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Abstract. Positive definite functions on spheres have received an increasing interest in
many branches of mathematics and statistics. In particular, the Schoenberg sequences in
the spectral representation of positive definite functions have been studied by several mathe-
maticians in the last years. This paper provides a set of relations between Schoenberg
sequences defined over real as well as complex spheres of different dimensions. We illustrate
our findings describing an application to strict positive definiteness.
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1 Introduction

Positive definite functions on real and complex spheres have a long history, that starts with
the seminal paper by Schoenberg [41]. Positive definiteness is crucial to many branches of
mathematical analysis [4, 5, 9, 17, 21, 22, 23, 24, 33, 34, 36, 41] and statistics [3, 7, 10, 11, 12,
13, 14, 18, 25, 26, 27, 28, 29, 30, 31, 38, 40]. Recent reviews on positive definite functions on
either spheres or product spaces involving spheres can be found in [19] and in [39] as well.

Fourier analysis on spheres is related to the so called Schoenberg sequences (also called se-
quences of Schoenberg coefficients in [15]) that are related to the dimension where any positive
definite function on real or complex spheres is defined. There has been a recent interest on
Schoenberg sequences, especially after the list of research problems in [19] and in [39]. Recur-
sive relations between Schoenberg coefficients on d-dimensional spheres have been first proposed
by [19]. Fiedler [16] has then solved an open problem in [19], related to other types of recur-
sions involving Schoenberg coefficients. Ziegel [44] has used Schoenberg sequences to find the
convolution roots of positive definite functions on spheres and illustrated the differentiability
properties of positive definite functions on spheres through their Schoenberg sequences in [42].
Recently, Arafat et al. [2] have solved Gneiting’s research problem number 3 making extensive
use of Schoenberg sequences. Projections from Hilbert into finite-dimensional spheres have been
considered in [38]. Finally, Schoenberg sequences have been shown to be central to the study of
geometric properties of Gaussian fields on spheres [29] or spheres cross time [14].

Literature on complex spheres has been sparse. After the tour de force in [35] there has been
a recent interest on complex spheres as reported from [6] and in [32].
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This paper is about Schoenberg sequences on spheres of Rd and Cq, respectively. Specifically,
we show recursive relations that have been lacking from the previously mentioned literature.
Section 2 deals with real-valued d-dimensional spheres. Section 3 is instead related to complex
spheres. Some implications in terms of strict positive definiteness are provided in Section 4. The
paper ends with a discussion.

2 Schoenberg sequences on real spheres

2.1 Background and notation

For a positive integer d, let Sd =
{
x ∈ Rd+1, ‖x‖ = 1

}
denote the d-dimensional unit sphere

embedded in Rd+1, with ‖ · ‖ being the Euclidean norm. We define the great-circle distance
θ : Sd × Sd → [0, π] as the continuous mapping defined through

θ(x1,x2) = arccos
(
x>1 x2

)
∈ [0, π],

for x1,x2 ∈ Sd, where > is the transpose operator. A mapping C : Sd × Sd → R that satisfies

n∑
i,j=1

cicjC(xi,xj) ≥ 0

for all n ≥ 1, distinct points x1,x2, . . . ,xn on Sd and real numbers c1, . . . , cn, is called positive
definite. Further, if the inequality is strict, unless the vector (c1, . . . , cn)> is the zero vector,
then it is called strictly positive definite (see [8] and references therein). If, in addition,

C(x1,x2) = ψ(θ(x1,x2)), xi ∈ Sd, i = 1, 2, (2.1)

for some mapping ψ : [0, π] → R, then C is called a geodesically isotropic covariance by [39].
With no loss of generality, we assume through the paper that the function ψ is continuous along
with the normalization ψ(0) = 1.

