Theorem 2.17
covering a full neighborhood of 0 ∈ C × Cl. There exist normalizing gauge transformations
T• ∈ GL2

(
B
(
X̌•
))

bounded and analytic on these domains, that transform the parametric system
∆(x,m) to its formal normal form (2.15) (resp. (2.19)):

T ∗•∆ = ∆̂, • = O, I ± .

When ε(m)
(
µ(m)2− ε(m)

)
6= 0, the transformations TI± are both restrictions of the sane trans-

formation TI ∈ GL2(B(X̌I)) defined on a domain X̌I = X̌I+ ∪ X̌I− (see Fig. 1(a)).

The form of the ramified parametric domains X̌• = X̌O, X̌I± depends only on the reduced
formal invariants ε(m), µ(m) (2.16). Namely, they are parametric families of ramified domains
X̌•(µ̌(m̌), ε̌(m̌)) over the x-plane,

X̌• =
∐
m̌∈M̌

X̌•(µ̌(m̌), ε̌(m̌)),

defined over a ramified domain M̌ covering a full neighborhood M of 0 in the parameter space
of m

M̌ 3 m̌ � //
_

��

(µ̌(m̌), ε̌(m̌))
_

��
M 3 m � // (µ(m), ε(m))

(checked symbols denoting ramified variables/domains). They are of two kinds (see Fig. 1):

(a) The outer domain X̌O(µ̌(m̌), ε̌(m̌)) is doubly attached to the singularity x1 =
√
ε. For

(µ, ε) = (0, 0) it becomes a ramified sector X̌O(0, 0) at the origin of opening > 2π, in which
case TO(·, m̌) = TO,m of Remark 2.15.

(b) The inner domains X̌I±(µ̌(m̌), ε̌(m̌)) are two parts of a single ramified parametric domain
X̌I = X̌I+ ∪ X̌I− split in two by a cut between the singularities x1 =

√
ε and x2 = −

√
ε, to

which they are both attached. For ε = 0, µ 6= 0, they become a pair of sectors X̌I±(µ̌(m̌), 0)
of opening > π at the origin, of Remark 2.15. For µ2 = ε they shrink to a single point
X̌I±(µ̌, ε̌) = {−µ}.

They are a close analogue of the “Stokes domain” in exact WKB analysis of second-order
linear ODEs [22]. Their construction is roughly the following:

The horizontal foliation associated to the quadratic differential

e−2iω α(x)

h(x)2
(dx)2, ω ∈

]
−π

2
,
π

2

[
, (2.30)
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−µ
−
√
ε
√
ε

−µ
0 −µ √

ε 0

(a) µ >
√
ε > 0 (b) µ >

√
ε = 0 (c) µ =

√
ε > 0 (d) µ =

√
ε = 0

Figure 3. Examples of the horizontal foliation of the quadratic differential (2.26), with the separating

trajectories between the outer and inner half-zones in bold, for selected values of (µ, ε). In (a) the dashed

bold trajectory between −
√
ε and

√
ε splits the inner zone into 2 half-zones corresponding to those in (b).

is one whose leaves are the real time trajectories of

dx

dt
= eiω h(x)√

α(x)
= eiω x2 − ε√

µ+ x
, t ∈ R, (2.31)

which are well defined up to orientation. When considered for x ∈ CP1, the dynamics near the
points x = ∞, resp. x = −µ if µ2 6= ε, is of hyperbolic type with 3, resp. 1, hyperbolic sectors,
separated by 3, resp. 1, separatrices. For generic values of ω, these separatrices all land at one
of the singularities x = ±

√
ε, and divide a fixed neighborhood of the origin in CP1 into

• an outer zone attached to a single singularity (chosen as x =
√
ε) and bounded by the

separatrix of x =∞ and a pair of separatrices of x = −µ, all of them landing at x =
√
ε,

and

• an inner zone attached to both singularities and bounded by the 3 separatrices of x = −µ:
if ε = 0 this zone splits into two zones, and if µ2 = ε it disappears. It will be convenient
to split the inner zone into a pair of inner half-zones along a certain trajectory of (2.31),
so that the description is uniform for both ε 6= 0 and ε = 0 (see Fig. 3).

The inner and outer zones vary continuously with ε, µ and ω as long as the topology of the
phase portrait does not bifurcate.

Similarly, one defines the outer and inner zone of the quadratic differential (2.30) relative to
a neighborhood X = {x ∈ C | |x| < δx} of the origin, as consisting of complete real trajectories
of (2.31) inside X, i.e., trajectories that stay in X for all t ∈ R.

The domains X̌I±(µ̌, ε̌), resp. X̌O(µ̌, ε̌), are constructed as union of these inner half-zones,
resp. outer zones, relative to X over varying ω, such that they are continuously varying with
the parameters. More precisely, they are first defined as the zones for ω = 0 outside of the
values of (µ, ε) for which the horizontal foliation bifurcates, and then enlarged in the x̌-space
and continued in the (µ̌, ε̌)-space by varying ω a bit. Moreover the singular points x = ±

√
ε,

resp. x =
√
ε, and the turning point x = −µ that are in the adherence of the zones are added to

the domains.

The details of this construction are left to Section 3.2.4, where it is performed in a new
coordinate s =

√
µ+ x.

The construction of the canonical solution bases of Theorem 2.17 on the domains X̌O and X̌I±
is similar to [15]. It is based on the following two propositions.
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Proposition 2.19 (subdominant solutions). For any real half-trajectory of (2.31), that is a tra-
jectory x(t) with t ∈ ±R>0, inside any of the domains X̌I±(µ̌, ε̌) or X̌O(µ̌, ε̌), tending to one of
the singularities, there is a unique 1-dimensional subspace of the solution space of ∆(x,m) con-
sisting of those solutions that are bounded along the half-trajectory and have vanishing limit at
the singularity. This subspace, called the space of subdominant solutions, is uniquely defined and
independent of the homotopy class of the half-trajectory with fixed end-point at the singularity
within the domain.

Proposition 2.20 (mixed bases). For any complete real trajectory of (2.31) inside any of the
domains X̌I±(µ̌, ε̌) or X̌O(µ̌, ε̌), the two spaces of subdominant solutions associated to the positive
(t > 0) and the negative (t < 0) halves of the trajectory, are linearly independent. Therefore,
by choosing a generator for each of the two subspaces one forms a mixed basis for the whole
solution space. The canonical solution bases of Theorem 2.17 are of this form.

The fact that the pair of subdominant solutions that form the mixed basis of Proposition 2.19
is linearly independent is of utmost importance here, and, in the case of the inner domains
X̌I±(µ̌, ε̌) that vanish at the limit, its proof is far from trivial.

Related to the statement of Corollary 2.18, we have the following result on convergence of
the normalizing gauge transformations of Remark 2.15(b) TI±,m and (c) Ti,m to (a) TO,m.

Theorem 2.21 (convergence of the local normalizing transformations). Following the notation
of Remark 2.15:

(i) For ε(m)=0, the normalizing gauge transformations TI+,m (resp. TI−,m) converge to TO,m,
as µ(m) → 0 radially, for each m with 0 < argµ(m) < 2π (resp. 0 > argµ(m) > −2π).
The convergence is uniform on compact sets in SI+,m (resp. SI−,m).

(ii) The normalizing gauge transformation T2,m, analytic on a neighborhood of x2 = −
√
ε, and

its analytic continuation, converges to TO,m, when µ(m) = O(ε(m)) and ε(m)→ 0 radially
with arg

√
ε(m) = β for |β| < π

2 . The convergence is uniform on compact subsets of the
sector

X \ {| arg x− β| < ν}, with ν > 0 arbitrarily small.

The first statement is closely related to a theorem on convergence of subdominant solutions
by F.E. Mullin [30, Theorem II] (see also [35, Chapter 3]). The second statement was originally
established by A. Glutsyuk [14] in more general setting.

3 Proofs

Without loss of generality, we can always assume that the parametric system ∆(x,m) has the
form (2.18) with formal invariants (2.17).

Our strategy will be the following. The part (b) of Theorem 2.6 is a direct consequence of
Theorem 2.8. To prove part (a) of Theorem 2.6, we will first construct the canonical funda-
mental matrix solutions of Theorem 2.17 together with their natural domains X̌O, X̌I±. Loosely
speaking, the modulus of analytic equivalence can be identified with a certain conjugacy class
of the set of the connection matrices (Stokes matrices) between the canonical fundamental so-
lutions. We will express these matrices explicitly, and show that in our situation the modulus
reduces to the single analytic invariant γ.

We will prefer to do all this in a new ramified coordinate

s =
√
µ+ x.
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The lifting to this s-coordinate produces a two-fold symmetry of the systems as well as of their
normalizing gauge transformations. After establishing the analytic equivalence of the lifted
systems in the s-coordinate, one uses this symmetry to push it back down to the x-coordinate.

While everything, all the transformations and connection matrices, will depend on the pa-
rameter m, we will often drop it from our notation, and think of it as implicitly present; for
example, we will often write (µ, ε) rather than (µ(m), ε(m)).

3.1 Systems in the s-coordinate

Let ∆(x,m) be a parametric system in the prenormal form (2.18). We want to prove that two
such systems with the same µ, ε are analytically equivalent if and only if they have the same
trace of monodromy γ.

Let s be a new coordinate defined by

x = s2 − µ, (3.1)

and let

S(s) =
(
s−

1
2 0

0 s
1
2

)
, V = i√

2

(
1 1
1 −1

)
. (3.2)

Then in the s-coordinate

∆ = (s2−µ)2−ε
2s

d
ds +

[(
0 1
s2 0

)
+
((
s2 − µ

)2 − ε)r ( 0 0
1 0 )

]
,

and the transformed parametric system ∆s := 1
s · (SV )∗∆ is equal to

∆s(s,m) = (s2−µ)2−ε
2s2

d
ds −

[(
1 0
0 −1

)
+ (s2−µ)2−ε

4s3
( 0 1

1 0 ) + (s2−µ)2−ε
2s2

r
(

1 1
−1 −1

)]
. (3.3)

The advantage of this new system is, as it will turn out, that it is diagonalizable on some
domains Ω in the (s,m)-space: We will be looking for analytic normalizing gauge transformations
FΩ(s,m) on Ω, bringing ∆s to a diagonal system FΩ

∗∆s = ∆
s
, where

∆
s
(s,m) = (s2−µ)2−ε

2s2
d
ds
−
(

1 0
0 −1

)
. (3.4)

This diagonal system ∆
s

will serve as a model system in the s-coordinate for which one easily
calculates a canonical fundamental matrix solution, denoted Ψ (3.7). Then each lifted system
∆s(s,m) will have a canonical fundamental matrix solution ΦΩ = FΩΨΩ on the domain Ω,
where ΨΩ is a restriction of Ψ (3.7) to Ω, and therefore the original system ∆(x,m) will have
a canonical fundamental solution matrix YΩ = SV FΩΨΩ on the image of the domain Ω in the
x-coordinate.

