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Painlevé-type equations associated with ramified linear equations”. In this series of papers
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1 Introduction

This is the last part of a series of three papers on four-dimensional Painlevé-type equations
associated with ramified linear equations. By the term “Painlevé-type equations” we mean
Hamiltonian systems which describe isomonodromic deformations of linear equations. The
isomonodromic deformation is the deformation of a linear differential equation which do not
change its “monodromy data” (see, for example, [9]), and it is known that isomonodromic defor-
mation equations can be written in Hamiltonian form. In this terminology, the classical Painlevé
equations are Painlevé-type equations with two-dimensional phase space.

The classical Painlevé equations are non-linear ordinary differential equations which were
discovered by Painlevé [26] and Gambier [4]. Originally they were classified into six equations
and are often denoted by P, P, ..., Py1. However, from a geometric viewpoint, it is natural
to classify them into eight equations [27]. More precisely, the third Painlevé equation Py is
divided into three cases Py(pg), Piri(p,), and Piypg). The so-called third Painlevé equation is
then PHI(Ds)-

The eight Hamiltonians associated with the Painlevé equations are as follows [20, 22, 23, 24,
25]:
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!
tHipg) (t;4,0) =p°¢> +ap — q — pr

Hi(ost;q,p) = p° — (¢* +t)p — og,
Hi(t;q.p) = p* — ¢* — tq.

The standard linear equations associated with the classical Painlevé equations are given by
certain second order single linear equations, or equivalently, by first order 2 x 2 systems. Here
we review the classification of the classical Painlevé equations in terms of associated linear
equations.

It is well-known that the classical Painlevé equations admit degeneration. We use the term
degeneration in the following sense. Suppose a differential equation E has some parameter €.
When the equation E tends to another equation E’ as € tends to 0, we say that E degenerates
to E'. The following scheme is the well-known degeneration scheme among the six Painlevé
equations:
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The number in each box is the “singularity pattern” of an associated linear equation, which has
information on the Paincaré ranks of the singular points of the linear equation. In this case, the
linear equations are well characterized by their singularity pattern.

Here we point out that

e this scheme lacks the third Painlevé equations of type Dgl) and Dél),

e from the viewpoint of associated linear equations, the degeneration Hyy — Hj is distin-
guished from the others. Namely, the other degenerations correspond to the “confluence
of singular points”, while the degeneration Hy; — Hj corresponds to the “degeneration of
an HTL canonical form”.

We note that there are two kinds of degenerations concerning linear equations: confluence of
singular points and degeneration of an HTL canonical form (where HTL is an abbreviation for
Hukuhara—Turrittin—Levelt).

By considering all the possible degenerations of HTL canonical forms (and possible con-
fluences), one can obtain the following complete degeneration scheme of the classical Painlevé
equations [10, 11, 21].
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Thus we can say that the sixth Painlevé equation is the “master equation” from which we can
derive all the other Painlevé equations by successive degenerations.
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Recently, many generalizations of the Painlevé equations have been discovered. What is
important here is that they can be written as compatibility conditions of linear differential
equations. Thus they can be regarded as isomonodromic deformation equations of some linear
differential equations.

The purpose of our study is to understand those of four-dimensional phase space using asso-
ciated linear equations. More specifically, we construct the degeneration scheme starting from
suitable Painlevé-type equations so that we can provide a unified perspective of four-dimensional
analogues of the Painlevé equations.

In [15], the degeneration scheme of four-dimensional Painlevé-type equations associated with
unramified linear equations was obtained. They considered degenerations from the following
four Painlevé-type equations:

1+1+1+4141 A D Mat

HGar ’ HFSS7 HSS6’ HVIa :
These stand for the Hamiltonians for the four-dimensional Painlevé-type equations: the Garnier
system in two variables [5], the Fuji-Suzuki system [3, 31], the Sasano system [29], and the sixth
matrix Painlevé system [2, 12, 15]. They correspond to four Fuchsian systems characterized by
the following spectral types:

11,11,11,11,11  21,21,111,111  31,22,22,1111  22,22,22,211

respectively. The above four Painlevé-type equations are the master equations in four-dimen-
sional case. We note that the degenerations considered in the paper correspond to “confluence
of singular points” of linear equations.

The aim of the present series of papers is to obtain the “complete” degeneration scheme of
the Painlevé-type equations with four-dimensional phase space. In order to achieve this goal, we
have to consider the degeneration of HTL canonical forms in four-dimensional case. Note that,
unlike the two-dimensional case, degenerations of HTL canonical forms treated in this study do
not necessarily correspond to degenerations of Jordan canonical forms (see Section 2.4 and [14]).