Gneiting [19] calls Ψd the class of continuous functions ψ : [0, π] → R with ψ(0) = 1 such
that the function C in equation (2.1) is positive definite. The inclusions Ψd ⊃ Ψd+1, d ≥ 1, are
known to be strict. Following [41], for every continuous function ψ : [0, π] → R with ψ(0) = 1,
and every integer d ≥ 2, define

bn,d = κ(n, d)

∫ π

0
ψ(θ)C(d−1)/2

n (cos θ) (sin θ)d−1 dθ, (2.2)

where, for any λ > 0, Cλn denotes the n-th Gegenbauer polynomial of order λ [1], and

κ(n, d) =
(2n+ d− 1)(Γ((d− 1)/2)2

23−dπΓ(d− 1)
. (2.3)

Moreover, we define

b0,1 =
1

π

∫ π

0
ψ(θ)dθ, bn,1 =

2

π

∫ π

0
cos(nθ)ψ(θ)dθ, n ≥ 1. (2.4)

Note that in the cases d = 1 (the circle) and d = 2 (the unit sphere of R3), Gegenbauer
polynomials simplify to Chebyshev and Legendre polynomials [1], respectively.

The coefficient sequences {bn,d}∞n=0 play a crucial role in the spectral representations for
positive definite functions on spheres, which are the equivalent of Bochner and Schoenberg’s
theorems in Euclidean spaces (see [15] with the references therein) and are provided by [41],
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who shows that a mapping ψ : [0, π]→ R belongs to the class Ψd if and only if it can be uniquely
written as

ψ(θ) =
∞∑
n=0

bn,dc
(d−1)/2
n (cos θ), θ ∈ [0, π], (2.5)

where cλn denotes the normalized λ-Gegenbauer polynomial of degree n, namely,

cλn(u) =
Cλn(u)

Cλn(1)
, u ∈ [−1, 1],

and {bn,d}∞n=0 is a probability mass sequence. The series (2.5) is known to be uniformly con-
vergent. We follow [15] when calling the sequence {bn,d}∞n=0 in (2.5) the d-Schoenberg sequence
of coefficients, to emphasize the dependence on the index d in the class Ψd. Accordingly, we
say that (ψ, {bn,d}) is a uniquely determined d-Schoenberg pair if ψ belongs to the class Ψd and
admits the expansion (2.5) with d-Schoenberg sequence {bn,d}∞n=0.

The following recursive relations among the coefficients bn,d and bn,d+2 attached to a d-
Schoenberg pair (ψ, {bn,d+2}) (see [19, Corollary 1])

b0,3 = b0,1 −
1

2
b2,1, (2.6)

bn,3 =
1

2
(n+ 1)(bn,1 − bn+2,1), n ≥ 1, (2.7)

bn,d+2 =
(n+ d− 1)(n+ d)

d(2n+ d− 1)
bn,d −

(n+ 1)(n+ 2)

d(2n+ d+ 3)
bn+2,d, d ≥ 2, n ≥ 0, (2.8)

have actually opened for challenging questions. Fiedler [16] has shown relationships between
sequences {bn,2d+1}∞n=0 and {bn,1}∞n=0, on the one hand, and sequences {bn,2d}∞n=0 and {bn,2}∞n=0,
on the other. Proposition 1 in [2] encompasses Fiedler’s result and provides a relation between
the sequences {bn,d}∞n=0, d > 1, and {bn,1}∞n=0. A projection operator relating Schoenberg
sequences on Hilbert spheres with d-Schoenberg sequences has been proposed by [38]. Yet, there
are some relations that have not been discovered and these will be illustrated throughout.

2.2 Results

We start with a very simple result, that we report formally for the convenience of the reader.

Proposition 2.1. Let d, d′ be positive integers, with d > d′. If (ψ, {bn,d}) is a d-Schoenberg
pair, then the d′-Schoenberg sequence of coefficients of ψ is uniquely determined as follows.

(i) For d′ ≥ 2,

bn,d′ =
κ(n, d′)

C
(d−1)/2
n (1)

∞∑
n=0

bn,d

∫ π

0
C(d−1)/2
n (cos θ)C(d′−1)/2

n (cos θ)dθ, (2.9)

with κ(n, d) as defined in (2.3).