Also the quadratic differential (2.26) becomes in the s-coordinate(
2s2

(s2−µ)2−εds
)2
,

which is the negative of the determinant of the meromorphic “Higgs field” 2s2

(s2−µ)2−ε
(

1 0
0 −1

)
ds

associated to (3.4).
The system ∆ := s ·

(
V −1S−1

)∗
∆
s

in the x coordinate, corresponding to ∆
s
,

∆(x,m) =
(
x2 − ε

)
d

dx −
[(

0 1
µ+x 0

)
− x2−ε

4(µ+x)

(
1 0
0 −1

)]
,

has however an additional singularity at the point x = −µ, hence does not belong to the
considered class of systems. So instead, in the x-coordinate, one shall take the formal normal
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form ∆̂(x,m) (2.19) as the model. Now, if EΩ(s,m) is the diagonalizing gauge transformation
“FΩ(s,m)” for ∆̂s = s−1 · (SV )∗∆̂ on the same domain Ω, then ∆̂(x,m) will have a canonical
fundamental solution matrix SV EΩΨΩ, and the composed transformation

TΩ(x,m) = S(s)V FΩ(s,m)EΩ(s,m)−1V −1S(s)−1, (3.5)

defined on the ramified projection of the domain Ω into the x-coordinate, will be non-singular
at the point x = −µ, µ2 6= ε, and will bring ∆ to TΩ

∗∆ = ∆̂. This is how one obtains the gauge
transformations of Corollary 2.18.

The matrix functions

YΩ = SV FΩΨΩ, (resp. SV EΩΨΩ)

will be the canonical fundamental solutions of Theorem 2.17 for the parametric systems ∆(x,m)
(resp. ∆̂(x,m)).

3.1.1 Fundamental solution of ∆
s
(s,m)

On a neighborhood of ∞ on the Riemann sphere CP1 = C ∪ {∞}, define the function θ(s, µ, ε)
by

d

ds
θ(s, µ, ε) =

2s2

(s2 − µ)2 − ε
, θ(∞, µ, ε) = 0.

We have

θ(s, µ, ε) =



√
µ+
√
ε

2
√
ε

log
s−
√
µ+
√
ε

s+
√
µ+
√
ε
−
√
µ−
√
ε

2
√
ε

log
s−
√
µ−
√
ε

s+
√
µ−
√
ε
, if ε

(
µ2 − ε

)
6= 0,

− s
s2−µ −

1
2
√
µ log

s+
√
µ

s−√µ , if ε = 0,

1√
2µ

log s−
√

2µ
s+
√

2µ
, if µ2 = ε,

−2
s , if µ, ε = 0,

(3.6)

which is analytic in s ∈ CP1 \
⋃4
i=1[0, si], if each [0, si] denotes the closed segment between the

origin and a zero point si(µ, ε) of x2(s)− ε =
(
s2−µ

)2− ε. The function θ(s, µ, ε) is continuous
in (µ, ε) ∈ C2 and analytic for (µ, ε) ∈ C2 \

{
ε
(
µ2 − ε

)
6= 0
}

. It is odd in s

θ(−s, µ, ε) = −θ(s, µ, ε),

and it satisfies

θ(s, µ, ε) = θ
(
s, e2πiµ, ε

)
= θ
(
s, µ, e2πiε

)
for each s in its domain.

The matrix-valued function

Ψ(s, µ, ε) =
(

eθ(s,µ,ε) 0
0 e−θ(s,µ,ε)

)
(3.7)

is a fundamental solution for the diagonal model system ∆
s
(s,m) (3.4).
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3.1.2 Z2-symmetry

Let us remark that if ΨΩ(s, µ, ε) is a fundamental solution of ∆
s

on a domain Ω(m) in the s-plane,
then so is ΨP

Ω(s,m) := ( 0 1
1 0 ) ΨΩ(−s,m) ( 0 1

1 0 ), this time on a rotated domain Ω(m)P := −Ω(m).
The same is true for the system ∆s. Consequently, if FΩ is a normalizing transformation for ∆s

on a domain Ω, FΩ
∗∆s = ∆

s
, then so is F P

Ω on ΩP. The following definition gives the ()P

notation precise meaning.

Definition 3.1 (rotation action of Z2). If g(s) is a function on some domain Y in the s-space,
denote

gP(s) := g
(
e−πis

)
, s ∈ Y P := eπiY

the rotated function on the rotated domain. For a (2× 2)-matrix function G(s), denote

GP(s) := ( 0 1
1 0 )G

(
e−πis

)
( 0 1

1 0 ) ,

and for a constant matrix C,

CP := ( 0 1
1 0 )C ( 0 1

1 0 ) .

3.2 Domains Ω and diagonalizing transformations FΩ

A diagonalizing transformation FΩ for the system ∆s(s,m) (3.3) on a domain Ω gives rise to
a canonical fundamental solution matrix of the system

ΦΩ = FΩΨΩ,

where ΨΩ is a branch of the fundamental solution Ψ (3.7) of the diagonal model (3.4) on the
domain Ω. The shape of the domains Ω of such a bounded gauge transformation FΩ is related
to the rate of growth of Ψ in the s-space, or equivalently to the real dynamics of the (rotating
family) of vector fields

eiωχ(s, µ, ε) := eiω

(
s2 − µ

)2 − ε
2s2

∂

∂s
= eiω ∂

∂θ
, ω ∈

]
−π

2 ,
π
2

[
, (3.8)

which will be studied in details in Section 3.2.3. By a real trajectory of this vector field, we
mean a solution curve s(t) of the real ODE

ds

dt
= eiω

(
s2 − µ

)2 − ε
2s2

, t ∈ R.

A positive, resp. negative, half-trajectory is one with t > t0, resp. t < t0, for some t0 ∈ R. The
real trajectory of eiωχ through a point s0 ∈ C corresponds to the line θ(s0, µ, ε) + eiωR in the
coordinate θ (3.6).

3.2.1 Subdominant solutions

Lemma 3.2 (subdominant solutions and bounded isotropies). For a fixed parameter m, let si
be a singular point, that is a zero of

(
s2 − µ

)2 − ε, such that si 6= 0 unless (µ, ε) = 0, and let σ
be a real positive (resp. negative) half-trajectory of eiωχ, for some ω ∈

]
−π

2 ,
π
2

[
, with forward

t→∞ (resp. backward t→ −∞) limit at si, hence such that

lim
σ3s→si

e−θ = 0, resp. lim
σ3s→si

eθ = 0.
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(a) Then there is a unique solution φ(s) to ∆s
m (to the system (3.3) restricted to the fixed m)

that is bounded along σ when s→ si and such that

lim
σ3s→si

eθφ(s) = ( 0
1 ) , resp. lim

σ3s→si
e−θφ(s) = ( 1

0 ) .

This solution does not depend on the half-trajectory as long as σ and ω are varied contin-
uously; moreover when also the point si varies continuously with the parameter m, then
the solution φ depends continuously on m and analytically for those m for which si is
Fuchsian, i.e., a simple zero of

(
s2 − µ

)2 − ε.
(b) Any isotropy (automorphism) A(s) of the diagonal model system ∆

s
m, that is a gauge

transformation preserving the system A∗∆
s
m = ∆

s
m, which is bounded along the half-

trajectory σ is of the form

A(s) = Ψ(s)CΨ(s)−1, Ψ as in (3.7),

with an upper-triangular (resp. lower-triangular) constant invertible matrix C = (ckl), and

lim
σ3s→si

A(s) =
(
c11 0
0 c22

)
.

In particular, an isotropy of ∆
s

bounded along a complete (both forward and backward) real
trajectory σ is just a constant diagonal matrix.

Remark 3.3.

1. The subspace of the solution space of ∆s
m spanned by the solution φ(s) of Lemma 3.2(a) is

characterized as containing the solutions that are the most “flat” (or in this case bounded)
along the given incoming trajectory to a singular point si+ (resp. outgoing trajectory
from si−). In the terminology of Sibuya [35] they are called subdominant solutions along
the half-trajectory. It determines a flag structure on the solution space (cf. [15]).

2. When si is a Fuchsian singularity then eθφ(s) (resp. e−θφ(s)) is in fact analytic at si, even
if the singularity is resonant (the subdominant solutions don’t have a logarithmic term).

Proof. (a) The existence and uniqueness of such properly normalized subdominant solution
follows for each fixed m directly from the usual theorems on existence of local normalizing
transformations Fi at the point si, Fi(si) = I, similar to the situation discussed in Remark 2.15,
depending on the type of the singularity, by taking the second (resp. first) column of thus
constructed canonical fundamental solution matrix FiΨ (so called “Levelt basis” in the Fuchsian
case). While the local analytic dependence on m is quite clear as long as the type of the
singularity does not change, the fact that it is also analytic at the values for which si is a resonant
Fuchsian singularity, and that it passes well to the limit when si becomes irregular, is perhaps
less clear. One obtains it from a consequence of a parametric version of the Levinson’s theorem
[15, Theorem 5.3] (see [10, Theorem 8.1 in Chapter 3] for the original non-parametric version):

Theorem 3.4 (Levinson’s theorem). Consider a system of linear differential equations on the
real line of the form

dy

dt
=
[
Λ0(m) + Λ1(t,m) + P (t,m)

]
y,

where Λ0(m) is diagonal with distinct real parts of the eigenvalues, Λ1(t,m) is also diagonal with
limit zero at t = +∞, and∫ +∞

0

∣∣∣∣ d

dt
Λ1(t,m)

∣∣∣∣dt <∞, ∫ +∞

0
|P (t,m)|dt <∞. (3.9)
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Then for each eigenvalue λ(t,m) of Λ0(m) + Λ1(t,m) there exists t0 > 0 and a solution φλ(t,m)
on ]t0,+∞[ such that

lim
t→+∞

φλ(t,m) · exp

(
−
∫ t

t0

λ(t,m)dt

)
= vλ(m),

where vλ(m) 6= 0 is a given eigenvector of Λ0(m) corresponding to the eigenvalue λ(+∞,m). If
the system depends continuously (resp. analytically) on a parameter m over compact sets in the
t-space, with the integrals in (3.9) uniformly bounded, then the solutions can be chosen depending
continuously (resp. analytically) on m.

In order to apply the Levinson’s theorem, we shall restrict our system to an annular domain

|s| < δs,
∣∣∣ (s2−µ)2−ε

2s4

∣∣∣ , ∣∣∣s ∂∂s (s2−µ)2−ε
2s4

∣∣∣ < K, (3.10)

where δs > 0 determines some neighborhood of 0 and K > 0 is arbitrary large, in particular
large enough so that the point si belongs to this domain. We take t = e−iω(θ(s,m)− θ(s0,m))
(resp. t = −e−iω(θ(s,m) − θ(s0,m))), where θ is the rectifying coordinate (3.6) for the vector
field χ and s0 is such that the half-trajectory σ starting in s0 is contained in the above annular
domain.

