Processing math: 100%

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 078, 16 pages      arXiv:1811.03613      https://doi.org/10.3842/SIGMA.2019.078

The Transition Function of G2 over S6

Ádám Gyenge
Mathematical Institute, University of Oxford, UK

Received May 23, 2019, in final form September 26, 2019; Published online October 09, 2019

Abstract
We obtain explicit formulas for the trivialization functions of the SU(3) principal bundle G2S6 over two affine charts. We also calculate the explicit transition function of this fibration over the equator of the six-sphere. In this way we obtain a new proof of the known fact that this fibration corresponds to a generator of π5(SU(3)).

Key words: G2; six-sphere; octonions; fibration; transition function.

pdf (356 kb)   tex (19 kb)  

References

  1. Baez J.C., The octonions, Bull. Amer. Math. Soc. 39 (2002), 145-205, arXiv:math.RA/0105155.
  2. Bott R., The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337.
  3. Chaves L.M., Rigas A., Complex reflections and polynomial generators of homotopy groups, J. Lie Theory 6 (1996), 19-22.
  4. Ehresmann C., Sur les variétés presque complexes, in Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, Vol. 2, Amer. Math. Soc., Providence, R.I., 1952, 412-419.
  5. Lamont P.J.C., Arithmetics in Cayley's algebra, Proc. Glasgow Math. Assoc. 6 (1963), 99-106.
  6. Lee J.M., Introduction to smooth manifolds, Graduate Texts in Mathematics, Vol. 218, Springer-Verlag, New York, 2003.
  7. Pirisi R., Talpo M., On the motivic class of the classifying stack of G2 and the spin groups, Int. Math. Res. Not. 2019 (2019), 3265-3298, arXiv:1702.02649.
  8. Postnikov M., Lectures in geometry. Semester V: Lie groups and Lie algebras, Mir, Moscow, 1986.
  9. Püttmann T., Rigas A., Presentations of the first homotopy groups of the unitary groups, Comment. Math. Helv. 78 (2003), 648-662, arXiv:math.AT/0301192.

Previous article  Next article  Contents of Volume 15 (2019)