Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 092, 37 pages      arXiv:1705.05859      https://doi.org/10.3842/SIGMA.2019.092

Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators

Promit Ghosal
Department of Statistics, Columbia University, 1255 Amsterdam Avenue, New York, NY 10027, USA

Received September 14, 2018, in final form November 19, 2019; Published online November 26, 2019

Abstract
We study the correlation functions of the Pfaffian Schur process. Borodin and Rains [J. Stat. Phys. 121 (2005), 291-317] introduced the Pfaffian Schur process and derived its correlation functions using a Pfaffian analogue of the Eynard-Mehta theorem. We present here an alternative derivation of the correlation functions using Macdonald difference operators.

Key words: partitions; Pfaffian Schur process; Macdonald difference operators.

pdf (608 kb)   tex (47 kb)  

References

  1. Aggarwal A., Correlation functions of the Schur process through Macdonald difference operators, J. Combin. Theory Ser. A 131 (2015), 88-118, arXiv:1401.6979.
  2. Baik J., Barraquand G., Corwin I., Suidan T., Facilitated exclusion process, in Computation and Combinatorics in Dynamics, Stochastics and Control, Abel Symp., Vol. 13, Springer, Cham, 2018, 1-35, arXiv:1707.01923.
  3. Baik J., Barraquand G., Corwin I., Suidan T., Pfaffian Schur processes and last passage percolation in a half-quadrant, Ann. Probab. 46 (2018), 3015-3089, arXiv:1606.00525.
  4. Baik J., Rains E.M., Algebraic aspects of increasing subsequences, Duke Math. J. 109 (2001), 1-65, arXiv:math.CO/9905083.
  5. Barraquand G., Borodin A., Corwin I., Half-space Macdonald processes, arXiv:1802.08210.
  6. Barraquand G., Borodin A., Corwin I., Wheeler M., Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process, Duke Math. J. 167 (2018), 2457-2529, arXiv:1704.04309.
  7. Betea D., Correlations for symplectic and orthogonal Schur measures, arXiv:1804.08495.
  8. Betea D., Boutillier C., Bouttier J., Chapuy G., Corteel S., Vuletić M., Perfect sampling algorithms for Schur processes, Markov Process. Related Fields 24 (2018), 381-418, arXiv:1407.3764.
  9. Betea D., Bouttier J., Nejjar P., Vuletić M., The free boundary Schur process and applications I, Ann. Henri Poincar'e 19 (2018), 3663-3742, arXiv:1704.05809.
  10. Betea D., Wheeler M., Refined Cauchy and Littlewood identities, plane partitions and symmetry classes of alternating sign matrices, J. Combin. Theory Ser. A 137 (2016), 126-165, arXiv:1402.0229.
  11. Borodin A., Schur dynamics of the Schur processes, Adv. Math. 228 (2011), 2268-2291, arXiv:1001.3442.
  12. Borodin A., Corwin I., Macdonald processes, Probab. Theory Related Fields 158 (2014), 225-400, arXiv:1111.4408.
  13. Borodin A., Corwin I., Discrete time $q$-TASEPs, Int. Math. Res. Not. 2015 (2015), 499-537, arXiv:1305.2972.
  14. Borodin A., Corwin I., Ferrari P., Free energy fluctuations for directed polymers in random media in $1+1$ dimension, Comm. Pure Appl. Math. 67 (2014), 1129-1214, arXiv:1204.1024.
  15. Borodin A., Corwin I., Gorin V., Shakirov S., Observables of Macdonald processes, Trans. Amer. Math. Soc. 368 (2016), 1517-1558, arXiv:1306.0659.
  16. Borodin A., Corwin I., Remenik D., Log-gamma polymer free energy fluctuations via a Fredholm determinant identity, Comm. Math. Phys. 324 (2013), 215-232, arXiv:1206.4573.
  17. Borodin A., Corwin I., Sasamoto T., From duality to determinants for $q$-TASEP and ASEP, Ann. Probab. 42 (2014), 2314-2382, arXiv:1207.5035.