In the coordinate t, the vector field (3.8) is eiωχ = ∂
∂t , and if H := I+

√
1+(sf)2−1

sf

(
0 −1
1 0

)
, with

f := (s2−µ)2−ε
4s4

, is a matrix consisting of eigenvectors for
(

1 0
0 −1

)
+ sf ( 0 1

1 0 ), then the transformed
system H∗(∆s

m) becomes

d

dt
− [Λ0(m) + P (t,m)] ,

with Λ0 = eiω
(

1 0
0 −1

)
, and

e−iωP (t,m) =
(√

1 + (sf)2 − 1
) (

1 0
0 −1

)
+ (s2−µ)2−ε

2s2
rH−1

(
1 1
−1 −1

)
H − (s2−µ)2−ε

2s2
H−1 dH

ds .

To verify the condition (3.9) it is enough to show that 2s2

(s2−µ)2−εP (t,m) is uniformly bounded on

the annular domain (3.10). This follow from the boundedness of 2s2

(s2−µ)2−ε(sf)2 = (s2−µ)2−ε
2s4

= 2f

and of ∂(2sf)
∂s = 2f + s∂(2f)

∂s on (3.10).

In order to cover the whole parameter space, including the situation when a singularity si
approaches 0 as µ2 → ε2, one needs to apply the parametric Levinson’s theorem for increas-
ing K → +∞.

(b) Let θ(s) be a branch of the function θ(s, µ, ε) in (3.6) on U . We have

A(s) =

(
c11 e2θ(s)c12

e−2θ(s)c21 c22

)
.

If |ω| < π
2 , then Re(θ(s)) → +∞ (resp. −∞) as σ 3 s → si, which implies that c12 = 0

(resp. c21 = 0), otherwise A would not be bounded. �

3.2.2 Construction of the domains Ω
and of the fundamental solution matrices on them

Let

S = {0 < |s| < δs}, M = {|µ| < δµ}, E = {|ε| < δε}, (3.11)
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be small discs, δs, δµ, δε > 0. And let si(µ̌, ε̌), i = 1, . . . , 4, be the zeros of
(
s2−µ

)2−ε depending
continuously on a ramified coordinate (µ̌, ε̌) from the universal covering space ofM×E ramified
over the set

{
ε
(
µ2 − ε

)
= 0

}
, where the ramification set is considered to be included in the

covering space, and the topology is the lifted preimage of that on M× E . We shall suppose
that δµ, δε are small enough so that all the zero points si(µ̌, ε̌) fall inside the disc of radius δs,

δµ + δ
1
2
ε � δ2

s .

For each (µ̌, ε̌), the disc S has a universal ramified cover Š(µ̌, ε̌) with ramification at the zero

points si(µ̌, ε̌) of
(
s2 − µ

)2 − ε. They glue up together to form a ramified covering
∐

(µ̌,ε̌) Š(µ̌, ε̌)
of the (s, µ, ε)-space S×M× E .

Definition 3.5. Let us consider the real phase portrait of the vector field eiωχ (3.8) inside
a pointed disc S∗ := S \ {0}.

– An angle ω ∈
]
−π

2 ,
π
2

[
is admissible (for given (µ, ε)) if for all s0 ∈ S∗ the real trajectory

s(t) of eiωχ through s0 = s(0) stays in S∗ for either all positive (t > 0) or all negative
(t < 0) time.

– The zones of eiωχ in S∗ are the connected components of the complement in S∗ \
{(
s2 −

µ
)2 − ε = 0

}
of all the real trajectories of eiωχ that leave S∗.

By considering the vector field eiωχ in the punctured disc S∗ the definition the zones stays the
same whether s = 0 is its pole (µ2 6= ε) or not (µ2 = ε). For an admissible ω, there are no periodic

orbits, and each zone is spanned by complete real trajectories of eiωχ in S∗ \
{(
s2 − µ

)2 − ε =
0
}

that have the same pair of forward/backward limit points at the singular points, and are
“homotopic” to each other. And they evolve continuously with ω as long as the ω is admissible.
More details will be given in Sections 3.2.3 and 3.2.4 below.

For a fixed m, one associates to each complete real trajectory σ of the vector field eiωχ
within S∗, which starts and terminates in two equilibrium points si+ and si−, a fundamental
solution matrix Φσ of (3.3) whose first column is the unique solution provided by Lemma 3.2(a)
with the given asymptotics along the backward orbit, and whose second column is the right
asymptotics along the forward orbit.2 Clearly, this fundamental solution matrix is independent
of the trajectory σ within the same zone of eiωχ in S∗. Moreover, it is also independent of the
angle ω ∈

]
−π

2 ,
π
2

[
as long as it is admissible. Therefore we will construct domains Ω(µ̌, ε̌) as

ramified unions of the topological closures of the zones of eiωχ in S∗ over admissible ω, and
define the fundamental solutions ΦΩ on Ω(µ̌, ε̌) as the solution Φσ for any trajectory σ inside
the domain. We will then trace the evolution of these domains in dependence on (µ̌, ε̌), and
define

Ω =
∐
m̌

Ω(µ̌(m̌), ε̌(m̌)),

as their ramified union in the (š, m̌)-space. We will describe the domains Ω obtained this way
in Section 3.2.4.

To fix the notation, from now on let

s1(µ̌, ε̌) :=

√
µ̌+
√
ε̌, s2(µ̌, ε̌) :=

√
µ̌−
√
ε̌ (3.12)

such that for arg ε = argµ = 0 and µ >
√
ε > 0 they are given by the usual square root.

2The columns of such fundamental matrix FΩΨ form a so called mixed basis of the solution space, originally
introduced by J.-P. Ramis [32] and C. Zhang [40]. See also [15, 28].
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Proposition 3.6 (diagonalizing gauge transformations). Let a parametric system ∆s(s,m) be
as in (3.3) and its diagonal model ∆

s
(s,m) be as in (3.4). There are 4 different parametric

domains Ω as defined above: a symmetric pair of inner domains ΩI adjoint to the points {s2, s1},
ΩP
I adjoint to the points {−s1,−s2}, and a symmetric pair of outer domains ΩO, ΩP

O both adjoint
to the points {−s1, s1}. On these domains there exist unique diagonalizing gauge transformations

F• ∈ GL2(B(Ω•)), (F•)
∗∆s = ∆

s
,

F P
• ∈ GL2

(
B
(
ΩP
•
))
,

(
F P
•
)∗

∆s = ∆
s
, • = O, I,

(see Definition 2.16 and Notation 3.1), such that

FI(s1, m̌) =
(

1 0
0 κI(m̌)

)
, FI(s2, m̌) =

(
κI(m̌) 0

0 1

)
,

FO(s1, m̌) =
(

1 0
0 κO(m̌)

)
, FO(−s1, m̌) =

(
κO(m̌) 0

0 1

)
, (3.13)

m̌ ∈ M̌, where the functions κ• = detF• ∈ B
(
M̌
)
, • = O, I, are uniquely determined by ∆s,

κO(m̌) = 1 if µ(m) = ε(m) = 0, and κI(m̌) = 1 if ε(m) = 0.

Proof. The domains Ω• will be constructed in detail in Section 3.2.4. The first and the second
columns of Φ• = F•Ψ• are respectively the unique vectors of Lemma 3.2(a) at the singular points
{si− , si+} (in the same order as in the statement). By their construction they are each bounded
at their respective point. But they are also bounded at the other point. In fact, remark that
if φ is any solution of ∆s

m then −i
√

2s
1
2 e−θφ is bounded along any incoming trajectory to si+

(resp. −i
√

2s
1
2 eθφ is bounded along any outgoing trajectory from si−).

The fact that κ• = detF• is constant in s follows from the Liouville–Ostrogradski formula:

κ• = detF• = det(SV F•Ψ•)

is constant since the trace of the matrix of the system (2.18) is null.
We still need to prove that the gauge transformations are invertible for small m, i.e., that

κ•(m̌) 6= 0. For the outer domains and κO, this follows from the continuity of the construction
in m̌ which persist well to the limit m → 0, and the fact that FO(0, 0) = I. For the inner
domains, their construction gives us that κI(m̌) = 1 for ε(m) = 0, µ(m) 6= 0, but doesn’t tell
us if a limit lim

m→0
κI(m̌) exists. We’ll prove it in Corollary 3.20, until then we’ll treat κI as an

analytic function of m̌ which may a priori have zeros at some points. �

3.2.3 The vector field χ

In this section we will study the real phase portrait of the vector fields eiωχ (3.8) in C∗ = C\{0}.
And in the following Section 3.2.4 we will describe the effect of its restriction to S∗, and construct
the domains Ω.

Remark 3.7 (rotated vector field). The change of coordinates

(s, µ, ε) 7→
(
eiωs, e2iωµ, e4iωε

)
, ω ∈ C,

transforms the vector field χ to eiωχ. This means we can restrict the discussion to ω = 1.

The vector field

χ(s, µ, ε) =

(
s2 − µ

)2 − ε
2s2

∂

∂s
=

1

2

(
εs−4 −

(
µs−2 − 1

)2) ∂

∂s−1

is a rational vector field on C, but becomes a polynomial vector field in the coordinate s−1 on
CP1 = C∪{∞} with a regular point at s =∞. The real dynamics of complex polynomial vector
fields on CP1 has been extensively studied in [6, 9, 11] (see also [24, 29, 37, 38]). Some of the
basic properties when applied to eiωχ can be summarized as:
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∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 0 0 0

(a) µ >
√
ε > 0 (b) µ >

√
ε = 0 (c) µ =

√
ε > 0 (d) µ =

√
ε = 0

Figure 4. Examples of the real trajectories of the vector field χ (3.8), with the separatrices of 0 and ∞
in bold, for selected values of (µ, ε). See Fig. 6 below for other values. In (a) the dotted bold trajectories

between s1 =
√
µ+
√
ε and s2 =

√
µ−
√
ε, and −s2 and −s1, split each of the inner zones into 2

half-zones corresponding to those in (b).

• See Fig. 4.

– For ε 6= µ2 the vector field is of degree 4 in s−1, and the point s = 0 is hyperbolic with 6
local separatrices (alternating incoming/outgoing), which can be either homoclinic or

they terminate at an equilibrium point (zero of
(
s2 − ε

)2 − µ). The 6 sectors at 0 in
between of the separatrices are called ends.

– For ε = µ2 6= 0 the vector field is of degree 2 in s−1, and the point s = 0 is regular,
but shall be thought of as hyperbolic with 2 local separatrices (one incoming and one
outgoing) and with 2 ends.

