Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 15 (2019), 054, 22 pages      arXiv:1812.05535

Interpolations between Jordanian Twists Induced by Coboundary Twists

Andrzej Borowiec a, Daniel Meljanac b, Stjepan Meljanac c and Anna Pachoł d
a) Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna 9, 50-204 Wroclaw, Poland
b) Division of Materials Physics, Ruder Bošković Institute, Bijenička c.54, HR-10002 Zagreb, Croatia
c) Division of Theoretical Physic, Ruder Bošković Institute, Bijenička c.54, HR-10002 Zagreb, Croatia
d) Queen Mary, University of London, Mile End Rd., London E1 4NS, UK

Received February 15, 2019, in final form July 11, 2019; Published online July 21, 2019

We propose a new generalisation of the Jordanian twist (building on the previous idea from [Meljanac S., Meljanac D., Pachoł A., Pikutić D., J. Phys. A: Math. Theor. 50 (2017), 265201, 11 pages]). Obtained this way, the family of the Jordanian twists allows for interpolation between two simple Jordanian twists. This new version of the twist provides an example of a new type of star product and the realization for noncommutative coordinates. Real forms of new Jordanian deformations are also discussed. Exponential formulae, used to obtain coproducts and star products, are presented with details.

Key words: twist deformation; Hopf algebras; coboundary twists; star-products; real forms.

pdf (514 kb)   tex (30 kb)  


