Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 069, 42 pages      arXiv:1903.10573      https://doi.org/10.3842/SIGMA.2019.069

Separability and Symmetry Operators for Painlevé Metrics and their Conformal Deformations

Thierry Daudé a, Niky Kamran b and Francois Nicoleau c
a) Département de Mathématiques, UMR CNRS 8088, Université de Cergy-Pontoise, 95302 Cergy-Pontoise, France
b) Department of Mathematics and Statistics, McGill University, Montreal, QC, H3A 2K6, Canada
c) Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, 2 Rue de la Houssinière BP 92208, F-44322 Nantes Cedex 03, France

Received March 27, 2019, in final form September 05, 2019; Published online September 16, 2019

Abstract
Painlevé metrics are a class of Riemannian metrics which generalize the well-known separable metrics of Stäckel to the case in which the additive separation of variables for the Hamilton-Jacobi equation is achieved in terms of groups of independent variables rather than the complete orthogonal separation into ordinary differential equations which characterizes the Stäckel case. Painlevé metrics in dimension $n$ thus admit in general only $r<n$ linearly independent Poisson-commuting quadratic first integrals of the geodesic flow, where $r$ denotes the number of groups of variables. Our goal in this paper is to carry out for Painlevé metrics the generalization of the analysis, which has been extensively performed in the Stäckel case, of the relation between separation of variables for the Hamilton-Jacobi and Helmholtz equations, and of the connections between quadratic first integrals of the geodesic flow and symmetry operators for the Laplace-Beltrami operator. We thus obtain the generalization for Painlevé metrics of the Robertson separability conditions for the Helmholtz equation which are familiar from the Stäckel case, and a formulation thereof in terms of the vanishing of the off-block diagonal components of the Ricci tensor, which generalizes the one obtained by Eisenhart for Stäckel metrics. We also show that when the generalized Robertson conditions are satisfied, there exist $r<n$ linearly independent second-order differential operators which commute with the Laplace-Beltrami operator and which are mutually commuting. These operators admit the block-separable solutions of the Helmholtz equation as formal eigenfunctions, with the separation constants as eigenvalues. Finally, we study conformal deformations which are compatible with the separation into blocks of variables of the Helmholtz equation for Painlevé metrics, leading to solutions which are $R$-separable in blocks. The paper concludes with a set of open questions and perspectives.

Key words: Painlevé metrics; Killing tensors; Helmholtz equation; $R$-separability; symmetry operators; Robertson conditions.

pdf (568 kb)   tex (43 kb)  