– For ε = µ2 = 0 the vector field is of degree 2 in s−1, the point s = 0 is a double
equilibrium, and the point s = ∞ which is regular shall be thought of as hyperbolic
with 2 local separatrices (one incoming and one outgoing) and with 2 ends.

• The connected components of the complement in CP1 of all the separatrices of the hyperbolic
point s = 0, and of all the equilibria si, are called zones of eiωχ in CP1. The zones can be
of 3 types

– Center zone consisting of periodic trajectories around an equilibrium center. The
image of a center zone in the coordinate θ is an infinite half-strip perpendicular to
the line eiωR, whose two bounding rays are identified by a period shift.

– αω-zone consisting of trajectories that converge in forward, resp. backward time, to
the same equilibrium, and these two equilibria are distinct. The image of an αω-
zone in the coordinate θ is an open infinite strip of a finite width, parallel with the
line eiωR.

– Sepal zone consisting of trajectories that converge in both forward and backward time
to the same one equilibrium, which is necessary multiple. The image of a sepal zone
in the coordinate θ is an open half-plane with boundary parallel with the line eiωR.

In particular, there are no limit cycles.

• The vector field eiωχ is called rotationally stable if there are no homoclinic separatrices. In
particular, there are no centers since the boundary of a center zone is formed by a union
of homoclinic separatrices. This is equivalent to the real phase portrait of eiωχ staying
topologically equivalent under a small change in ω. For each fixed (µ, ε), the set of ω ∈]
−π

2 ,
π
2

[
for which eiωχ is not rotationally stable is finite, in fact, in our situation there

are no more then 4 such values.
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• When all the equilibria si are simple and 6= 0 and the vector field is rotationally stable,
then there are exactly 3 zones of eiωχ in CP1 (as the vector filed is of order 4 in s−1), which
are all of αω type, and each has two ends at 0. For ε = µ2 6= 0, then χ has two simple
equilibria at s = ±µ

2 and 0 is a regular point, and the whole CP1 \
{
−µ

2 ,
µ
2

}
is a single

αω-zone. And for ε = µ = 0, there are 2 sepal zones attached to the double equilibrium
at 0.

When considered in C∗ = CP1\{0,∞}, one shall consider also the point s =∞ as a hyperbolic
point with 2 separatrices, and for µ2 = ε 6= 0 the same also with s = 0. We then talk about
zones of eiωχ in C∗.

If eiωχ is rotationally stable as a polynomial vector field on CP1, then it cannot have any
heteroclinic connection between 0 and ∞ as the symmetry of eiωχ would force it to have a pair
of them that would form a homoclinic connection of 0 passing through ∞, contradicting the
assumption, and neither can∞ have a homoclinic connection. Thus it is rotationally stable also
in C∗.

Definition 3.8 (half-zones). Assume eiωχ is rotationally stable.

– For each αω-zone of eiωχ in CP1, there is a unique trajectory whose image by θ is the line
that splits the strip, that is the image of the zone by θ, lengthwise into two strips of equal
widths. This trajectory splits the αω-zone into 2 half-zones.

– Each sepal zone of eiωχ in CP1 is already a half-zone.

For (µ, ε) 6= 0, each half-zone contains exactly one end at the hyperbolic point s = 0.
For the reason of symmetry, for (µ, ε) 6= 0, the trajectory through s =∞ is always the splitting

trajectory for the αω-zone in CP1 containing ∞, dividing it into a pair of outer half-zones.

Proposition 3.9. For ω such that eiωχ is rotationally stable, and (µ, ε) ∈ M × E, µ2 6= ε,
ε 6= 0, the vector field has exactly 4 different zones in C∗, and 6 different half-zones each having
exactly 1 end at s = 0. See Fig. 4. There is:

• a symmetric pair of outer half-zones bounded by the trajectory through ∞ and the separa-
trices of the origin,

• a symmetric pair of inner zones that are bounded solely by the separatrices of the origin,
each of these inner zones is divided into 2 inner half-zones.

At the limit, when ε = 0, µ 6= 0, all the half-zones persist, and when µ2 = ε the 4 inner half-zones
become empty and only the 2 outer half-zones persist.

Bifurcation diagram of χ. Let us take a better look on how these half-zones evolve
depending on the parameters (µ, ε) and on ω (cf. Remark 3.7). A bifurcation of the real phase
portrait of the vector field eiωχ can occur if it either becomes rotationally unstable, or when
either an equilibrium or a hyperbolic point changes its multiplicity. This second bifurcation,
occurring when ε

(
µ2 − ε

)
= 0, doesn’t affect the decomposition of the real phase portrait into

half-zones other than that some of the half-zone may become empty. There are two possibilities
how rotational instability of eiωχ can occur: 1) through an appearance of a homoclinic separatrix
of the origin in CP1, either encircling a single singularity (let’s denote this case ΣI) or a pair of
singularities (let’s denote this case ΣO), or 2) through an appearance of a heteroclinic separatrix
connecting 0 and∞: due to the symmetry of eiωχ this latter bifurcation agrees exactly with the
case ΣO.

ΣI : The bifurcation ΣI occurs when the stability of a zero point si = ±
√
µ±
√
ε of eiωχ changes

between attractive and repulsive, i.e., when the multiplier ±eiω 2
√
ε

si
of the linearization
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±eiω 2
√
ε

si
(s−si)∂s of vector field eiωχ at the point si becomes purely imaginary: eiω 2

√
ε√

µ±
√
ε
∈

iR, which is equivalent to

µ ∈ ∓
√
ε− e2iωεR≥0 =: ΣI,ω(ε).

It is well known that a holomorphic vector field in C is analytically equivalent to its
linearization near each simple zero (see, e.g., [18, Theorem 5.5]). As a consequence, if
µ ∈ ΣI,ω(ε) (the dashed lines in Fig. 5) then the real phase portrait of eiωχ near the point si
with purely imaginary multiplier is that of a center. By Remark 3.7, µ ∈ ΣI,ω(ε) ⇐⇒
e2iωµ ∈ ΣI,0(e4iωε).

ΣO: The bifurcation ΣO occurs when the trajectory through infinity passes by the origin. This

means that θ(0, µ, ε) − θ(∞, µ, ε) ∈ eiωR, where θ is as in (3.6), i.e.,

√
µ+
√
ε±
√
µ−
√
ε

2
√
ε

πi ∈

eiωR, which is equivalent to −µ±
√
µ2−ε
ε = a ∈ e2iωR>0, that is

µ ∈
{
−1

2

(
a−1 + εa

)
| a ∈ e2iωR>0

}
=: ΣO,ω(ε).

The set ΣO,ω(ε) is a branch of a hyperbola (the solid curve in Fig. 5). By Remark 3.7,
µ ∈ ΣO,ω(ε)⇐⇒ e2iωµ ∈ ΣO,0(e4iωε).

0
ε

−
√
ε
√
ε

(i)

(iv)

(ii)

(iii)

(0)
0

Figure 5. Bifurcation curves in the µ-plane for the vector field χ(s, µ, ε) (i.e., ω = 0) according to values

of ε: dashed lines ΣI,0(ε) correspond to change of stability of a singular point, solid line curve ΣO,0(ε)

corresponds to bifurcation of the trajectory passing through ∞.
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(i) ε ∈ R>0:

µ

∞ ∞
∞ ∞ ∞ ∞

∞ ∞

∞ ∞∞∞

∞∞
∞∞ ∞∞

(ii) ε ∈ −iR>0:

µ

∞ ∞∞ ∞∞ ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

∞ ∞

∞ ∞∞ ∞
∞ ∞
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(iii) ε ∈ −R>0:

µ

∞ ∞ ∞ ∞

∞ ∞

∞ ∞

∞

∞ ∞

∞

∞

∞∞

∞

∞∞

∞∞

(iv) ε ∈ iR>0:

µ

∞ ∞
∞ ∞ ∞ ∞

∞ ∞

∞ ∞∞ ∞

∞ ∞ ∞ ∞ ∞
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(0) ε = 0:

µ

∞ ∞
∞ ∞

∞ ∞ ∞ ∞

∞ ∞∞ ∞
∞ ∞

Figure 6. The real phase portrait of the vector field χ according to µ for selected values of ε (see Fig. 5).

The separatrices of 0 and ∞ are in bold. The splitting trajectories for the inner zones are not shown in

the picture.

3.2.4 Construction of the ramified domains Ω revisited

Instead of in C∗, let us consider now the real phase portrait of the vector field eiωχ(s, µ, ε), inside
the pierced disc S∗. We have now zones of eiωχ in S∗ (Definition 3.5) which are restrictions of
those in C∗, and half-zones in S∗ obtained by splitting the αω-zones in two parts by the same
trajectory as before. Instead of the values of ω for which eiωχ is rotationally stable, we consider
the admissible values of ω (Definition 3.5): let us remark that if the hyperbolic point at s = 0 had
a homoclinic separatrix this separatrix would reach it in both forward and backward direction
in a finite time θ, thus leave S∗.

Again, for a generic value of (µ, ε) there are up to 4 connected zones or 6 connected half-zones
in S∗: a symmetric pair of inner zones, each consisting of two half-zones, denote them

RI,ω(µ̌, ε̌) ⊇ RI+,ω(µ̌, ε̌) ∪ RI−,ω(µ̌, ε̌), RP
I,ω(µ̌, ε̌) ⊇ RP

I+,ω(µ̌, ε̌) ∪ RP
I−,ω(µ̌, ε̌),

and a symmetric pair of outer zones, denote them

RO,ω(µ̌, ε̌), RP
O,ω(µ̌, ε̌).

By Remark 3.7, R•,ω(µ̌, ε̌) = e−iωR•,0
(
e2iωµ̌, e4iω ε̌

)
.

Let us agree that out of the two inner zones, RI,ω(µ̌, ε̌) is the one consisting of trajectories
from s1(µ̌, ε̌) to s2(µ̌, ε̌) (3.12), and that out of the two outer zones (both consisting of trajectories
from s1(µ̌, ε̌) to −s1(µ̌, ε̌)), RO,ω(µ̌, ε̌) is the upper one (see Fig. 7(a)).

