Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 017, 19 pages      arXiv:1712.01549      https://doi.org/10.3842/SIGMA.2018.017

Evolutionary Hirota Type (2+1)-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures

Mikhail B. Sheftel a and Devrim Yazıcı b
a) Department of Physics, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
b) Department of Physics, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey

Received December 06, 2017, in final form March 02, 2018; Published online March 07, 2018

Abstract
We show that evolutionary Hirota type Euler-Lagrange equations in $(2+1)$ dimensions have a symplectic Monge-Ampère form. We consider integrable equations of this type in the sense that they admit infinitely many hydrodynamic reductions and determine Lax pairs for them. For two seven-parameter families of integrable equations converted to two-component form we have constructed Lagrangians, recursion operators and bi-Hamiltonian representations. We have also presented a six-parameter family of tri-Hamiltonian systems.

Key words: Lax pair; recursion operator; Hamiltonian operator; bi-Hamiltonian system.

pdf (400 kb)   tex (21 kb)

References

  1. Dirac P.A.M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, Vol. 2, Belfer Graduate School of Science, New York, 1967.
  2. Doubrov B., Ferapontov E.V., On the integrability of symplectic Monge-Ampère equations, J. Geom. Phys. 60 (2010), 1604-1616, arXiv:0910.3407.
  3. Ferapontov E.V., Hadjikos L., Khusnutdinova K.R., Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, Int. Math. Res. Not. 2010 (2010), 496-535, arXiv:0705.1774.
  4. Ferapontov E.V., Khusnutdinova K.R., Hydrodynamic reductions of multidimensional dispersionless PDEs: the test for integrability, J. Math. Phys. 45 (2004), 2365-2377, nlin.SI/0312015.
  5. Ferapontov E.V., Khusnutdinova K.R., On the integrability of $(2+1)$-dimensional quasilinear systems, Comm. Math. Phys. 248 (2004), 187-206, nlin.SI/0305044.
  6. Ferapontov E.V., Kruglikov B., Novikov V., Integrability of dispersionless Hirota type equations in 4D and the symplectic Monge-Ampère property, arXiv:1707.08070.
  7. Fuchssteiner B., Fokas A.S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D 4 (1981), 47-66.
  8. Guthrie G.A., Recursion operators and non-local symmetries, Proc. Roy. Soc. London Ser. A 446 (1994), 107-114.
  9. Krasil'shchik J., Verbovetsky A., Geometry of jet spaces and integrable systems, J. Geom. Phys. 61 (2011), 1633-1674, arXiv:1002.0077.
  10. Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162.
  11. Magri F., A geometrical approach to the nonlinear solvable equations, in Nonlinear Evolution Equations and Dynamical Systems (Proc. Meeting, Univ. Lecce, Lecce, 1979), Lecture Notes in Phys., Vol. 120, Springer, Berlin-New York, 1980, 233-263.
  12. Marvan M., Another look on recursion operators, in Differential Geometry and Applications (Brno, 1995), Masaryk University, Brno, 1996, 393-402.
  13. Neyzi F., Nutku Y., Sheftel M.B., Multi-Hamiltonian structure of Plebanski's second heavenly equation, J. Phys. A: Math. Gen. 38 (2005), 8473-8485, nlin.SI/0505030.
  14. Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1986.
  15. Papachristou C.J., Potential symmetries for self-dual gauge fields, Phys. Lett. A 145 (1990), 250-254.
  16. Sergyeyev A., A simple construction of recursion operators for multidimensional dispersionless integrable systems, J. Math. Anal. Appl. 454 (2017), 468-480, arXiv:1501.01955.
  17. Sheftel M.B., Yazıcı D., Recursion operators and tri-Hamiltonian structure of the first heavenly equation of Plebański, SIGMA 12 (2016), 091, 17 pages, arXiv:1605.07770.
  18. Sheftel M.B., Yazıcı D., Malykh A.A., Recursion operators and bi-Hamiltonian structure of the general heavenly equation, J. Geom. Phys. 116 (2017), 124-139, arXiv:1510.03666.

Previous article  Next article   Contents of Volume 14 (2018)