(ii) For d′ = 1,

b0,1 =
1

π

∞∑
n=0

bn,d

∫ π

0
c(d−1)/2n (cos θ)dθ,

bn,1 =
2

π

∞∑
n=0

bn,d

∫ π

0
c(d−1)/2n (cos θ) cos(nθ)dθ, n ≥ 1. (2.10)
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Proof. The identity (2.9) is obtained substituting (2.5) into (2.2), whereas the identities (2.10)
are obtained substituting (2.5) into (2.4). In both cases, exchanging integral and series is allowed
owing to both bounded and uniform convergence of the series (2.5). �

We are not aware of any closed-form expression for the integrals appearing in (2.10) and (2.9),
and therefore of the relationships between the sequences {bn,d}∞n=0 and {bn,d′}∞n=0 attached to
a d′-Schoenberg pair (ψ, bn,d′), apart from the specific case where d′ = d+2. Indeed, [19] provides
a closed-form expression for {bn,d+2}∞n=0 as a function of {bn,d}∞n=0 that is given by (2.6)–(2.8).
Our first main results provide an explicit expression for the inverse function

Theorem 2.2. If (ψ, {bn,3}) is a 3-Schoenberg pair, then the 1-Schoenberg sequence of coeffi-
cients of ψ is given by

b0,1 =

∞∑
j=0

1

2j + 1
b2j,3, (2.11)

bn,1 =

∞∑
j=0

2

n+ 2j + 1
bn+2j,3, n ≥ 1. (2.12)

Proof. From identity (2.7), if (ψ, {bn,3}) is a 3-Schoenberg pair, we have that

2

n+ 1
bn,3 = bn,1 − bn+2,1, n ≥ 1.

Hence, for every nonnegative integer j, and for any positive integer n,

2

n+ 2j + 1
bn+2j,3 = bn+2j,1 − bn+2j+2,1. (2.13)

Summing up both sides of (2.13) from 0 to m, we obtain

m∑
j=0

2

n+ 2j + 1
bn+2j,3 =

m∑
j=0

(
bn+2j,1 − bn+2j+2,1

)
, m ≥ 1. (2.14)

We now use the fact that the right-hand side in equation (2.13) is telescopic. Hence, (2.14) can
be written as

m∑
j=0

2

n+ 2j + 1
bn+2j,3 = bn,1 − bn+2m+2,1, m ≥ 1. (2.15)

Since ψ belongs to Ψ1, the series
∞∑
n=0

bn,1 converges to 1 and, therefore, the sequence {bn,1}∞n=0

converges to zero. We can thus take the limit for m → ∞ in equation (2.15) and this will

provide (2.12). In particular, we now take n = 2 to deduce that b2,1 = 2
∞∑
j=1

b2j,3/{1 + 2j} which

combined with (2.6) yields (2.11). �

We are now able to provide an extension of Theorem 2.2 for d > 3. For a positive integer m
and x > 0, (x)m will denote the standard rising factorial (Pochhammer symbol).

Theorem 2.3. Let d ≥ 2 be a positive integer. If (ψ, {bn,d+2}) is a (d + 2)-Schoenberg pair,
then the d-Schoenberg sequence of coefficients {bn,d}∞n=0 of ψ is given by

bn,d =
∞∑
j=0

wj,n,dbn+2j,d+2, n ≥ 1,
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where

w0,n,d =
d(2n+ d− 1)

(n+ d− 1)(n+ d)
,

wj,n,d = d(2n+ d− 1)
(n/2 + 1/2)(j)(n/2 + 1)(j)

(n/2 + (d− 1)/2)(j+1)(n/2 + d/2)(j+1)
, j ≥ 1.

Proof. We give a constructive proof. Define

an,d :=
d(2n+ d− 1)

(n+ d− 1)(n+ d)
, un,d := 2n+ d− 1, vn,d :=

(n+ 1)(n+ 2)

(n+ d− 1)(n+ d)
.