  18. Borodin A., Ferrari P.L., Anisotropic growth of random surfaces in $2+1$ dimensions, Comm. Math. Phys. 325 (2014), 603-684, arXiv:0804.3035.
  19. Borodin A., Gorin V., General $\beta$-Jacobi corners process and the Gaussian free field, Comm. Pure Appl. Math. 68 (2015), 1774-1844, arXiv:1305.3627.
  20. Borodin A., Gorin V., Lectures on integrable probability, in Probability and Statistical Physics in St. Petersburg, Proc. Sympos. Pure Math., Vol. 91, Amer. Math. Soc., Providence, RI, 2016, 155-214, arXiv:1212.3351.
  21. Borodin A., Okounkov A., A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory 37 (2000), 386-396, arXiv:math.CA/9907165.
  22. Borodin A., Olshanski G., Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, Ann. of Math. 161 (2005), 1319-1422, arXiv:math.RT/0109194.
  23. Borodin A., Petrov L., Nearest neighbor Markov dynamics on Macdonald processes, Adv. Math. 300 (2016), 71-155, arXiv:1305.5501.
  24. Borodin A., Rains E.M., Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys. 121 (2005), 291-317, arXiv:math-ph/0409059.
  25. Corwin I., Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class, in Proceedings of the International Congress of Mathematicians - Seoul 2014, Vol. III, Kyung Moon Sa, Seoul, 2014, 1007-1034, arXiv:1403.6877.
  26. Corwin I., Petrov L., The $q$-PushASEP: a new integrable model for traffic in $1+1$ dimension, J. Stat. Phys. 160 (2015), 1005-1026, arXiv:1308.3124.
  27. Forrester P.J., Nagao T., Rains E.M., Correlation functions for random involutions, Int. Math. Res. Not. 2006 (2006), 89796, 35 pages, arXiv:math.CO/0503074.
  28. Gorin V., Shkolnikov M., Multilevel Dyson Brownian motions via Jack polynomials, Probab. Theory Related Fields 163 (2015), 413-463, arXiv:1401.5595.
  29. Johansson K., Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), 277-329, arXiv:math.PR/0206208.
  30. Lassalle M., A short proof of generalized Jacobi-Trudi expansions for Macdonald polynomials, in Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., Vol. 417, Amer. Math. Soc., Providence, RI, 2006, 271-280, arXiv:math.CO/0401032.
  31. Lassalle M., Schlosser M., Inversion of the Pieri formula for Macdonald polynomials, Adv. Math. 202 (2006), 289-325, arXiv:math.CO/0402127.
  32. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015.
  33. Okounkov A., Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), 57-81, arXiv:math.RT/9907127.
  34. Okounkov A., The uses of random partitions, in XIVth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, 379-403, arXiv:math-ph/0309015.
  35. Okounkov A., Reshetikhin N., Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003), 581-603, arXiv:math.CO/0107056.
  36. Rains E.M., Correlation functions for symmetrized increasing subsequences, arXiv:math.CO/0006097.
  37. Sasamoto T., Imamura T., Fluctuations of the one-dimensional polynuclear growth model in half-space, J. Stat. Phys. 115 (2004), 749-803, arXiv:cond-mat/0307011.
  38. Schur J., Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
  39. Stembridge J.R., Nonintersecting paths, Pfaffians, and plane partitions, Adv. Math. 83 (1990), 96-131.
  40. Sundquist T., Two variable Pfaffian identities and symmetric functions, J. Algebraic Combin. 5 (1996), 135-148.
  41. Warnaar S.O., Bisymmetric functions, Macdonald polynomials and $\mathfrak{sl}_3$ basic hypergeometric series, Compos. Math. 144 (2008), 271-303, arXiv:math.CO/0511333.

Previous article  Next article  Contents of Volume 15 (2019)