The outer zones RO,ω(µ̌, ε̌) can became empty: this happens whenever a separatrix of the
origin leaves the disc S (see Fig. 7(b)). Therefore a bifurcation of the zone RO,ω occurs when
a separatrix of the origin touches the boundary of the disc from inside for the first time: at that



Unfolding of a Resonant Irregular Singularity 31

(a) (b)

RO

RI+

RI−

RP
I−

RP
I+

RP
O

RI+

RI−

RP
I−

RP
I+

Figure 7. The outer and inner half-zones RO,0(µ̌, ε̌) and RI±,0(µ̌, ε̌) (with ω = 0) inside the pointed

disc S∗ for (a) ε ∈ iR>0, µ = 0, (b) ε ∈ iR>0, µ close to ΣI(ε): RO,0 = RP
O,0 = ∅. Compare with the

corresponding vector fields in Fig. 6(ii).

moment the zone ceases to exist as there is no trajectory of eiωχ joining si(µ̌, ε̌) and −sj(µ̌, ε̌)
inside the disc. We have:

Lemma 3.10. For a given (µ, ε) ∈ M× E, a value of ω ∈
]
−π

2 ,
π
2

[
is admissible if and only if

the vector field eiωχ has no centers, i.e.,
(
e−2iωµ, e−4iωε

)
/∈ ΣI , and the outer zones RO,ω(µ̌, ε̌),

RP
O,ω(µ̌, ε̌) are non-empty. In this case the inner half-zones RI±,ω(µ̌, ε̌), RP

I±,ω(µ̌, ε̌) agree with

the inner half-zones of eiωχ in C∗.

Corresponding to the inner and outer half-zones of the vector field χ we will construct domains
Ω(µ̌, ε̌): two symmetric pairs of inner domains ΩI±(µ̌, ε̌), ΩP

I±(µ̌, ε̌), and a symmetric pair of

outer domains ΩO(µ̌, ε̌), ΩP
O(µ̌, ε̌), each obtained as a ramified union of the respective half-zones

RI±,ω(µ̌, ε̌), RP
I±,ω(µ̌, ε̌) and RO,ω(µ̌, ε̌), RP

O,ω(µ̌, ε̌) over varying admissible ω. They will experience
the same kind of bifurcations as their corresponding half-zones R•,ω, but this time delayed by
the effect of the variation of ω ∈

]
−π

2 ,
π
2

[
. This will determine the set of ramified parameters

(µ̌, ε̌) for which they exist (Fig. 8).

Lemma 3.11. If δµ + δ
1
2
ε is small enough (with respect to δ2

s), then for each parameter (µ, ε)
there is an admissible ω ∈

]
−π

2 ,
π
2

[
.

Proof. We need to show that there exists ω ∈
]
−π

2 ,
π
2

[
, such that, if µ2 6= ε, no separatrix of 0

of the vector field eiωχ leaves the disc S of radius δs. The complement of the disc S corresponds
in the map θ (3.6) to a “disc” centered at 0 of a radius uniformly bounded w.r.t. (µ, ε). For

|µ|, |ε|
1
2 small, all the preimages ξ0 of the point s = 0 by θ−1 are far enough (they depend

continuously on the parameter and tend to ∞ as (µ, ε)→ 0) so that for some ω ∈
]
−π

2 ,
π
2

[
none

of the lines ξ0 + e−iωR cross the “disc”. �

The ramified parameter space. Let M, E be as in (3.11) small discs of radii δµ, δε in
the µ- and ε-spaces. Define a ramified sectoral cover Ě of E as

Ě = {|ε̌| < δε, | arg ε̌| < 4π},
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M̌(ε̃)

√
ε̃

M̌(ε̄)

√
ε̄

Ě

M̌(0)

0

Figure 8. The ramified domains M̌(ε̌) for the parameter µ̌ depending on ε̌ ∈ Ě .

with each ε̌ being projected to ε ∈ E . For each value of ω ∈
]
−π

2 ,
π
2

[
and ε̌ ∈ Ě such that

| arg ε̌+ 4ω| < 2π, let Mω(ε̌) denote the connected component of the set{
µ ∈M|ω is admissible for eiωχ(s, µ, ε)

}
that is attached to the point µ =

√
ε̌. By Remark 3.7 µ̌ ∈Mω(ε̌)⇐⇒ e2iωµ̌ ∈M0

(
e4iω ε̌

)
.

As seen in Fig. 1, the component of M \
(
e−2iωΣO

(
e4iω ε̌

)
∪ e−2iωΣI

(
e4iω ε̌

))
attached to

µ =
√
ε undergoes a bifurcation for | arg ε̌+ 4ω| = 2π when it ceases to exist, the corresponding

bifurcation forM0

(
e4iω ε̌

)
happens a bit earlier. For given ε̌ ∈ Ě , the set of ω for whichMω(ε̌) 6= 0

is a proper subinterval of {|ω| < π
2 , | arg ε̌+ 4ω| < 2π}.

Define a domain M̌(ε̌) of ramified parameter µ̌ as a ramified union

M̌(ε̌) =
⋃

ω∈]−π
2
,π
2

[

| arg ε̌+4ω|<2π

Mω(ε̌) ∪
{√

ε
}

=
⋃

ω∈]−π
2
,π
2

[

| arg ε̌+4ω|<2π

e−2iωM0

(
e4iω ε̌

)
∪
{√

ε
}
,

with µ̌ =
√
ε̌ as the ramification point included in M̌(ε̌). See Fig. 8.

Proposition 3.12. The union of M̌(ε̌) in the (µ̌, ε̌)-space∐
ε̌∈Ě

M̌(ε̌) (3.14)
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is a single simply connected ramified cover of M×E with ramification at
{
ε
(
µ2 − ε

)
= 0
}

. On
this domain, an admissible value of ω can be chosen for every (µ̌, ε̌) that varies continuously.

Proof. The simple connectedness is by definition, the fact that it covers all M×E is a conse-
quence of Lemma 3.11. �

Lemma 3.13. If ε̌ ∈ Ě, µ̌ ∈ M̌(ε̌), then∣∣∣∣∣arg

√
µ±
√
ε√

ε

∣∣∣∣∣ < π,

∣∣∣∣∣arg

√
µ+
√
ε±

√
µ−
√
ε

2
√
ε

∣∣∣∣∣ < π.

Proof. From the definition, Fig. 5 and Remark 3.7, we see that if µ̌ ∈ M̌ω(ε̌) then∣∣∣∣∣arg

√
µ±
√
ε√

ε
− ω

∣∣∣∣∣ < π

2
,

∣∣∣∣∣arg

√
µ+
√
ε±

√
µ−
√
ε

2
√
ε

− ω

∣∣∣∣∣ < π

2
. �

We define a simply connected ramified domain M̌ over the m̌-space, covering a neighbor-
hood M of 0 in the m-space with ramification at

{
m ∈ M | ε(m)

(
µ(m)− ε(m)2

)
= 0
}

, by lifting
the map m 7→ (µ(m), ε(m)) to the ramified cover (3.14)

M̌ 3 m̌ � //
_

��

(µ̌(m̌), ε̌(m̌))∈
∐
ε̌∈Ě M̌(ε̌)

_

��
M 3 m � // (µ(m), ε(m))∈M× E .

The ramified domains Ω(µ̌, ε̌). For each ε̌ ∈ Ě , µ̌ ∈ M̌(ε̌) let

Ω•(µ̌, ε̌) =
⋃

ω such that
µ∈Mω(ε̌)

R•,ω(µ̌, ε̌), • = O, I, resp. O, I±

be a ramified union of the topological closures R•,ω of the zones, resp. half-zones, R•,ω in the
š-variable.

Following from their construction, the outer domain ΩO(µ̌, ε̌) is connected nonempty for all
ε̌ ∈ M̌, µ̌ ∈ M̌(ε̌), while the inner domain ΩI(µ̌, ε̌) = ΩI+(µ̌, ε̌) ∪ ΩI−(µ̌, ε̌) becomes empty for
µ̌2 = ε̌. For ε̌ = 0, µ̌ 6= 0, the two parts ΩI±(µ̌, 0) are disjoint except for their common vertex
at s1(µ̌, 0) = s2(µ̌, 0) =

√
µ̌ (see Fig. 9).

Finally, the ramified domain Ω• in the (š, m̌)-space is defined as the union of all Ω•(µ̌, ε̌),
fibered over M̌,

Ω• :=
∐
m̌∈M̌

Ω•(µ̌(m̌), ε̌(m̌)).

Lemma 3.14. For each µ̌ ∈M(ε̌) the 6 domains ΩO(µ̌, ε̌), ΩP
O(µ̌, ε̌), ΩI±(µ̌, ε̌), ΩP

I±(µ̌, ε̌) cover
a full neighborhood of each equilibrium point si of χ(s, µ, ε) (si 6= 0 if (µ, ε) 6= 0).

Proof. If si is a simple singularity, we can also suppose by the symmetry that it is attractive for
eiωχ, ω ∈ ]ω1, ω2[⊆

]
−π

2 ,
π
2

[
. The map θ (3.6) is logarithmic on a small neighborhood of si with

a period siπi√
ε

and the image by θ of the inner domain attached to si contains by construction

a sector at ∞ where arg θ ∈ ]−ω2,−ω1[, and hence also half-strips of any direction e−iω and of
any width. Therefore it covers a full neighborhood of si.
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(a) 0 < ε < µ2, µ > 0 (b) ε = 0 < µ (c) ε = µ = 0

ΩO(µ̌, ε̌) ΩO(µ̌, 0) ΩO(0, 0)

−s1 −s2 s2 s1
−s1 s1

0

ΩI(µ̌, ε̌)

−s1 −s2 s2 s1

ΩI+(µ̌, 0)

−s1=− s2

s1=s2

ΩI−(µ̌, 0)

ΩI+(µ̌, ε̌)

−s1 −s2 s2 s1

ΩI−(µ̌, ε̌)

Figure 9. Examples of the domains ΩO(µ̌, ε̌) and ΩI(µ̌, ε̌) for selected values of µ, ε.

If ε = 0, µ 6= 0, and si is a double singularity, then the inner half-zones RI±,ω contain each
a small disc attached to si and centered in the direction ±ieiωR>0; their union over ω varying
in some interval ]ω1, ω2[ covers a full neighborhood of si.

If (µ, ε) = 0 ans si = 0, then RO,ω (resp. RP
O,ω) contains a small disc attached to si and

centered in the direction ieiωR>0 (resp. −ieiωR>0), and their union over ω varying in some
interval ]ω1, ω2[ again covers a full neighborhood of si = 0. �

3.3 Connection matrices and proof of Theorem 2.6(a)

For the following discussion we will want to fix a branch Ψ• of the fundamental solution Ψ (3.7)
of the diagonal system ∆

s
on interior of each of the domains Ω•. However, no single branch

of Ψ converges as ε̌→ 0 on the interior of both sectoral components ΩI+(µ̌, 0) and ΩI−(µ̌, 0) of
ΩI(µ̌, 0), µ̌ 6= 0. This is one of the main reasons for splitting the inner domain ΩI(µ̌, ε̌) in the
two parts ΩI+(µ̌, ε̌) and ΩI−(µ̌, ε̌).

