Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 097, 27 pages      arXiv:1509.00950      https://doi.org/10.3842/SIGMA.2017.097

An Application of the Moving Frame Method to Integral Geometry in the Heisenberg Group

Hung-Lin Chiu a, Yen-Chang Huang b and Sin-Hua Lai a
a) Department of Mathematics, National Central University, Chung Li, Taiwan
b) School of Mathematics and Statistics, Xinyang Normal University, Henan, P.R. China

Received March 09, 2017, in final form December 09, 2017; Published online December 26, 2017

Abstract
We show the fundamental theorems of curves and surfaces in the 3-dimensional Heisenberg group and find a complete set of invariants for curves and surfaces respectively. The proofs are based on Cartan's method of moving frames and Lie group theory. As an application of the main theorems, a Crofton-type formula is proved in terms of p-area which naturally arises from the variation of volume. The application makes a connection between CR geometry and integral geometry.

Key words: CR manifolds; Heisenberg groups; moving frames.

pdf (522 kb)   tex (78 kb)

References

  1. Calin O., Chang D.-C., Sub-Riemannian geometry. General theory and examples, Encyclopedia of Mathematics and its Applications, Vol. 126, Cambridge University Press, Cambridge, 2009.
  2. Calin O., Chang D.-C., Greiner P., Geometric analysis on the Heisenberg group and its generalizations, AMS/IP Studies in Advanced Mathematics, Vol. 40, Amer. Math. Soc., Providence, RI, International Press, Somerville, MA, 2007.
  3. Cheng J.-H., Hwang J.-F., Malchiodi A., Yang P., Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 129-177, math.DG/0401136.
  4. Cheng J.-H., Hwang J.-F., Malchiodi A., Yang P., A Codazzi-like equation and the singular set for $C^1$ smooth surfaces in the Heisenberg group, J. Reine Angew. Math. 671 (2012), 131-198, arXiv:1006.4455.
  5. Chern S.S., Lectures on integral geometry, Academia Sinica, National Taiwan University and National Tsinghua University, 1965.
  6. Chern S.S., Chen W.H., Lam K.S., Lectures on differential geometry, Series on University Mathematics, Vol. 1, World Sci. Publ. Co., Inc., River Edge, NJ, 1999.
  7. Chevalley C., Theory of Lie groups. I, Princeton Mathematical Series, Vol. 8, Princeton University Press, Princeton, NJ, 1999.
  8. Chiu H.-L., Feng X., Huang Y.-C., The fundamental theorem of curves and classifications in the Heisenberg groups, Differential Geom. Appl. 56 (2018), 161-172, arXiv:1511.05237.
  9. Chiu H.-L., Lai S.-H., The fundamental theorem for hypersurfaces in Heisenberg groups, Calc. Var. Partial Differential Equations 54 (2015), 1091-1118, arXiv:1301.6463.
  10. Fuchs D., Tabachnikov S., Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997), 1025-1053.
  11. Geiges H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, Vol. 109, Cambridge University Press, Cambridge, 2008.
  12. Griffiths P., On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.
  13. Huang Y.-C., Applications of integral geometry to geometric properties of sets in the 3D-Heisenberg group, Anal. Geom. Metr. Spaces 4 (2016), 425-435.
  14. Ivey T.A., Landsberg J.M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, Vol. 61, Amer. Math. Soc., Providence, RI, 2003.
  15. Lee J.M., The Fefferman metric and pseudo-Hermitian invariants, Trans. Amer. Math. Soc. 296 (1986), 411-429.
  16. Lee J.M., Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), 157-178.
  17. Maalaoui A., Martino V., The topology of a subspace of the Legendrian curves on a closed contact 3-manifold, Adv. Nonlinear Stud. 14 (2014), 393-426, arXiv:1303.5017.
  18. Montefalcone F., Some relations among volume, intrinsic perimeter and one-dimensional restrictions of BV functions in Carnot groups, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 79-128.
  19. Pansu P., Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 127-130.
  20. Prandi D., Rizzi L., Seri M., A sub-Riemannian Santaló formula with applications to isoperimetric inequalities and first Dirichlet eigenvalue of hypoelliptic operators, arXiv:1509.05415.
  21. Ren D.L., Topics in integral geometry, Series in Pure Mathematics, Vol. 19, World Sci. Publ. Co., Inc., River Edge, NJ, 1994.
  22. Santaló L.A., Integral geometry and geometric probability, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.
  23. Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, Vol. 166, Springer-Verlag, New York, 1997.
  24. Webster S.M., Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41.

Previous article  Next article   Contents of Volume 13 (2017)