In Part I and Part II [13, 14] we consider degenerations from the 22,22, 22, 211-system and
the 31,22,22,1111-system. These correspond to the degeneration of the sixth matrix Painlevé
system and the Sasano system, respectively.

In this Part 111, we treat the degeneration of the Garnier system in two variables and what
we call the Fuji—Suzuki system.

Note that the degeneration scheme of the Garnier system corresponding to confluences of sin-
gular points (and a degeneration of an HTL canonical form) was already obtained by Kimura [17].
The complete list of degenerate Garnier systems associated with ramified linear equations was
obtained by Kawamuko [16]. In this paper, we recalculated the Hamiltonians and Lax pairs for
the degenerate Garnier systems.

This paper is organized as follows. In Section 2 we recall the notions of HTL canonical forms,
Riemann schemes, singularity patterns, and spectral types. We also discuss the degeneration of
HTL canonical forms. In Section 3 we present the linear equations of ramified type which can
be obtained by degeneration from the 11,11,11,11,11-system and the 21,21,111,111-system
and the corresponding Hamiltonians. In Section 4 we discuss correspondences of linear systems
through the Laplace transform. In Section 5 we give the degeneration scheme of the Hamiltonians
of four-dimensional Painlevé-type equations. In the Appendix we give data on degenerations.

Here we present the degeneration scheme of the Garnier system and the Fuji—Suzuki system,
which is the main result of this paper.
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Symbols such as stand for the Hamiltonians for four-dimensional Painlevé-type
equations. The explicit expressions for them are given in Section 3.

2414141
HGar

2 Notions on linear differential equations

In this section we recall some notions on linear differential equations.

2.1 HTL canonical forms
Consider a system of linear differential equations

dY

A change of the dependent variable Y = PZ with an invertible matrix P = P(z) yields the
following system:

dz

= (P *A(zx)P - P 'P)Z.

The transformation
A(x) — AP (z) := P*A(z)P — P7'P’

is called the gauge transformation by P.
A system of linear differential equations with rational function coefficients

dy - A% = (k) o1 (k)
v=1 k=0 k=1
can be transformed into the “canonical form” at each singular point.
The system (2.1) has singularity at © = u, (v =1,...,n) and x = up := 00. Set z =z — u,
(v=1,...,n) or z=1/x. We consider the system around z = 0:

v [ A A
o = (er1+z:+---+Ar+1+Ar+2z+--->Y.

Let P, = Up>0(C((zl/p)) be the field of Puiseux series where C((¢)) is the field of formal
Laurent series in ¢.

Definition 2.1 (HTL canonical form). An element

D D D,_ ©
70_’_714_...4_ s—1

Zls—1 T s

in M,,(P,) satisfying the following conditions:
e [; is a rational number, lp > 11 > --- > 1,1 > I =1,
e Dy,..., D, 1 are commuting diagonalizable matrices,

e O is a (not necessarily diagonalizable) matrix that commutes with all D;’s

is called an HTL canonical form, or HTL form for short.
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Theorem 2.2 (Hukuhara [8], Levelt [18], Turrittin [32]). For any

Ay A

A(z) = pr + o + - € M (C((2)),

there exists P € GL(m,P,) such that AY(z) is an HTL form

D D D,_ C)
Sttt
zto zt zZts—1 z
Here ly, . ..,ls—1 are uniquely determined only by A(z).
If
Dy D D, €
Sttt ot
z'0 zZt1 zZls—1 z

is another HTL form of the same A(z), then there exist g € GL(m,C) and k € Z>1 such that

Dj =g 'Djg, exp (27rik:(:)) = g ' exp(2mikO)g
hold.

There is an algorithm for constructing the HTL forms of a given linear system. We will
briefly explain how to construct HTL forms in Section 2.3.

The number [y — 1 is called the Poincaré rank of the singular point. If there is a rational
number I; € Q \ Z, the singular point is called a ramified irregular singular point. A linear
equation is said to be of ramified type if the equation has a ramified irregular singular point.

When we roughly express the singularity of a linear differential equation, we attach the
number “Poincaré rank 4+ 1” to each singular point and connect the numbers with “+”. We call
it the singularity pattern of the equation.