Definition 3.15. Let Φ1, Φ2 be two fundamental matrix solutions of a linear system on two
domains U1, U2 with connected non-empty intersection U1 ∩U2. We call the matrix C = Φ−1

1 Φ2

a connection matrix between Φ1 and Φ2 and represent it schematically as

Φ1
C−−→ Φ2.

3.3.1 Choice of the fundamental solutions Ψ•

On the interior Ω̊• of each of the domains Ω•, • = O, I+, I−, we fix a branch Ψ•(š, µ̌, ε̌) of the
fundamental solution Ψ(š, µ̌, ε̌) (3.7) of the diagonal system ∆

s
so that the connection matrices

between them are as in Fig. 10.
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ΨO

0 s2 s1

0 s2 s1

ΨP
O

I IΨP
I− ΨI+

I I

N NN1 N1I II I

−s2−s1

−s2−s1

s2 s1

s2 s1

ΨP
I+ ΨI−

Figure 10. The connection matrices between the fundamental solutions Ψ• for each fixed parameter

(µ̌, ε̌), with µ̌2 6= ε̌ 6= 0, where N1 and N are given by (3.15) and (3.16). If ε̌ = 0 then s1(µ̌, 0) = s2(µ̌, 0)

and the matrices N1 are missing from the picture. If µ̌2 = ε̌ then only the fundamental solutions ΨO

and ΨP
O persist.

The monodromy matrices of Ψ(s, µ̌, ε̌) around the points s1(µ̌, ε̌), resp. s2(µ̌, ε̌), in the positive
direction are independent of the choice of the branch of Ψ, and are given by

N1(µ̌, ε̌) =

e
s1(µ̌,ε̌)√

ε̌
πi

0

0 e
− s1(µ̌,ε̌)√

ε̌
πi

 , N2(µ̌, ε̌) =

e
− s2(µ̌,ε̌)√

ε̌
πi

0

0 e
s2(µ̌,ε̌)√

ε̌
πi

 , (3.15)

They satisfy

N P
i = N−1

i , i = 1, 2.

The monodromy matrix of Ψ around both of the points s1(µ̌, ε̌), s2(µ̌, ε̌) is equal to

N(µ̌, ε̌) = N1(µ̌, ε̌)N2(µ̌, ε̌) =

e
s1−s2√

ε̌
πi

0

0 e
− s1−s2√

ε̌
πi

 . (3.16)

At the limit when ε̌→ 0 we get N(µ̌, 0) =

(
e

1√
µ̌
πi

0

0 e
− 1√

µ̌
πi

)
, which is for µ 6= 0 the monodromy

matrix of Ψ around the double zero s1(µ̌, 0) = s2(µ̌, 0). On the other hand, none of the matrices
N1(µ̌, ε̌), N2(µ̌, ε̌) has a limit as ε̌→ 0.

3.3.2 Connection matrices of the fundamental solutions Φ• = F•Ψ•

Let F•(š, m̌) and F P
• (š, m̌) be the constructed diagonalizing gauge transformations on the do-

mains Ω• and ΩP
• = eπiΩ•, • = O, I, in the ramified (š, m̌)-space. Namely, the restrictions FI±

of FI on the two sub-domains ΩI± of ΩI agree on the common part between the two singulari-
ties s1, s2. Then

F•Ψ• and F P
• ΨP
• , • = O, I±,

are fundamental solution matrices of ∆s (3.3).
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Whenever a point (s,m) ∈ S × M is covered more than once, then there is a connection
matrix between these fundamental solutions: Either there can be two domains Ω(µ̌, ε̌) with the
same (µ̌, ε̌), or with two different ramified parameters (µ̌, ε̌) corresponding to the same (µ, ε).
The collection of all these connection matrices carries all the information about the analytic
equivalence class of the system ∆.

In Lemmas 3.17 and 3.18 and Proposition 3.19 we give a semi-explicit expression of all the
connection matrices.

Proposition 3.16. Let ∆(x,m), ∆′(x,m) be two parametric systems and let ∆s(s,m), ∆′s(s,m)
be their transforms in the s-coordinate (3.3). Let F•, F

′
• be normalizing gauge transformations

for ∆s, ∆′s:

(F•)
∗∆s = ∆

s
= (F ′•)

∗∆′s

on the domains • = O, I+, I− defined above. If all the connection matrices associated to the
fundamental solutions F•Ψ• of ∆s agree with those associated to the fundamental solutions F ′•Ψ•
of ∆′s, then the two parametric families of systems ∆, ∆′ are analytically equivalent.

Proof. Let H(s,m) := F ′•(š, m̌)F•(š, m̌)−1. Since all the connection matrices are equal, H is
a well defined non-ramified invertible matrix function defined on the union of the projections
of the domains Ω• to (s,m)-space, • = O, I+, I−. It is bounded on a neighborhood of each
singularity si 6= 0, hence H can be analytically extended on (S \ {0})×M× E , where S, M, E
are as in (3.11). It satisfies H = HP: if s is in the projection of Ω•(µ̌, ε̌) and H(s, m̌) =
F ′•(š, m̌)F•(š, m̌)−1 then −s is in the projection of ΩP

• and

H(−s, m̌) = F ′•
P(

eπiš, m̌
)(
F P
•
(
eπiš, m̌

))−1

= ( 0 1
1 0 )F ′•(š, m̌)F•(š, m̌)−1 ( 0 1

1 0 )

= ( 0 1
1 0 )H(š, m̌) ( 0 1

1 0 ) .

Hence the function G(x,m) := S(s,m)V H(s,m)V −1S−1(s,m), with S, V as in (3.2), is well
defined.

The fundamental solutions Y•(x̌, m̌) = S(s)V F•(š, m̌)Ψ•(š, m̌) of the system ∆(x,m), and
Y ′•(x̌, m̌) = S(s)V F ′•(š, m̌)Ψ•(š, m̌) of ∆′(x,m), can for µ2 6= ε be analytically extended on
a neighborhood of the point x = −µ (i.e., s = 0) which is non-singular for these systems. As
G = Y ′•Y

−1
• , it means that G∗∆′ = ∆ and that G is an invertible analytic matrix function on

(X ×M) \
{
x = −µ, ε = µ2

}
, where X :=

{
|x| ≤ δ2

s − δµ
}

. Since the problematic points are in
a set of codimension 2, by Hartog’s theorem G is analytic on the whole neighborhood X ×M
of 0. �

Lemma 3.17. Let F• be the normalizing gauge transformations from Proposition 3.6 satis-
fying (3.13) with the uniquely determined functions κ•, and let Ψ• be as Fig. 10. Then for each
fixed m̌ ∈ M the connection matrices between the solutions F•Ψ• on the domains Ω•(µ̌, ε̌) are
given in Fig. 11 with the matrices C0(m̌), . . . , C4(m̌) equal to

C0 =
(

1 iγ
0 1

)
, C3 =

(
1 iκ−1e−2aπi

0 κ−1

)
,

C1 =
(

1 iκ−1(γ−e2aπi−e−2aπi)
0 1

)
, C4 =

(
1 −iκ−1e2aπi

0 κ−1

)
,

C2 =
(

1 0
−iκe2aπi 1

)
, (3.17)

where

a(m̌) :=


s1(µ̌, ε̌)− s2(µ̌, ε̌)

2
√
ε̌

=

√
µ+
√
ε−
√
µ−
√
ε

2
√
ε

if ε̌ 6= 0,

1

2
√
µ̌

if ε̌ = 0 and µ̌ 6= 0,

(3.18)
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FOΨO

0 s2 s1

0 s2 s1

F P
OΨP

O

C3CP
4F P

I−ΨP
I− FI+ΨI+

CP
3 C4

N−1CP
2 NC2N1 N1CP

1 C1CP
0 C0

−s2−s1

−s2−s1

s2 s1

s2 s1

F P
I+ΨP

I+ FI−ΨI−

Figure 11. The connection matrices between the fundamental solutions F•Ψ• for a fixed parameter

(µ̌, ε̌), µ̌2 6= ε̌. For µ̌2 = ε̌, only the fundamental solutions FOΨO and F P
OΨP

O persist, with the two

corresponding connection matrices C0, CP
0 . (Picture with 0 < ε̌ < µ̌2 as in Figs. 10 and 9(a)).

κ(m̌) :=
κO(m̌)

κI(m̌)
(3.19)

and γ(m), the analytic invariant of the system ∆(x,m), is the trace of monodromy (2.3).

Proof. From Lemma 3.2(b) we know that a connection matrix on an intersection domain
that is adjacent to the point s1(µ̌, ε̌) (resp. s2(µ̌, ε̌)) must be upper triangular (resp. lower
triangular), with the diagonal terms determined by the values of the corresponding pair of
gauge transformations F•(s1(µ̌, ε̌), m̌) (resp. F•(s2(µ̌, ε̌), m̌)). Hence we have

C0 =
(

1 c0
0 1

)
, C1 =

(
1 c1
0 1

)
, C2 =

(
1 0
c2 1

)
, C3 =

(
1 c3
0 κ−1

)
, C4 =

(
1 c4
0 κ−1

)
,

for some c0(m̌), . . . , c4(m̌).
Let M(m̌) be the monodromy matrix of the fundamental solution

YO(x̌, m̌) = S(s)V FO(š, m̌)ΨO(š, µ̌, ε̌)

of the system ∆ around the two singular points x = ±
√
ε̌ in the positive direction. On the one

hand we have

M = ΨO(š)−1FO(š)−1V −1S(š)−1 · S
(
eπiš

)
V FO

(
eπiš

)
ΨO

(
eπiš

)
= ΨO(š)−1FO(š)−1V −1S(š)−1 · S

(
eπiš

) (−i 0
0 i

)
V F P

O

(
eπiš

)
ΨP
O

(
eπiš

)
CP

0

= −i ( 0 1
1 0 )CP

0 = −iC0 ( 0 1
1 0 ) ,

using that
(

1 0
0 −1

)
V = V ( 0 1

1 0 ). On the other hand, as apparent from Fig. 11,

M = C3C1NC2C
−1
3 ,

where N =
(

e2aπi 0
0 e−2aπi

)
. Therefore

−iC0 ( 0 1
1 0 ) = C3C1NC2C

−1
3 = M, (3.20)
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−i 0

)
=
(

e2aπi+e−2aπic2(c1+c3) κe−2aπi(c1+c3)(1−c2c3)−κe2aπic3
κ−1e−2aπic2 e−2aπi(1−c2c3)

)
,

which implies that

γ = trM = −ic0 = e2aπi + e−2aπi + e−2aπic1c2, (3.21)

c2c3 = 1, and c2 = −iκe2aπi, c3 = iκ−1e−2aπi.