We can now rewrite equation (2.8) as

an,dbn,d+2 = bn,d −
un,d
un+2,d

vn,dbn+2,d, n ≥ 0. (2.16)

Identity (2.16) shows that for every pair of nonnegative integers (j, n), it is true that

an+2j,dbn+2j,d+2 = bn+2j,d −
un+2j,d

un+2j+2,d
vn+2j,dbn+2j+2,d. (2.17)

Multiplying each side of (2.17) by (un,d/un+2j,d)
j−1∏
l=0

vn+2l,d and summing up both sides from 0

to m, we obtain

m∑
j=0

(
j−1∏
l=0

vn+2l,d

)
un,d

un+2j,d
an+2j,dbn+2j,d+2

= un,d

m∑
j=0

(
j−1∏
l=0

vn+2l,d

)(
bn+2j,d

un+2j,d
−
bn+2j+2,d

un+2j+2,d
vn+2j,d

)
.

Since the sum in the right-hand side is telescopic, we are left with

m∑
j=0

(
j−1∏
l=0

vn+2l,d

)
un,d

un+2j,d
an+2j,dbn+2j,d+2

= bn,d −
un,d

un+2m+2,d

(
m∏
l=0

vn+2l,d

)
bn+2j+2,d. (2.18)

At this stage, note that

vn,d − 1 = −(d− 2)
2n+ d+ 1

(n+ d− 1)(n+ d)
≤ −(d− 2)

1

n+ d− 1
, n ≥ 0. (2.19)

We can now show that
∞∏
l=0

vn+2l,d ∈ {0, 1}. Indeed, if d = 2, then vn,d = 1 for each n ≥ 0 and,

therefore,
∞∏
l=0

vn+2l,2 = 1. If d > 2, then by (2.19)

m∏
l=0

vn+2l,d = exp

[
m∑
l=0

log(vn+2l,d)

]

≤ exp

[
m∑
l=0

(vn+2l,d − 1)

]
≤ exp

[
−(d− 2)

m∑
l=0

1

n+ 2l + d− 1

]
,
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and, therefore,
∞∏
l=0

vn+2l,d = 0. Since ψ ∈ Ψd, the sequence {bn,d}∞n=0 converges to zero, while

lim
m→∞

un,d
un+2m+2,d

= 0, n ≥ 0.

So, letting m→∞ in (2.2) yields

bn,d =
∞∑
j=0

(
j−1∏
l=0

vn+2l,d

)
un,d

un+2j,d
an+2j,dbn+2j,d+2, n ≥ 0.

Finally, direct computation shows that for n ≥ 0 and j ≥ 1,

j−1∏
l=0

vn+2l,d =
(n/2 + 1/2)(j)(n/2 + 1)(j)

(n/2 + (d− 1)/2)(j)(n/2 + d/2)(j)
,

and

un,d
un+2j,d

an+2j,d =
d(2n+ d− 1)

(n+ 2j + d− 1)(n+ 2j + d)
.

The proof is completed. �

3 Schoenberg sequences on complex spheres

In analogy with the results obtained in Section 2, we consider similar results on complex spheres.

3.1 Background and notation

For a positive integer q, denote by Ω2q the unit sphere in Cq. A mapping C : Ω2d × Ω2q → C is
positive definite if

n∑
i,j=1

cic̄jC(zi, zj) ≥ 0.

for all n ≥ 1, distinct points z1, . . . , zn of Ω2q and complex numbers c1, . . . , cn. Let “·” denote
the usual inner product in Cq. If q ≥ 2 and B[0, 1] = {z ∈ C : z · z ≤ 1}, the function C is called
isotropic if

C(z1, z2) = ϕ(z1 · z2), z1, z2 ∈ Ω2q, (3.1)

for some function ϕ : B[0, 1] → C. This nomenclature is not universal but it is quite adequate
in our setting. Observe that in the case q = 1, if z, w ∈ Ω2, then z · z ∈ Ω2. Hence, the previous
definition becomes an extreme case once the domain of ϕ needs to be Ω2 itself.