2.2 Riemann schemes

Consider an HTL form

Dy D Ds-1  ©
Sttt ot
20 AL z

le—l

Here we assume D;’s and © are in Jordan canonical form.
Let d € Z~( be the minimum element of

{(k€Zug|kl, €7 (j=0,...,s— 1)}

Notice that d = 1 is equivalent to the unramifiedness of the singular point. Then the HTL
form (2.2) can be rewritten as

To T Ty 1 C]
RO = S M e i at
ZE+1 ZT+1 ZE+1 z

where [y = 2 + 1.
When O is a diagonal matrix, we denote this HTL form by

r=u (3
0 1 b—1

R B
(A AU Lok

where T = diag(t{, e ,th), O = diag(b1,...,0,). In the case of d = 1, we omit (é)
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Remark 2.3. In this series of papers, the matrix © is always diagonalizable.

The table of the HTL forms (represented by the above formula) at all singular points is called
the Riemann scheme of a linear equation.
Concerning the computation of HTL forms, the following two theorems are fundamental.

Theorem 2.4 ([33]). For any
1
A(z) = ;(Ao—l-/hz-i-'”),

there exists a formal power series P = P(z) such that

When no two different eigenvalues of Ag differ by an integer, we can choose the gauge so that

Ay = Ap.

Theorem 2.5 (block diagonalization [33]). Let A(z) be

1
A(Z)ZW(AO_‘_Alz"F)v TEZ>07

where the eigenvalues of Ay are assumed to be A1,...,\,. Without loss of generality, we can
assume that Ag is in Jordan canonical form

AO = Jl()\l) DD Jn(An)

where Ji(Ag) is a direct sum of Jordan blocks with the eigenvalue \j.
Then there exists a formal power series P = P(z) such that

AP (2) = Bi(2) ® - -- @ By(2), Bi(z) =

B ),

where BY = Jp(\g).

2.3 Spectral types

We have introduced the notion of singularity pattern to represent the singularity of a linear
system. However, if the rank of a linear system is greater than two, the singularity pattern is
too rough to describe the singularity of the linear system sufficiently since it only has information
of the Poincaré ranks.

In order to describe the singularity of a linear system in more detail, we need the notion of
spectral type of linear equations.

Spectral types are defined through HTL forms.

e In the unramified case, the spectral type is defined to be the (tuple of) “refining sequence
of partitions (RSP)”.

e In the ramified case, the spectral type consists of “copies” of RSPs.

Thus we begin with the unramified case.
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2.3.1 Spectral types of unramified irregular singularities

Consider a system of linear differential equations whose coefficient matrix is

A(z):%(AHAIH---), r e Zoo. (2.3)
Now suppose that Ay is diagonalizable. Applying the block diagonalization (see Theorem 2.5)
to (2.3), we see that the leading terms B (k = 1,...,n) are all scalar matrices.

We focus on the next BY in each block. Suppose that all the BY (k= 1,...,n) are also diag-
onalizable. Then diagonalize them by constant gauge transformations and apply Theorem 2.5
to each block. Thus each block decomposes into smaller direct summands again. We note that
the first two terms of each direct summands thus obtained are scalar matrices.

In general, if B,_;; is diagonalizable in a direct summand

C()I 01] o CT,J'I Brfj+1 o
2r+l 2T 2J+1 2 ’

then, by a gauge transformation, we have

col n cl n n cr—jl  Dy_jiq
S+l T i+l 2

where D,_j11 = dilp, @ --- ® dily,,. After the block diagonalization with respect to the
eigenvalues of D, _; 1, the above series decomposes into smaller direct summands

COImi Cllmi L. Cr—jImi dzImz *
2T+l T ~J+1 2] 2J—1

S =1L

By repeating the above procedure, we can decompose (2.3) into a direct sum of the series of
the following form

C()I 1l n cr—11 CT

_|_ e
2rtl 2" 22 z

By virtue of Theorem 2.4, we can eliminate all the terms with non-negative powers of z by
a suitable gauge transformation. As the result, (2.3) transforms into a direct sum of matrices of
the following form

col al cr—11 C

.
g v H R R o

The direct sum of the above forms thus obtained is the HTL canonical form.
In this case (i.e., the unramified case), by construction, the feature of an HTL form can be
well represented by a “refining sequence of partitions”.

=

Definition 2.6 (refining sequence of partitions [15]). Let A = Ai... Ay, ot = p1 ... g be parti-
tions of a natural number m:

>\1+"'+)\p:M1+"'+Mq:m-

Here we assume that \;’s and pu;’s are not necessarily arranged in ascending or descending order.
If there exists a disjoint decomposition {1,2,...,p} = I [[---[[ I, of the index set of A such

that up = > Aj holds, then we call A a refinement of p.
J€li
Let [po,...,pr] be an (r + 1)-tuple of partitions of m. When p;;; is a refinement of p; for
alli (i=0,...,r—1), we call [po,...,pr] a refining sequence of partitions, or RSP for short.
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We denote an RSP in the following way.

