Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 104, 17 pages      arXiv:1709.07309      https://doi.org/10.3842/SIGMA.2018.104

Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials

Mattia Cafasso a, Ann du Crest de Villeneuve a and Di Yang bc
a) LAREMA, Université d'Angers, 2 boulevard Lavoisier, Angers 49000, France
b) Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn 53111, Germany
c) School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China

Received April 28, 2018, in final form September 19, 2018; Published online September 27, 2018

Abstract
For a simple Lie algebra $\mathfrak{g}$ and an irreducible faithful representation $\pi$ of $\mathfrak{g}$, we introduce the Schur polynomials of $(\mathfrak{g},\pi)$-type. We then derive the Sato-Zhou type formula for tau functions of the Drinfeld-Sokolov (DS) hierarchy of $\mathfrak{g}$-type. Namely, we show that the tau functions are linear combinations of the Schur polynomials of $(\mathfrak{g},\pi)$-type with the coefficients being the Plücker coordinates. As an application, we provide a way of computing polynomial tau functions for the DS hierarchy. For $\mathfrak{g}$ of low rank, we give several examples of polynomial tau functions, and use them to detect bilinear equations for the DS hierarchy.

Key words: Drinfeld-Sokolov hierarchy; tau function; generalized Schur polynomials.

pdf (447 kb)   tex (27 kb)

References

  1. Adler M., Moser J., On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), 1-30.
  2. Balog J., Fehér L., O'Raifeartaigh L., Forgács P., Wipf A., Toda theory and $\mathcal W$-algebra from a gauged WZNW point of view, Ann. Physics 203 (1990), 76-136.
  3. Balogh F., Yang D., Geometric interpretation of Zhou's explicit formula for the Witten-Kontsevich tau function, Lett. Math. Phys. 107 (2017), 1837-1857, arXiv:1412.4419.
  4. Balogh F., Yang D., Zhou J., Explicit formula for Witten's $r$-spin partition function, in preparation.
  5. Bertola M., Dubrovin B., Yang D., Correlation functions of the KdV hierarchy and applications to intersection numbers over $\overline{\mathcal{M}}_{g,n}$, Phys. D 327 (2016), 30-57, arXiv:1504.06452.
  6. Bertola M., Dubrovin B., Yang D., Simple Lie algebras and topological ODEs, Int. Math. Res. Not. 2018 (2018), 1368-1410, arXiv:1508.03750.
  7. Bertola M., Dubrovin B., Yang D., Simple Lie algebras, Drinfeld-Sokolov hierarchies, and multi-point correlation functions, arXiv:1610.07534.
  8. Cafasso M., Block Toeplitz determinants, constrained KP and Gelfand-Dickey hierarchies, Math. Phys. Anal. Geom. 11 (2008), 11-51, arXiv:0711.2248.
  9. Cafasso M., Wu C.-Z., Tau functions and the limit of block Toeplitz determinants, Int. Math. Res. Not. 2015 (2015), 10339-10366, arXiv:1404.5149.
  10. Cafasso M., Wu C.-Z., Borodin-Okounkov formula, string equation and topological solutions of Drinfeld-Sokolov hierarchies, arXiv:1505.00556.
  11. Cartan E., Sur la structure des groupes de transformations finis et continus, Nony et Co, Paris, 1894.
  12. Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy, Publ. Res. Inst. Math. Sci. 18 (1982), 1077-1110.
  13. Date E., Kashiwara M., Miwa T., Transformation groups for soliton equations. II. Vertex operators and $\tau $ functions, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), 387-392.
  14. de Groot M.F., Hollowood T.J., Miramontes J.L., Generalized Drinfel'd-Sokolov hierarchies, Comm. Math. Phys. 145 (1992), 57-84.
  15. Dickey L.A., Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, Vol. 26, 2nd ed., World Sci. Publ. Co., Inc., River Edge, NJ, 2003.
  16. Drinfel'd V.G., Sokolov V.V., Lie algebras and equations of Korteweg-de Vries type, J. Math. Sci. 30 (1985), 1975-2036.
  17. du Crest de Villeneuve A., From the Adler-Moser polynomials to the polynomial tau functions of KdV, J. Integrable Syst. 2 (2017), xyx012, 9 pages, arXiv:1709.05632.
  18. Dubrovin B., Geometry of $2$D topological field theories, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, hep-th/9407018.
  19. Dubrovin B., Gromov-Witten invariants and integrable hierarchies of topological type, in Topology, Geometry, Integrable Systems, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 234, Amer. Math. Soc., Providence, RI, 2014, 141-171, arXiv:1312.0799.
  20. Dubrovin B., Liu S.-Q., Zhang Y., Frobenius manifolds and central invariants for the Drinfeld-Sokolov biHamiltonian structures, Adv. Math. 219 (2008), 780-837, arXiv:0710.3115.
  21. Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, math.DG/0108160.
  22. Gantmacher F.R., The theory of matrices, Vols. 1, 2, AMS Chelsea Publishing, Providence, RI, 1998.
  23. Harnad J., Enol'skii V.Z., Schur function expansions of KP $\tau$-functions associated to algebraic curves, Russian Math. Surveys 66 (2011), 767-807, arXiv:1012.3152.
  24. Hirota R., The direct method in soliton theory, Cambridge Tracts in Mathematics, Vol. 155, Cambridge University Press, Cambridge, 2004.
  25. Hollowood T., Miramontes J.L., Tau-functions and generalized integrable hierarchies, Comm. Math. Phys. 157 (1993), 99-117.
  26. Hollowood T.J., Miramontes J.L., Guillén J.S., Additional symmetries of generalized integrable hierarchies, J. Phys. A: Math. Gen. 27 (1994), 4629-4644, hep-th/9311067.
  27. Itzykson C., Zuber J.-B., Combinatorics of the modular group. II. The Kontsevich integrals, Internat. J. Modern Phys. A 7 (1992), 5661-5705, hep-th/9201001.
  28. Kac V.G., Infinite-dimensional algebras, Dedekind's $\eta$-function, classical Möbius function and the very strange formula, Adv. in Math. 30 (1978), 85-136.
  29. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  30. Kac V.G., Wakimoto M., Exceptional hierarchies of soliton equations, in Theta Functions - Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., Vol. 49, Amer. Math. Soc., Providence, RI, 1989, 191-237.
  31. Kostant B., The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032.
  32. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  33. Nimmo J.J.C., Orlov A.Yu., A relationship between rational and multi-soliton solutions of the BKP hierarchy, Glasg. Math. J. 47 (2005), 149-168, nlin.SI/0405009.
  34. Sato M., Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds, in Random Systems and Dynamical Systems (Kyoto, 1981), RIMS Kokyuroku, Vol. 439, Kyoto, 1981, 30-46.
  35. Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.
  36. Shigyo Y., On the expansion coefficients of tau-function of the BKP hierarchy, J. Phys. A: Math. Theor. 49 (2016), 295201, 17 pages, arXiv:1601.02083.
  37. Wilson G., Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 (1998), 1-41.
  38. Wu C.-Z., Tau functions and Virasoro symmetries for Drinfeld-Sokolov hierarchies, Adv. Math. 306 (2017), 603-652, arXiv:1203.5750.
  39. You Y., Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, in Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 449-464.
  40. Zhou J., Explicit formula for Witten-Kontsevich tau-function, arXiv:1306.5429.
  41. Zhou J., Fermionic computations for integrable hierarchies, arXiv:1508.01999.

Previous article  Next article   Contents of Volume 14 (2018)