Keeping the analogy with the previous section, for q ≥ 2, we call Υ2q the class of continuous
functions ϕ, with ϕ(1) = 1 such that C in (3.1) is positive definite. We also denote by Υ+

2q

the class of functions ϕ belonging to Υ2q such that C in (3.1) is strictly positive definite. Both
classes Υ2q and Υ+

2q are nested, that is, if q ≤ q′, then Υ2q′ ⊂ Υ2q and Υ+
2q′ ⊂ Υ+

2q.

To present the characterization of the class Υ2q described in [37], we denote by Rq−2m,n the
disk polynomial of bi-degree (m,n) with respect to the nonnegative integer q − 2. The set
{Rq−2m,n : m,n = 0, 1, . . .} is a complete orthogonal system in L2(B[0, 1], νq−2), with

dνq−2(z) =
q − 1

π

(
1− |z|2

)q−2
dxdy, z = x+ iy ∈ B[0, 1]. (3.2)
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In particular,∫
B[0,1]

Rq−2m,n(z)Rq−2k,l (z)dνq−2(z) =
δmkδnl

hq−2m,n

, (3.3)

where

hq−2m,n =
m+ n+ q − 1

q − 1

(
m+ q − 2

q − 2

)(
n+ q − 2

q − 2

)
. (3.4)

Expressions and main properties of disk polynomials can be found in [43] and in references
quoted there. We recall the following recursion satisfied for every z in B[0, 1], m ≥ 1 and
n ≥ 0 [35]:(

1− |z|2
)
Rq−1m−1,n(z) =

q − 1

m+ n+ q − 1

[
Rq−2m−1,n(z)−Rq−2m,n+1(z)

]
. (3.5)

For every continuous function ϕ : B[0, 1]→ C and every triplet (m,n, q) of nonnegative integers,
we can define

aq−2m,n := hq−2m,n

∫
B[0,1]

ϕ(z)Rq−2m,n(z)dνq−2(z). (3.6)

The functions belonging to the class Υ2q are uniquely characterized through the expansion [37]

ϕ(z) =
∞∑

m,n=0

aq−2m,nR
q−2
m,n(z), z ∈ B[0, 1], (3.7)

where aq−2m,n ≥ 0, m,n ∈ Z+ and
∞∑

m,n=0
aq−2m,n = 1. Following Section 2, we finally define a 2q-

Schoenberg pair
(
ϕ,
{
aq−2m,n

})
any function belonging to the class Υ2q with expansion defined

according to (3.7). In this case, the double sequence
{
aq−2m,n

}∞
m,n=0

will be called the 2q-Schoenberg
sequence of coefficients of ϕ.

3.2 Results

Since the classes Υ2q are nested, here we prove a recursive relation among the coefficients aq−1m,n

and aq−2m,n attached to a 2(q + 1) Schoenberg pair
(
ϕ,
{
aq−1m,n

})
that resembles (2.8).

Proposition 3.1. If
(
ϕ,
{
aq−1m,n

})
is a 2(q + 1)-Schoenberg pair, then for m− 1, n ≥ 0,

aq−1m−1,n =
(m+ q − 2)(n+ q − 1)

(q − 1)(m+ n+ q − 2)
aq−2m−1,n −

m(n+ 1)

(q − 1)(m+ n+ q)
aq−2m,n+1. (3.8)

Proof. Equation (3.4) shows that

hq−2m−1,n =
(m+ n+ q − 2)m(n+ 1)

(m+ n+ q)(m+ q − 2)(n+ q − 1)
hq−2m,n+1, m− 1, n ≥ 0, (3.9)

hq−2m−1,n =
(m+ n+ q − 2)q(q − 1)2

(m+ n+ q − 1)q(m+ q − 2)(n+ q − 1)
hq−1m−1,n, m− 1, n ≥ 0. (3.10)

We now multiply both sides of (3.5) by hq−2m−1,nϕ(z) and integrate with respect to the measure να
defined in (3.3). After we use (3.6) and (3.9), we obtain

hq−2m−1,n

∫
B[0,1]

(
1− |z|2

)
Rq−1m−1,n(z)fϕ(z)dνq−2(z)

=
q − 1

m+ n+ q − 1

[
aq−2m−1,n −

(m+ n+ q − 2)m(n+ 1)

(m+ n+ q)(m+ q − 2)(n+ q − 1)
aq−2m,n+1

]
. (3.11)
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However, equation (3.2) yields the equality(
1− |z|2

)
dνq−2 =

q − 1

q
dνq−1.

