Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 076, 17 pages      arXiv:1801.08740      https://doi.org/10.3842/SIGMA.2018.076
Contribution to the Special Issue on Painlevé Equations and Applications in Memory of Andrei Kapaev

The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type

Mattia Cafasso a and Manuel D. de la Iglesia b
a) LAREMA - Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France
b) Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., 04510, Mexico City, Mexico

Received March 28, 2018, in final form July 16, 2018; Published online July 21, 2018

Abstract
Consider the Laguerre polynomials and deform them by the introduction in the measure of an exponential singularity at zero. In [Chen Y., Its A., J. Approx. Theory 162 (2010), 270-297] the authors proved that this deformation can be described by systems of differential/difference equations for the corresponding recursion coefficients and that these equations, ultimately, are equivalent to the Painlevé III equation and its Bäcklund/Schlesinger transformations. Here we prove that an analogue result holds for some kind of semiclassical matrix-valued orthogonal polynomials of Laguerre type.

Key words: Painlevé equations; Toda lattices; Riemann-Hilbert problems; matrix-valued orthogonal polynomials..

pdf (429 kb)   tex (22 kb)

References

  1. Adler M., van Moerbeke P., Vanhaecke P., Moment matrices and multi-component KP, with applications to random matrix theory, Comm. Math. Phys. 286 (2009), 1-38, math-ph/0612064.
  2. Álvarez-Fernández C., Mañas M., Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies, Adv. Math. 240 (2013), 132-193, arXiv:1202.2898.
  3. Ariznabarreta G., Mañas M., Matrix orthogonal Laurent polynomials on the unit circle and Toda type integrable systems, Adv. Math. 264 (2014), 396-463, arXiv:1312.0150.
  4. Ariznabarreta G., Mañas M., Multivariate orthogonal polynomials and integrable systems, Adv. Math. 302 (2016), 628-739, arXiv:1409.0570.
  5. Bertola M., Cafasso M., Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation, Comm. Math. Phys. 309 (2012), 793-833, arXiv:1101.3997.
  6. Cafasso M., Matrix biorthogonal polynomials on the unit circle and non-abelian Ablowitz-Ladik hierarchy, J. Phys. A: Math. Theor. 42 (2009), 365211, 20 pages, arXiv:0804.3572.
  7. Cafasso M., de la Iglesia M.D., Non-commutative Painlevé equations and Hermite-type matrix orthogonal polynomials, Comm. Math. Phys. 326 (2014), 559-583, arXiv:1301.2116.
  8. Cassatella-Contra G.A., Mañas M., Riemann-Hilbert problems, matrix orthogonal polynomials and discrete matrix equations with singularity confinement, Stud. Appl. Math. 128 (2012), 252-274, arXiv:1106.0036.
  9. Chen Y., Its A., Painlevé III and a singular linear statistics in Hermitian random matrix ensembles. I, J. Approx. Theory 162 (2010), 270-297, arXiv:0808.3590.
  10. Durán A.J., Grünbaum F.A., Orthogonal matrix polynomials satisfying second-order differential equations, Int. Math. Res. Not. 2004 (2004), 461-484.
  11. Durán A.J., López-Rodríguez P., Structural formulas for orthogonal matrix polynomials satisfying second-order differential equations. II, Constr. Approx. 26 (2007), 29-47.
  12. Erdélyi A., Über einige bestimmte Integrale, in denen die Whittakerschen $M^{k,m}$-Funktionen auftreten, Math. Z. 40 (1936), 693-702.
  13. Etingof P., Gelfand I., Retakh V., Nonabelian integrable systems, quasideterminants, and Marchenko lemma, Math. Res. Lett. 5 (1998), 1-12, q-alg/9707017.
  14. Fokas A.S., Its A.R., Kitaev A.V., The isomonodromy approach to matrix models in $2$D quantum gravity, Comm. Math. Phys. 147 (1992), 395-430.
  15. Grünbaum F.A., de la Iglesia M.D., Martínez-Finkelshtein A., Properties of matrix orthogonal polynomials via their Riemann-Hilbert characterization, SIGMA 7 (2011), 098, 31 pages, arXiv:1106.1307.
  16. Johansson K., Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. of Math. 153 (2001), 259-296, math.CO/9906120.
  17. Miranian L., Matrix-valued orthogonal polynomials on the real line: some extensions of the classical theory, J. Phys. A: Math. Gen. 38 (2005), 5731-5749.
  18. Moser J., Finitely many mass points on the line under the influence of an exponential potential - an integrable system, in Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, 467-497.
  19. Retakh V., Rubtsov V., Noncommutative Toda chains, Hankel quasideterminants and the Painlevé II equation, J. Phys. A: Math. Theor. 43 (2010), 505204, 13 pages, arXiv:1007.4168.

Previous article  Next article   Contents of Volume 14 (2018)