From Fig. 11 one also sees that

C3C1 = C0C4, (3.22)

which gives the matrix C4. �

The matrices C0(m̌), . . . , C4(m̌) of Lemma 3.17 determine for each fixed m̌ ∈ M̌ all the
relations between the set of fundamental solutions F•(·, m̌)Ψ•(·, m̌) and F P

• (·, m̌)ΨP
• (·, m̌), • =

O, I+, I−. We will now look at the situation of two different m̌ ∈ M̌ corresponding to the same
value of m. One finds that the corresponding connection matrices can be expressed in terms of
the values of C0, . . . , C4 for the two ramified parameters, while certain cocycle relations must be
satisfied.

Lemma 3.18. Let F•, Ψ• be as in Lemma 3.17. We will use the following kind of notation: If
m̄, ¯̄m ∈ M̌ (resp. m̃, ˜̃m ∈ M̌) are two values of the ramified parameter m̌, we write X̄ = X(m̄),
¯̄X = X( ¯̄m) (resp. X̃ = X(m̃), ˜̃X = X( ˜̃m)) for any object X depending on m̌.

(a) Let m̄, ¯̄m ∈ M̌ be two values of the ramified parameter that project to the same m, such
that

ε̄ = ¯̄ε =: ε̌ and ¯̄µ−
√
ε̌ = e2πi

(
µ̄−
√
ε̌
)
,

i.e., ¯̄µ is µ̄ plus one positive turn around the ramification point
√
ε̌ in M̌(ε̌). So

¯̄s1 = s̄1, ¯̄s2 = eπis̄2.

Hence

¯̄ΩO = Ω̄O,
¯̄FO = F̄O,

¯̄ΨO = Ψ̄O,

and we have

¯̄κO = κ̄O =
¯̄κκ̄

1− e
−2

s̄2√
ε̌
πi
. (3.23)

(b) Let m̃, ˜̃m ∈ M̌ be two values of the ramified parameter that project to the same m such that

(˜̃µ, ˜̃ε) = e2πi(µ̃, ε̃),

or more precisely, for |µ| �
√
|ε|, (˜̃µ, ˜̃ε) is obtained from (µ̃, ε̃) by simultaneously turning

both ε̌ and µ̌. So

˜̃s1 = eπis̃2, ˜̃s2 = eπis̃1, and ˜̃N = Ñ−1.

Hence

˜̃ΩI+ = Ω̃P
I−,

˜̃FI+ = F̃ P
I−,

˜̃ΨI+ = Ψ̃P
I−,
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˜̃ΩI− = Ω̃P
I+,

˜̃FI− = F̃ P
I+,

˜̃ΨI− = Ψ̃P
I+Ñ

−1.

Therefore

˜̃C1 = Ñ−1C̃P
2 Ñ ,

˜̃C2 = C̃P
1 , (3.24)

and we have

˜̃κI = κ̃I , (3.25)

γ = e2ãπi + e−2ãπi − κ̃˜̃κe−2ãπi, (3.26)

where ǎ and κ̌ are defined in (3.18) and (3.19), ˜̃a = −ã.

Proof. (a) For each ε̌ ∈ Ě the ramification of the µ̌-parameter domain M̌(ε̌) corresponds to
the bifurcation ΣI(ε): the difference between (µ̄, ε̌) and (µ̃, ε̌) is that of crossing the line ΣI(ε).
Since this bifurcation affects only the inner zones of the field χ, it therefore affects only the
internal domains ΩI±, ΩP

I±, while the outer domains are not affected. Therefore ¯̄ΩO = Ω̄O and

consequently ¯̄FO = F̄O.
To obtain the assertion (3.23), it is enough to prove it for generic values of (µ, ε), and extend it

to the other values by continuity. So we can assume that ε 6= 0, µ2 6= ε, and moreover that both
of the points s1(µ̌, ε̌), s2(µ̌, ε̌) are non-resonant. In that case, aside from the transformations
F•(š, m̌), • = O, I+, I−, we have also unique local normalizing transformations Fi(š, m̌) defined
on a neighborhood Ωi(µ̌, ε̌), i = 1, 2, of si(µ̌, ε̌) not containing any other singularity sj(µ̌, ε̌) nor
the origin, with Fi(ši(µ̌, ε̌), m̌) = I. They satisfy

¯̄F1 = F̄1,
¯̄F2 = F̄ P

2 .

Let Ai be the connection matrix between FiΨI+ and FI+ΨI+:

FI+ΨI+ = FiΨI+Ai,

see Fig. 12. It is easy to see that the monodromy of FI+ΨI+ around the point s1 (resp. s2) is
equal to

C1N1 = A−1
1 N1A1,

(
resp. N2C2 = A−1

2 N2A2

)
,

from which one can calculate using Lemma 3.17 that

A1 =

(
1 1

e21−1
c1

0 κI

)
, A2 =

(
κI 0
1

1−e−2
2

c2 1

)
, (3.27)

with

e1(µ̌, ε̌) := e
s1(µ̌,ε̌)√

ε̌
πi
, e2(µ̌, ε̌) := e

s2(µ̌,ε̌)√
ε̌

πi
,

and c1 = iκ−1
(
γ − e1

e2
− e2

e1

)
, and c2 = −iκ e1e2 .

Knowing that ¯̄F2 = F̄ P
2 one can see from Fig. 12 that

¯̄A2
¯̄C−1

3 = N̄−1
1 ĀP

2

(
N̄ P

1

)−1(
C̄P

4

)−1
,

where
(
N̄ P

1

)−1
= N̄1, i.e., ¯̄κI −i¯̄κI

¯̄e2
¯̄e1

i¯̄κ
¯̄e1 ¯̄e2
1−¯̄e22

¯̄κ 1
1−¯̄e22

 =

κ̄ ē2
ē2−ē−1

2

−iκ̄
ē−1
1

ē2−ē−1
2

iκ̄I
ē1
ē2

κ̄I

 . (3.28)
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N̄1 ¯̄F2
¯̄ΨI+F̄ P

2 Ψ̄P
I+

−s̄2

¯̄s2 ¯̄N2

¯̄A2ĀP
2

F̄ P
I+Ψ̄P

I+
¯̄FI+

¯̄ΨI+

¯̄C3

¯̄s2

¯̄s1

¯̄s1

F̄0Ψ̄0 = ¯̄F0
¯̄Ψ0

¯̄N ¯̄C2

C̄P
4N̄ P

1

¯̄N1

−s̄1

−s̄1

−s̄2

F̄ P
I−Ψ̄P

I−

−s̄1 ¯̄s1

¯̄FI−
¯̄ΨI−

Figure 12. Connection matrices between fundamental solutions F•Ψ• of Lemma 3.17, with ε̌ fixed and

µ̄ 6= ¯̄µ. (Picture with arg ε̌ = 0.) The corresponding diagram for the diagonal solutions Ψ• of ∆̄s is

obtained by erasing all the F ’s and replacing the matrices Ai, Ci by identity matrices. The top arrow in

the diagram here F̄ P
2 Ψ̄P

I+
N̄1−−−→ ¯̄F2

¯̄ΨI+ follows from the corresponding arrow Ψ̄P
I+

N̄1−−−→ ¯̄ΨI+ which one

can easily read in the corresponding diagram for the diagonal solutions.

This is satisfied if and only if

¯̄κI κ̄I = κO
ē2

ē2−ē−1
2

,

which is equivalent to (3.23). Similarly, one would find that

¯̄A1
¯̄C−1

3 = Ā1C̄
−1
3 ,

which is satisfied without imposing any new condition, since

A1C
−1
3 =

(
1

iγe−1
1 −ie2−ie−1

2

e1−e−1
1

0 κO

)
.

(b) Similarly to (a), the passage between (µ̃, ε̃), µ̃ ∈ M̌(ε̃), and (˜̃µ, ˜̃ε) = e2πi(µ̃, ε̃), ˜̃µ ∈ M̌(˜̃ε),
is that of crossing the curve ΣO(ε), which affects only the outer zones, and hence the outer
domains. The inner domains rotate together with their vertices s1(µ̌, ε̌), s2(µ̌, ε̌), therefore
˜̃ΩI+ = Ω̃P

I− and ˜̃ΩI− = Ω̃P
I+. So we have

˜̃FI+ = F̃ P
I−,

˜̃FI− = F̃ P
I+.

One can see from Fig. 13 that the fundamental solutions ΨI± of the diagonal system ∆
s

satisfy

˜̃ΨI+ = Ψ̃P
I−,

˜̃ΨI− = Ψ̃P
I+Ñ .
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I

I I I˜̃ΨO
˜̃ΨI+ Ψ̃P

I− Ψ̃P
O

˜̃N−1 = Ñ

˜̃s2
˜̃s1

−˜̃s1 −˜̃s2

˜̃s2
˜̃s1 −s̃1 −s̃2 −s̃1−s̃2

s̃2 s̃1I I˜̃N1 Ñ1
˜̃N Ñ

˜̃ΨI− Ψ̃P
I+

Figure 13. Connection matrices between fundamental solutions Ψ• of Lemma 3.17 with (˜̃µ, ˜̃ε)

= e2πi(µ̃, ε̃).

This then implies (3.24), i.e.,

C̃1 =
(

1 −i˜̃κe−2ãπi

0 1

)
, ˜̃C1 =

(
1 −iκ̃e2˜̃aπi

0 1

)
, C̃2 =

(
1 0

−iκ̃e2ãπi 1

)
, ˜̃C2 =

(
1 0

−i˜̃κe2˜̃aπi 1

)
,

as ˜̃a = −ã. Then (3.26) follows from (3.21). �

The following proposition gives a semi-explicit formula for the determinants κ, κI , κO, ana-
logical to the Gauss–Kummer formula for the hypergeometric equation [19, 25], and similar to
the connection formulas of [3].

Proposition 3.19.

(a) Let ∆ be a parametric system, ∆s its transform (3.3), let F• be the normalizing gauge
transformations from Proposition 3.6 determined by the condition (3.13) and let Ψ• be
as in Fig. 10. The collection of all the connection matrices between the fundamental
solutions F•Ψ• is uniquely determined by κ = κO

κI
and by the invariant γ, satisfying the

relation (3.26).

(b) Let γ(m) be a germ of analytic function and assume that there exists an analytic germ
Q(m) such that

γ = 2 cos 2πQ.