Therefore, by (3.10) and (3.6), the left-hand side of (3.11) is equal to

(m+ n+ q − 2)(q − 1)2

(m+ n+ q − 1)(m+ q − 2)(n+ q − 1)
aq−1m−1,n,

so that (3.11) becomes

(m+ n+ q − 2)(q − 1)

(m+ q − 2)(n+ q − 1)
aq−1m−1,n = aq−2m−1,n −

(m+ n+ q − 2)m(n+ 1)

(m+ n+ q)(m+ q − 2)(n+ q − 1)
aq−2m,n+1.

This yields (3.8). �

Here is the main result of the section.

Theorem 3.2. If
(
ϕ,
{
aq−1m,n

})
is a 2(q+ 1)-Schoenberg pair, then the 2q-Schoenberg sequence of

coefficients
{
aq−2m,n

}∞
m,n=0

of ϕ is given by

aq−2m,n =
∞∑
j=0

vq−2j,m+1,na
q−1
m+j,n+j , m, n ≥ 0,

where

vq−2j,m,n :=
m(j)(n+ 1)(j)(m+ n+ q − 2)

(m+ q − 2)(j)(n+ q − 1)(j)(m+ n+ 2j + q − 2)
, j ≥ 0.

Proof. First of all we introduce the following notations:

uq−2m,n :=
(q − 1)(m+ n+ q − 2)

(m+ q − 2)(n+ q − 1)
, m, n ≥ 0,

wq−2m,n :=
(m+ n+ q − 2)m(n+ 1)

(m+ q − 2)(n+ q − 1)(m+ n+ q)
, m, n ≥ 0. (3.12)

In this way, (3.8) becomes

uq−2m,na
q−1
m−1,n = aq−2m−1,n − w

q−2
m,na

q−2
m,n+1, m− 1, n ≥ 0. (3.13)

By (3.13), we have that for every triplet (j,m, n) of nonnegative integers,

uq−2m+j,n+ja
q−1
m+j−1,n+j = aq−2m+j−1,n+j − w

q−2
m+j,n+ja

q−2
m+j,n+j+1. (3.14)

Now, we can multiply each side of (3.14) by the product
j∏
l=1

wq−2m+l−1,n+l−1 and sum up each side

from 0 to k, obtaining that

k∑
j=0

(
j∏
l=1

wq−2m+l−1,n+l−1

)
uq−2m+j,n+ja

q−1
m+j−1,n+j

=
k∑
j=0

(
j∏
l=1

wq−2m+l−1,n+l−1

)(
aq−2m+j−1,n+j − w

q−2
m+j,n+ja

q−2
m+j,n+j+1

)
.
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Since the sum in the right-hand side is telescopic, we are reduced to

k∑
j=0

(
j∏
l=1

wq−2m+l−1,n+l−1

)
uq−2m+j,n+ja

q−1
m+j−1,n+j

= aq−2m−1,n −

 k∏
j=0

wq−2m+j,n+j

 aq−2m+k,n+k+1. (3.15)

Since

k∏
j=0

wq−2m+j,n+j

≤ exp

− k∑
j=0

(
q − 2

m+ j + q − 2
+

q − 2

n+ j + q − 1
+

2

m+ n+ 2j + q

) , k ≥ 0,

we end up with

∞∏
j=0

wq−2m+j,n+j = 0.