Example 2.7. We consider the following RSP

[321,2121,111111]

as an example.
First, write the rightmost partition:

111111.

Second, put the numbers that are grouped together in the central partition in parentheses:

(A D) (AD)(1).

Finally, put the numbers that are grouped together in the leftmost partition in parentheses:

(D)) (AD))((1))-
Thus we can denote the above RSP by ((11)(1))((11))((1)).

2.3.2 Spectral types of ramified irregular singularities

In general, non-semisimple matrices may appear in a sequence of block diagonalizations. Such
a case can be reduced to the above semisimple case by “shearing transformations”. Here we
point out that, usually, the non-semisimplicity implies the ramifiedness of a singular point.

A shearing transformation is a gauge transformation by a diagonal matrix, which is typically
of the form

S = diag (1, A z(m_l)s),

where s is a positive rational number. The aim of the shearing transformation is to make non-
semisimple coefficient matrices semisimple by repeating gauge transformations of the above
kind [8, 32]. Instead of describing shearing transformations and constructions of HTL forms in
the ramified case in full generality, we demonstrate a construction of an HTL form using the
linear system (3.5). A general method of constructing HTL forms can be found in [33] (see also
[14]).

First we change the dependent and independent variables as z = 1/x, Y = diag(1,—1,1)Z,
we rewrite (3.5) as follows

dz

& _ A2z

P (2)Z,

Ao Ay
A =(—=4+—=+ A4
0= (%+2+a)
where

0 120 D2q2 —D2 DP1P2

Ap=10 0 0], Ar=1| 0  pigi —p2gz — 69 1 ,
00 0 —t Q —p1g1 — 60
0 0 0

Ay=|q@ -1 p
0 0 0

We consider the singular point z = 0.
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Now we perform shearing transformations. Let S; be the diagonal matrix diag(1, z/3, 22/3).
Then we have

1 0 1 0 1 0O 0 O
S _
—t 0 0 0 ¢ O
1 (P22 0 0
+; 0  piq—pege—09—1/3 +oee
0 0 —p1q1 — 09 —2/3

How to find the rational number s of the shearing matrix is described in [33]. In this case, the
dimension of the centralizer of the leading coefficient matrix of A% (z) is less than that of A(2).
In fact, let G be the following matrix

0 10
Gi=10 01
-t 0 0

Then we have the following Jordan canonical form of the leading matrix of A%1(z):

0 1 0 01 0
G 'lo oolegi=10 01
—t 0 0 000

Next, let Sy = diag(1, 2*/3, 2%/%). Then we have

1 0 1 0
ABOR () = 2 00 1
z —t 0 0
—prq1 — 69 — 2 0 0
+; 0 pQQQ—% 0 + -
0 0 p1gi — p2g2 — 65 — 1

Note that the leading matrix of A%1¢152(2) is diagonalizable. Indeed, the following matrix

1 1 1
Gy = | =113 —wtl/3 241/
213 24203 203

diagonalizes the leading matrix of A%1G152(2):

—t'3 0 0
ASIE9C (4) = %/3 0 —wt'® 0
¥ 0 0 —wt/3
L (0/3-2/3 % x
+ - * 0°/3 —2/3 * +-e
& X * 0°/3 —2/3

Since the leading matrix has three distinct eigenvalues, we can remove the off-diagonal entries
by virtue of Theorem 2.5. That is, there exits a matrix P = P(z) whose entries are formal
Laurent series in z1/3 such that AS1G152G2F ig diagonal:

—t1/3 0 0
AS1G152G2P () — —41/3 0 —wt/3 0
: 0 0 —wH/?
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L [0/3—2/3 0 0
+ - 0 0°/3 —2/3 0 T
i 0 0 6°/3 —2/3

Then, by virtue of Theorem 2.4, we can truncate AS1G152G2P (1) after the principal part by
a certain diagonal gauge transformation. Furthermore, by the scalar gauge transformation
by z=%/3, we can cancel the term %/3 In this way, we can obtain the HTL form of (3.5)

at x = oo
—t1/3 0 0 L (03 0 0
5| 0 —wt!/3 0 +- o 63 0 |. (2.4)
‘ 0 0 —w23) N\ o0 0 62/3

Together with the HTL form at x = 0 (this can be easily seen), we obtain the Riemann
scheme of the system (3.5):
=0 z=00 (%)
—~ = 1
16y —ts  6°/3
0 69 —wts 63
0 0 23 07°/3

We briefly describe the feature of an HTL form (at a ramified irregular singularity) here.
See [1] for a precise statement. Suppose the HTL form of A(z) € M,,(C((z))) has

T T Ty ©
e N s (2.5)
zatl gl zatl 2z

as its direct summand. Then the HTL form of A(z) also has

k—O,...,d—l},

us

which is the orbit of (2.5) under the action 2i Cdzé (Ca = e d ) of a cyclic group, as its direct
summands.