References

  1. Benenti S., Separability in Riemannian manifolds, SIGMA 12 (2016), 013, 21 pages, arXiv:1512.07833.
  2. Benenti S., Chanu C., Rastelli G., Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger equation. I. The completeness and Robertson conditions, J. Math. Phys. 43 (2002), 5183-5222.
  3. Benenti S., Chanu C., Rastelli G., Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger equation. II. First integrals and symmetry operators, J. Math. Phys. 43 (2002), 5223-5253.
  4. Benenti S., Chanu C., Rastelli G., Variable-separation theory for the null Hamilton-Jacobi equation, J. Math. Phys. 46 (2005), 042901, 29 pages.
  5. Bolsinov A.V., Matveev V.S., Geometrical interpretation of Benenti systems, J. Geom. Phys. 44 (2003), 489-506.
  6. Bolsinov A.V., Matveev V.S., Local normal forms for geodesically equivalent pseudo-Riemannian metrics, Trans. Amer. Math. Soc. 367 (2015), 6719-6749, arXiv:1301.2492.
  7. Carter B., Killing tensor quantum numbers and conserved currents in curved space, Phys. Rev. D 16 (1977), 3395-3414.
  8. Chanu C., Rastelli G., Fixed energy $R$-separation for Schrödinger equation, Int. J. Geom. Methods Mod. Phys. 3 (2006), 489-508, arXiv:nlin.SI/0512033.
  9. Chanu C., Rastelli G., Eigenvalues of Killing tensors and separable webs on Riemannian and pseudo-Riemannian manifolds, SIGMA 3 (2007), 021, 21 pages, arXiv:nlin.SI/0612042.
  10. Chanu C.M., Rastelli G., Block-separation of variables: a form of partial separation for natural Hamiltonians, SIGMA 15 (2019), 013, 22 pages, arXiv:1808.01889.
  11. Daudé T., Kamran N., Nicoleau F., Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces, Inverse Problems 31 (2015), 125009, 37 pages, arXiv:1409.6229.
  12. Daudé T., Kamran N., Nicoleau F., Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets, Ann. Inst. Fourier (Grenoble) 69 (2019), 119-170, arXiv:1510.06559.
  13. Daudé T., Kamran N., Nicoleau F., On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré 20 (2019), 859-887, arXiv:1701.09056.
  14. Daudé T., Kamran N., Nicoleau F., The anisotropic Calderón problem for singular metrics of warped product type: the borderline between uniqueness and invisibility, J. Spectr. Theory, to appear, arXiv:1805.05627.
  15. Daudé T., Kamran N., Nicoleau F., On non-uniqueness for the anisotropic Calderón problem with partial data, arXiv:1901.10467.
  16. Daudé T., Kamran N., Nicoleau F., The anisotropic Calderón problem on 3-dimensional conformally Stäckel manifolds, arXiv:1909.01669.
  17. Di Pirro G., Sugli integrali primi quadratici delle equazioni della mecanica, Annali di Mat. 24 (1896), 315-334.
  18. Eisenhart L.P., Separable systems of Stackel, Ann. of Math. 35 (1934), 284-305.
  19. Frolov V., Krtous P., Kubiznak D., Black holes, hidden symmetries and complete integrability, Living Rev. Relativity 20 (2017), 6, 109 pages, arXiv:1705.05482.
  20. Gilbarg D., Trudinger N.S.,Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
  21. Gobin D., Inverse scattering at fixed energy on three-dimensional asymptotically hyperbolic Stäckel manifolds, Publ. Res. Inst. Math. Sci. 54 (2018), 245-316, arXiv:1605.05115.
  22. Guillarmou C., Tzou L., The Calderón inverse problem in two dimensions, in Inverse Problems and Applications: Inside Out. II, Math. Sci. Res. Inst. Publ., Vol. 60, Cambridge University Press, Cambridge, 2013, 119-166.
  23. Hauser I., Malhiot R.J., Forms of all spacetime metrics which admit $[(11) (11)]$ Killing tensors with nonconstant eigenvalues, J. Math. Phys. 19 (1978), 187-194.
  24. Houri T., Kubizň'ak D., Warnick C.M., Yasui Y., Local metrics admitting a principal Killing-Yano tensor with torsion, Classical Quantum Gravity 29 (2012), 165001, 30 pages, arXiv:1203.0393.
  25. Kalnins E.G., Miller Jr. W., Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations, SIAM J. Math. Anal. 11 (1980), 1011-1026.
  26. Kalnins E.G., Miller Jr. W., Killing tensors and nonorthogonal variable separation for Hamilton-Jacobi equations, SIAM J. Math. Anal. 12 (1981), 617-629.
  27. Kalnins E.G., Miller Jr. W., The theory of orthogonal $R$-separation for Helmholtz equations, Adv. Math. 51 (1984), 91-106.
  28. Katchalov A., Kurylev Y., Lassas M., Inverse boundary spectral problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.
  29. Kenig C., Salo M., Recent progress in the Calderón problem with partial data, in Inverse Problems and Applications, Contemp. Math., Vol. 615, Amer. Math. Soc., Providence, RI, 2014, 193-222, arXiv:1302.4218.
  30. Kiosak V., Matveev V.S., Complete Einstein metrics are geodesically rigid, Comm. Math. Phys. 289 (2009), 383-400, arXiv:0806.3169.
  31. Kiyohara K., Two classes of Riemannian manifolds whose geodesic flows are integrable, Mem. Amer. Math. Soc. 130 (1997), viii+143 pages.
  32. Lassas M., Uhlmann G., On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup. (4) 34 (2001), 771-787.
  33. Lee J.M., Uhlmann G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), 1097-1112.
  34. Matveev V.S., Beltrami problem, Lichnerowicz-Obata conjecture and applications of integrable systems in differential geometry, Tr. Semin. Vektorn. Tenzorn. Anal. 26 (2005), 214-238.
  35. Matveev V.S., Topalov P.J., Quantum integrability of Beltrami-Laplace operator as geodesic equivalence, Math. Z. 238 (2001), 833-866.
  36. Miller Jr. W., Mechanisms for variable separation in partial differential equations and their relationship to group theory, in Symmetries and Nonlinear Phenomena (Paipa, 1988), CIF Ser., Vol. 9, World Sci. Publ., Teaneck, NJ, 1988, 188-221.
  37. Painlevé P., Sur les intégrales quadratiques des équations de la dynamique, C. R. Acad. Sci. Paris 124 (1897), 221-224.
  38. Perelomov A.M., Integrable systems of classical mechanics and Lie algebras Vol. I, Birkhäuser Verlag, Basel, 1990.
  39. Robertson H.P., Bemerkung über separierbare Systeme in der Wellenmechanik, Math. Ann. 98 (1928), 749-752.
  40. Salo M., The Calderón problem on Riemannian manifolds, in Inverse problems and applications: inside out. II, Math. Sci. Res. Inst. Publ., Vol. 60, Cambridge University Press, Cambridge, 2013, 167-247.
  41. Stäckel P., Sur les problèmes de la dynamique, qui se réduisent a des quadratures, C. R. Acad. Sci. Paris 124 (1897), 221-224.
  42. Taylor M.E., Partial differential equations. I. Basic theory, Applied Mathematical Sciences, Vol. 115, Springer-Verlag, New York, 1996.
  43. Topalov P., Integrability criterion of geodesical equivalence. Hierarchies, Acta Appl. Math. 59 (1999), 271-298.
  44. Topalov P., Commutative conservation laws for geodesic flows of metrics admitting projective symmetry, Math. Res. Lett. 9 (2002), 65-72.
  45. Topalov P., Matveev V.S., Geodesic equivalence via integrability, Geom. Dedicata 96 (2003), 91-115, arXiv:math.DG/9911062.
  46. Uhlmann G., Electrical impedance tomography and Calderón's problem, Inverse Problems 25 (2009), 123011, 39 pages.
  47. Uhlmann G., Inverse problems: seeing the unseen, Bull. Math. Sci. 4 (2014), 209-279.
  48. Woodhouse N.M.J., Killing tensors and the separation of the Hamilton-Jacobi equation, Comm. Math. Phys. 44 (1975), 9-38.

Previous article  Next article  Contents of Volume 15 (2019)