Moreover, since

∞∑
k=0

aq−2l+k,j+k+1 ≤
∞∑

m,n=0

aq−2m,n <∞, j, l ≥ 0,

we have that lim
k→∞

aq−2l+k,j+k+1 = 0, for j, l ≥ 0. Therefore, letting k →∞, (3.15) leads to

aq−2m−1,n =

∞∑
j=0

(
j∏
l=1

wq−2m+l−1,n+l−1

)
uq−2m+j,n+ja

q−1
m+j−1,n+j , m− 1, n ≥ 0,

which in turn by (3.12) yields the desired result. �

4 Applications involving the classes Ψ+
d and Υ+

2q

In this section, we present applications of the previous results involving the classes Ψ+
d and Υ+

2q.

Theorem 4.1. Let q, q′ ≥ 2 be integers. The following assertions hold:

(i) If a function ϕ belongs to Υ+
2q ∩Υ2q′, then ϕ belongs to Υ+

2q′.

(ii) If a function ϕ belongs to (Υ2q \Υ+
2q) ∩Υ2q′, then ϕ belongs to Υ2q′ \Υ+

2q′.

Proof. (i) If q ≥ q′, the assertion follows from the inclusion Υ+
2q ⊂ Υ+

2q′ . So, we may assume that

q < q′. If ϕ ∈ Υ+
2q, Theorem 1.1 in [20] reveals that the 2q-Schoenberg sequence of coefficients{

aq−2m,n

}∞
m,n=0

of ϕ has the following property:
{
m − n : aq−2m,n > 0

}
intersects every arithmetic

progression of Z. Taking into account that ϕ ∈ Υ2(q+1) and the fact that vq
′−2
j,m+1,n > 0 for

all j, Theorem 3.2 shows that aq−2m,n > 0 if and only if aq−1m+j,n+j > 0, for at least one j ≥ 0. In

particular, the set
{
m − n : aq−1m,n > 0

}
intersects every arithmetic progression of Z as well. In

other words, ϕ ∈ Υ+
2(q+1), due to Theorem 1.1 in [20] once again. If q + 1 = q′, ϕ ∈ Υ+

2q′ and we
are done. Otherwise, we iterate this procedure until we reach the desired conclusion.

(ii) Assume ϕ ∈ (Υ2q \ Υ+
2q) ∩ Υ2q′ . If ϕ ∈ Υ+

2q′ , then ϕ ∈ Υ+
2q′ ∩ Υ2q and (i) would imply

that ϕ ∈ Υ+
2q, a contradiction. �
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A similar result holds for real spheres with a similar proof. In particular, if ψ belongs to
Ψd ∩Ψ+

d′ , then ψ belongs to Ψ+
d . However, this result was proved earlier in [19, Corollary 1] via

a slightly different argument.
Theorem 4.1 allows the following obvious consequences. If ϕ is a function in Υ2q, we write ϕr

to indicate the restriction of ϕ to [−1, 1].

Corollary 4.2. For d ≥ 1 and q ≥ 2, the following assertions hold:

(i) If a function ϕ belongs to Υ2q and ϕr ◦ cos belongs to Ψ+
d , then ϕr ◦ cos belongs to Ψ+

2q−1.

(ii) If a function ϕ belongs to Υ+
2q and ϕr ◦ cos belongs to Ψd, then ϕr ◦ cos belongs to Ψ+

d .

Proof. It suffices to observe that if ϕ ∈ Υ2q (respectively, Υ+
2q), then fr ◦ cos ∈ Ψ2q−1 (respec-

tively, Ψ+
2q−1) and to apply the remark in the paragraph preceding the theorem. �

5 Discussion

This paper contributes to the literature about the classes Ψd, Υ2q and Υ+
2q in terms of their

Schoenberg sequences. Yet, there are many challenges that involve Schoenberg sequences, for
instance in product spaces. Berg and Porcu [7] consider the analogue of Schoenberg pairs
introduced in this paper, but on the product space Sd × G, for G a locally compact group.
Generalizations of the results in [7] have been provided by [22]. It would be very interesting to
inspect whether the results provided in this paper can be generalized to these cases. Another
important challenge would be to inspect the Schoenberg pairs related to matrix-valued kernels
(see open problem 2 in [39]).
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