  1. Aschieri P., Borowiec A., Pachoł A., Observables and dispersion relations in $\kappa$-Minkowski spacetime, J. High Energy Phys. 2017 (2017), no. 10, 152, 27 pages, arXiv:1703.08726.
  2. Ballesteros A., Bruno N.R., Herranz F.J., A non-commutative Minkowskian spacetime from a quantum AdS algebra, Phys. Lett. B 574 (2003), 276-282, arXiv:hep-th/0306089.
  3. Ballesteros A., Bruno N.R., Herranz F.J., Quantum (anti)de Sitter algebras and generalizations of the $\kappa$-Minkowski space, in Symmetry Methods in Physics, Editors C. Burdik, O. Navratil, S. Pošta, Joint Institute for Nuclear Research, Dubna, 2008, 1-20, arXiv:hep-th/040929.
  4. Borowiec A., Gupta K.S., Meljanac S., Pachoł A., Constraints on the quantum gravity scale from $\kappa$-Minkowski spacetime, Europhys. Lett. 92 (2010), 20006, 6 pages, arXiv:0912.3299.
  5. Borowiec A., Jurić T., Meljanac S., Pachoł A., Central tetrads and quantum spacetimes, Int. J. Geom. Methods Mod. Phys. 13 (2016), 1640005, 18 pages, arXiv:1602.01292.
  6. Borowiec A., Lukierski J., Tolstoy V.N., Basic twist quantization of $\mathfrak{osp}(1|2)$ and $\kappa$-deformation of $D = 1$ superconformal mechanics, Modern Phys. Lett. A 18 (2003), 1157-1169, arXiv:hep-th/0301033.
  7. Borowiec A., Lukierski J., Tolstoy V.N., Basic quantizations of $D=4$ Euclidean, Lorentz, Kleinian and quaternionic $\mathfrak{o}^\star(4)$ symmetries, J. High Energy Phys. 2017 (2017), no. 11, 187, 35 pages, arXiv:1708.09848.
  8. Borowiec A., Pachoł A., $\kappa$-Minkowski spacetime as the result of Jordanian twist deformation, Phys. Rev. D 79 (2009), 045012, 11 pages, arXiv:0812.0576.
  9. Borowiec A., Pachoł A., $\kappa$-Minkowski spacetimes and DSR algebras: fresh look and old problems, SIGMA 6 (2010), 086, 31 pages, arXiv:1005.4429.
  10. Borowiec A., Pachoł A., Twisted bialgebroids versus bialgebroids from a Drinfeld twist, J. Phys. A: Math. Theor. 50 (2017), 055205, 17 pages, arXiv:1603.09280.
  11. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
  12. Comtet L., Advanced combinatorics. The art of finite and infinite expansions,D. Reidel Publishing Co., Dordrecht, 1974.
  13. Dimitrijević M., Jonke L., Pachoł A., Gauge theory on twisted $\kappa$-Minkowski: old problems and possible solutions, SIGMA 10 (2014), 063, 22 pages, arXiv:1403.1857.
  14. Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
  15. Etingof P., Kazhdan D., Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), 1-41, arXiv:q-alg/9506005.
  16. Etingof P., Schiffmann O., Lectures on quantum groups, 2nd ed., Lectures in Mathematical Physics, International Press, Somerville, MA, 2002.
  17. Fiore G., On second quantization on noncommutative spaces with twisted symmetries, J. Phys. A: Math. Theor. 43 (2010), 155401, 39 pages, arXiv:0811.0773.
  18. Govindarajan T.R., Gupta K.S., Harikumar E., Meljanac S., Meljanac D., Twisted statistics in $\kappa$-Minkowski spacetime, Phys. Rev. D 77 (2008), 105010, 6 pages, arXiv:0802.1576.
  19. Herranz F.J., New quantum (anti)de Sitter algebras and discrete symmetries, Phys. Lett. B 543 (2001), 89-97, arXiv:hep-ph/0205190.
  20. Hoare B., van Tongeren S.J., On jordanian deformations of ${\rm AdS}_5$ and supergravity, J. Phys. A: Math. Theor. 49 (2016), 434006, 22 pages, arXiv:1605.03554.
  21. Jurić T., Kovačević D., Meljanac S., $\kappa$-deformed phase space, Hopf algebroid and twisting, SIGMA 10 (2014), 106, 18 pages, arXiv:1402.0397.
  22. Jurić T., Meljanac S., Pikutić D., Realizations of $\kappa$-Minkowski space, Drinfeld twists and related symmetry algebras, Eur. Phys. J. C Part. Fields 75 (2015), 528, 16 pages, arXiv:1506.04955.
  23. Jurić T., Meljanac S., Štrajn R., $\kappa$-Poincaré-Hopf algebra and Hopf algebroid structure of phase space from twist, Phys. Lett. A 377 (2013), 2472-2476, arXiv:1303.0994.
  24. Jurić T., Meljanac S., Štrajn R., Twists, realizations and Hopf algebroid structure of $\kappa$-deformed phase space, Internat. J. Modern Phys. A 29 (2014), 1450022, 32 pages, arXiv:1305.3088.
  25. Kawaguchi I., Matsumoto T., Yoshida K., Jordanian deformations of the ${\rm AdS}_5 \times {\rm S}_5$ superstring, J. High Energy Phys. 2014 (2014), no. 4, 153, 20 pages, arXiv:1401.4855.
  26. Kawaguchi I., Matsumoto T., Yoshida K., A Jordanian deformation of AdS space in type IIB supergravity, J. High Energy Phys. 2014 (2014), no. 6, 146, 26 pages, arXiv:1402.6147.
  27. Kovačević D., Meljanac S., Kappa-Minkowski spacetime, kappa-Poincaré Hopf algebra and realizations, J. Phys. A: Math. Theor. 45 (2012), 135208, 24 pages, arXiv:1110.0944.