Let

a(µ̌, ε̌) :=
s1 − s2

2
√
ε̌
, b(µ̌, ε̌) :=

s1 + s2

2
√
ε̌
,

with s1, s2 as in (3.12). Then any triple of functions κI , κO, κ = κO
κI
∈ B(M̌) with

κO(m̌) = 1 if (µ̌, ε̌) = 0, µ̌ ∈ M̌(0), satisfying the relations (3.23), (3.25) and (3.26) of
Lemma 3.18 are equal to

κI =


√

s1s2
ε̌

Γ
(
s1√
ε̌

)
Γ
(
s2√
ε̌

)
Γ(1+b−Q)Γ(b+Q) e

2b log b− s1√
ε̌

log
s1√
ε̌
− s2√

ε̌
log

s2√
ε̌
+fI , if ε 6= 0,

1, if ε = 0,
(3.29)
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κO =


2π

s1√
ε̌
Γ
(
s1√
ε̌

)2

Γ(1+a−Q)Γ(1+b−Q)Γ(a+Q)Γ(b+Q)

× e
2a log a+2b log b−2

s1√
ε̌

log
s1√
ε̌
+fO , if ε 6= 0,

2π 1
Γ(1+a−Q)Γ(a+Q)e2a log a−2a+f , where a = 1

2
√
µ , if ε = 0, µ 6= 0,

1, if (µ, ε) = 0,

(3.30)

κ =


2π

√
s1
s2

Γ
(
s1√
ε̌

)
Γ
(
s2√
ε̌

)−1

Γ(1+a−Q)Γ(a+Q) e
2a log a− s1√

ε̌
log

s1√
ε̌
+
s2√
ε̌

log
s2√
ε̌
+f
, if ε 6= 0,

2π 1
Γ(1+a−Q)Γ(a+Q)e2a log a−2a+f , where a = 1

2
√
µ , if ε = 0, µ 6= 0,

1, if (µ, ε) = 0,

(3.31)

where Γ is the gamma function and

f = (s1 + s2)g
(
s1s2, s

2
1 + s2

2,m
)
,

fI = (s1 − s2)g
(
−s1s2, s

2
1 + s2

2,m
)
, fO = f + fI ,

for a unique analytic germ g.

Proof. (a) All the connection matrices between the fundamental solutions F•Ψ• can be deter-
mined from Lemmas 3.17 and 3.18.

(b) Denote σ : m̄ 7→ ¯̄m the continuation map from Lemma 3.18(a), and ρ : m̃ 7→ ˜̃m the
continuation map from Lemma 3.18(b). Hence,

√
ε ◦ σ =

√
ε, s1 ◦ σ = s1, s2 ◦ σ = eπis2, a ◦ σ = b, b ◦ σ = a,

s1√
ε
◦ ρ = s2√

ε
, s2√

ε
◦ ρ = s1√

ε
, a ◦ ρ = e−πia, b ◦ ρ = b.

One can easily verify that the functions κI , κO, κ of (3.29)–(3.31) satisfy κ = κO
κI

and the
identities

(3.23) : κO ◦ σ = κO =
κ(κ ◦ σ)e

s2√
ε̌
πi

2i sin s2√
ε̌
π

,

(3.25) : κI ◦ ρ = κI ,

(3.26) : 2 cos 2πQ = 2 cos 2πa− κ(κ ◦ ρ)e−2aπi,

using the standard reflection formula Γ(z)Γ(1− z) = π
sinπz . It follows from the Stirling formula:

Γ(1 + z) ∼
√

2πz
(
z
e

)z(
1 +O

(
1
z

))
in the sector at infinity,

where | arg z| < π − η for any 0 < η < π, and Lemma 3.13 that

lim
ε̌→0
m̌∈M̌

κI(m̌) = 1 and lim
(µ̌,ε̌)→0

m̌∈M̌

κO(m̌) = 1.

On the other hand if κI , κO, κ are some functions satisfying the assumptions of the propo-
sition, let κ′I , κ

′
O, κ′ be given by (3.29)–(3.31) with fI = fO = f = 0, then it follows that the

functions

fI := log
κI
κ′I
, fO := log

κO
κ′O

, f := log
κ

κ′
,

satisfy

fO = f + fI , fI ◦ ρ = fI , f ◦ ρ = −f, fO ◦ σ = fO,

f ◦ σ = fI , fI ◦ σ = f.
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This implies, in particular, that fO ◦ σ2 = fO = fO ◦ ρ2, hence that fO is non-ramified as
a function of (s1, s2), and therefore fO is an analytic function of (s1, s2). Since one can express

f =
1

2
(f − f ◦ ρ) =

1

2
(fO − fO ◦ ρ) and fI =

1

2
(fO + fO ◦ ρ),

they too are germs of analytic functions of (s1, s2). Moreover, for µ 6= 0, 0 = lim
ε̌→0

fI = lim
s1−s2→0

fI ,

so we can write

fI = (s1 − s2) · g, and f = (s1 + s2) · (g ◦ σ), fO = fI + f,

with g that is ρ-invariant, thus a germ of an analytic function of

s1s2 =
√
µ̌2 − ε̌ and s2

1 + s2
2 = 2µ̌,

which are algebraically independent and form a Hilbert basis of the space of polynomials of
(s1, s2) that are invariant to the action of ρ. �

Corollary 3.20. The determinants κ•(m̌) 6= 0 for m small, and lim
m→0
m̌∈M̌

κ•(m̌) = 1, • = O, I.

Proof. From the formulas (3.29) and (3.30) of Proposition 3.19 and Lemma 3.13. �

Remark 3.21. The set of points m̌ for which

s1√
ε̌
∈ −N∗, or

s2√
ε̌
∈ −N∗, or a ∈ ±Q− N∗, or b ∈ ±Q− N∗,

outlines a natural boundary for the set M̌.

3.3.3 Proofs of the main theorems

Let x̌(š,m) = š2 − µ̌(m), a one-to-one map from the ramified coordinate š to a ramified coor-
dinate x̌, be a lifting of the map x(s,m) = s2 − µ(m) (3.1). Then by Lemma 3.14 the ramified
images of ΩO, ΩI± in the x̌-coordinate cover for each (µ̌, ε̌) a full neighborhood of each singular
point x = ±

√
ε 6= −µ and of x = 0 if (µ, ε) = 0. Define X̌O(µ̌, ε̌), X̌I±(µ̌, ε̌), depending contin-

uously on m̌ ∈ M, as simply connected ramified extensions of these images, in such a way that
they agree with them near these singularities, are open away of the singularities, and the union
of their projections covers either all X, or X \ {−µ} if ε = µ2 6= 0.

Proof of Theorem 2.17. The fundamental solution of a system ∆(x,m) corresponding to the
fundamental solution Φ• = F•Ψ• of the associated system in the s-coordinate is given by

Y•(x̌, m̌) = S(s)V F•(š, m̌)Ψ•(š,m) = H•(x̌, m̌)S(s)VΨ•(š,m),

where H•(x̌, m̌) = S(s)V F•(š, m̌)V −1S(s)−1. The function Θ•(x̌,m) = θ•(š,m) (2.27) is
a branch of (3.6), chosen according to the Fig. 13.

The connection matrices between the fundamental solutions Y• on the different domains X̌•
in Fig. 2, are obtained from Fig. 11 and from the formulas (3.20) and (3.22). �

Proof of Proposition 2.19. This is a consequence of Lemma 3.2. �

Proof of Proposition 2.20. This is how the fundamental solution matrices Y•, • = O, I±,
are constructed. We have κO(m̌) = detYO(x̌, m̌) and κI(m̌) = detYI±(x̌, m̌). In the case of κO,
we know that κO(0) = 1 and κO(m̌) is non-vanishing because of its continuity in m̌ ∈ M̌. This
argument no longer works for κI , but we know that it is non-vanishing by Corollary 3.20. �
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Proof of Corollary 2.18. Since the fundamental solutions Y• = SV F•Ψ• of ∆(x,m) and
SV E•Ψ• of ∆̂(x,m) (see Section 3.1) are analytic away from the singularities x = ±

√
ε, the

gauge transformations (3.5)

T•(x̌, m̌) = S(s)V F•(š, m̌)E•(š, m̌)−1V −1S(s)−1, • = O, I

extend then on X̌•, • = O, I±, as normalizing transformation for the parametric system ∆(x,m):

T• ∈ GL2

(
B
(
X̌•
))
, T ∗•∆ = ∆̂. �

Proof of Theorem 2.6(a). Let ∆(x,m), ∆′(x,m) be two parametric families of systems, let
∆s(s,m), ∆′s(s,m) be their transforms (3.3), and let F•, F

′
• be the normalizing transformations

from Proposition (3.6) determined by the condition (3.13) with κ•, κ
′
•. Suppose that their

invariants γ = γ′ are the same. We want to show that the two families of systems ∆,∆′ are then
analytically equivalent. We know that κI(m̌) = 1 = κ′I(m̌) when ε̌ = 0, and κO(m̌) = 1 = κ′O(m̌)
when (µ̌, ε̌) = 0. Let δ(m̌), depending continuously on the parameter m̌ ∈ M̌, be such that

κ′O
κ′I

= δ2κO
κI
, δ(0) = 1.

The relation (3.26) implies that δ( ˜̃m) · δ(m̃) = 1. Put

F ′′O = δ−1F ′O, F ′′I = F ′I
(
δ−1 0
0 δ

)
.

They are also normalizing transformations for the system ∆′s: (F ′′• )∗∆′s = ∆′s. It is easily
verified that the connection matrices between the fundamental solutions F ′′•Ψ• are exactly the
same as those between the fundamental solutions F•Ψ• (with Ψ• as in Fig. 11), and one concludes
by Proposition 3.16. �

Proof of Theorem 2.21. (i) For ε(m) = 0, the transformation TI+,m converges to TO,m, i.e.,
|TI+,m(s)−TO,m(s)| → 0, s ∈ SI+,m, if and only if FI(·,m) converges to FO(·,m), which happens
if and only if the matrix C3(m)→ I.

(ii) To show that the transformation T2,m converges to TO,m, we need to show that the
corresponding transformation F2(·,m) converges to FO(·,m). It will be enough to show that the
difference of fundamental solutions F2ΨO−FOΨO converges to 0 for each fixed s. We know from
the proof of Lemma 3.18(a), Fig. 12, that FOΨO = F2ΨOA2C

−1
3 , where A2 is given by (3.27)

and A2C
−1
3 has been calculated in (3.28)

A2C
−1
3 =

(
κI −iκI

e2
e1

iκ e1e2
1−e22

κ 1
1−e22

)
, where ej = e

sjπi
√
ε , j = 1, 2.

We need that A2C
−1
3 → I, which happens if and only if e2

e1
→ 0 and e1e2 → 0 as ε(m)→ 0, i.e.,

Im
(
s2−s1√

ε

)
> 0 and Im

(
s2+s1√

ε

)
> 0. For µ = O(ε), we have s1 = ε

1
4 +O

(
ε

3
4

)
, s2 = ±iε

1
4 +O

(
ε

3
4

)
,

hence s2−s1√
ε

= −1∓i
s2

+ O
(
ε

1
4

)
, s2+s1√

ε
= −1±i

s2
+ O

(
ε

1
4

)
. Therefore the condition of convergence is

satisfied if arg s2 ∈
(
π
4 ,

3π
4

)
, i.e., if arg x2 ∈

(
π
2 ,

3π
2

)
. �
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