  28. Kovačević D., Meljanac S., Pachoł A., Štrajn R., Generalized Poincaré algebras, Hopf algebras and $\kappa$-Minkowski spacetime, Phys. Lett. B 711 (2012), 122-127, arXiv:1202.3305.
  29. Kovačević D., Meljanac S., Samsarov A., Škoda Z., Hermitian realizations of $\kappa$-Minkowski space-time, Int. J. Geom. Methods Mod. Phys. 30 (2015), 1550019, 26 pages, arXiv:1307.5772.
  30. Lukierski J., Nowicki A., Ruegg H., New quantum Poincaré algebra and $\kappa$-deformed field theory, Phys. Lett. B 293 (1992), 344-352.
  31. Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., $q$-deformation of Poincaré algebra, Phys. Lett. B 264 (1991), 331-338.
  32. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  33. Mansour T., Schork M., Commutation relations, normal ordering, and Stirling numbers, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2016.
  34. Matsumoto T., Yoshida K., Lunin-Maldacena backgrounds from the classical Yang-Baxter equation - towards the gravity/CYBE correspondence, J. High Energy Phys. 2014 (2014), no. 6, 135, 16 pages, arXiv:1404.1838.
  35. Matsumoto T., Yoshida K., Yang-Baxter deformations and string dualities, J. High Energy Phys. 2015 (2015), no. 3, 137, 21 pages, arXiv:1412.3658.
  36. Meljanac D., Meljanac S., Mignemi S., Štrajn R., $\kappa$-deformed phase spaces, Jordanian twists, Lorentz-Weyl algebra and dispersion relations, Phys. Rev. D 99 (2019), 126012, 12 pages, arXiv:1903.08679.
  37. Meljanac D., Meljanac S., Pikutić D., Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries, Eur. Phys. J. C Part. Fields 77 (2017), 830, 12 pages, arXiv:1709.04745.
  38. Meljanac S., Krešić-Jurić S., Differential structure on $\kappa$-Minkowski space, and $\kappa$-Poincaré algebra, Internat. J. Modern Phys. A 26 (2011), 3385-3402, arXiv:1004.4647.
  39. Meljanac S., Krešić-Jurić S., Stojić M., Covariant realizations of kappa-deformed space, Eur. Phys. J. C Part. Fields 51 (2007), 229-240, arXiv:hep-th/0702215.
  40. Meljanac S., Meljanac D., Mercati F., Pikutić D., Noncommutative spaces and Poincaré symmetry, Phys. Lett. B 766 (2017), 181-185, arXiv:1610.06716.
  41. Meljanac S., Meljanac D., Pachoł A., Pikutić D., Remarks on simple interpolation between Jordanian twists, J. Phys. A: Math. Theor. 50 (2017), 265201, 11 pages, arXiv:1612.07984.
  42. Meljanac S., Meljanac D., Samsarov A., Stojić M., Lie algebraic deformations of Minkowski space with Poincaré algebra, arXiv:0909.1706.
  43. Meljanac S., Meljanac D., Samsarov A., Stojić M., $\kappa$-deformed Snyder spacetime, Modern Phys. Lett. A 25 (2010), 579-590, arXiv:0912.5087.
  44. Meljanac S., Meljanac D., Samsarov A., Stojić M., Kappa Snyder deformations of Minkowski spacetime, realizations and Hopf algebra, Phys. Rev. D 83 (2011), 065009, 16 pages, arXiv:1102.1655.
  45. Meljanac S., Pachoł A., Pikutić D., Twisted conformal algebra related to $\kappa$-Minkowski space, Phys. Rev. D 92 (2015), 105015, 8 pages, arXiv:1509.02115.
  46. Meljanac S., Samsarov A., Stojić M., Gupta K.S., $\kappa$-Minkowski spacetime and the star product realizations, Eur. Phys. J. C Part. Fields 53 (2008), 295-309, arXiv:0705.2471.
  47. Meljanac S., Stojić M., New realizations of Lie algebra kappa-deformed Euclidean space, Eur. Phys. J. C Part. Fields 47 (2006), 531-539, arXiv:hep-th/0605133.
  48. Meljanac S., Škoda Z., Svrtan D., Exponential formulas and Lie algebra type star products, SIGMA 8 (2012), 013, 15 pages, arXiv:1006.0478.
  49. Ogievetsky O., Hopf structures on the Borel subalgebra of $\mathfrak{sl}(2)$, Rend. Circ. Mat. Palermo (2) Suppl. (1994), 185-199.
  50. Pachoł A., Vitale P., $\kappa$-Minkowski star product in any dimension from symplectic realization, J. Phys. A: Math. Theor. 48 (2015), 445202, 16 pages, arXiv:1507.03523.
  51. Tolstoy V.N., Chains of extended Jordanian twists for Lie superalgebras, arXiv:math.QA/0402433.
  52. Tolstoy V.N., Quantum deformations of relativistic symmetries, arXiv:0704.0081.
  53. Tolstoy V.N., Multiparameter quantum deformations of Jordanian type for Lie superalgebras, in Differential Geometry and Physics, Nankai Tracts in Mathematics, Vol. 10, World Sci. Publ., Hackensack, NJ, 2008, 443-452, arXiv:math.QA/0701079.
  54. Tolstoy V.N., Twisted quantum deformations of Lorentz and Poincaré algebras, Bulg. J. Phys. (2008), suppl. 1, 441-459, arXiv:0712.3962.
  55. van Tongeren S.J., Yang-Baxter deformations, AdS/CFT, and twist-noncommutative gauge theory, Nuclear Phys. B 904 (2016), 148-175, arXiv:1506.01023.

Previous article  Next article  Contents of Volume 15 (2019)