Let S be the RSP corresponding to (2.5). We denote the collection of S and its d — 1 copies
by Sg. Then an HTL form is generally represented as Sél . Sfjk where S1,...,S* are RSPs;
we call this the spectral type of an HTL form. The spectral type at a singular point of a linear
system is defined as the spectral type of the HTL form at the point. The tuple of the spectral
types at all singular points is called the spectral type of the equation.

My YT Gy ©
b + b—1 et 1 + —
zatl za Tl zatl z

Example 2.8. The spectral types of

r=0(d) 2=0 (1) 2=0(3) a=0(}) 2=0 () z=0()
a o a « a « a o a « a @
a « a B —a « —a « wa o v—la «
—a « —a « b B 0 g wla o —a a
—a « —a f -b g 0 =~ 0 B —v/-la «

are (2)2, (11)2, (1)2(1)2, (1)211, (1)31, and (1)4 respectively.
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2.4 Degeneration of HTL canonical forms

Suppose a system of linear equations has some parameter, say €. When we take the limit ¢ — 0,
usually with a gauge transformation by some matrix which depends on ¢ and is independent
of x, an HTL form of the linear system at some singular point may change. We call this situation
a degeneration of an HTL form.

In the two dimensional case, the standard linear systems associated with classical Painlevé
equations are 2 x 2, and degenerations of HTL forms are realized by the degenerations of the
Jordan canonical forms of the coefficient matrices of the leading terms at irregular singular
points. However, when the rank of a linear system is greater than two, a degeneration of an
HTL form does not necessarily correspond to a degeneration of a Jordan canonical form. We
can see such degenerations in the degeneration schemes of the Sasano system and the Fuji—
Suzuki system. Here we take a sequence of degenerations (11)(1),(11)(1) — (1)21, (11)(1) —
(1)3,(11)(1) as an example.

Before going into the details, we look at the following simple example.

Example 2.9. Let A(x) be a 2 x 2 matrix of the form

A(z) = ;13 + % + - € My(C(()), (2.6)
where
Ay = <8 (1)> R A = (CLZ(;C)) S MQ((C)

Applying the gauge transformation by S = diag(1,z'/2) to (2.6), we have

1 0 1 1 (oM 0
S _ L a .

When agll) £ 0, the leading coefficient of A%(x) is a diagonalizable matrix with eigenvalues

+4/ aéll). This means that the singular point = 0 of the system of linear differential equations
corresponding to (2.6) is an irregular singular point of Poincaré rank 1/2. We can see that the
HTL form at z =0 is

by diagonalizing the leading matrix. When aéll) = 0, using S = diag(1, ) instead of the above S,

we have the different HTL form (we omit the details). This example implies that if the leading
matrix is a Jordan canonical form whose (1,2)-entry is non-zero, then whether the (2,1)-entry
of the subsequent matrix is zero or not is meaningful.

Now we consider the degeneration (11)(1),(11)(1) — (1)21, (11)(1). The linear system of the
spectral type (11)(1), (11)(1) is given by (A.1). Note that the leading matrix Ay at the irregular
singular point x = oo is diagonalizable. The degeneration of the HTL form at x = oo is caused
by the degeneration of the Jordan canonical form of Ag:

—t 0 1
0 — 0 , t— 0.
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In fact, changing the variables of (A.1) as in Appendix A.2, we have the following new coefficient
matrices

0 ¢t 0
Ay =G 1PUAUPIG=[0 0 0] +0(),
000
) ) (P1 + P2)@ Q1 P2q1
A =G TAG = 1 . —h1q1 — P22 + 69 1 + O(e),
P2(G2 — 1) + 09 + 05° B — @ P2(Go — 1) + 63
) ) 0 0 0
Ay =G ' AQG=p1+p2 1 P,
0 0 0
where
0 1 0
G=|[-1/¢2 0 —1/¢
eqp 0 0

Here Ay is diagonalizable provided that e is not equal to 0, and it degenerates to a nilpotent
matrix when € tends to 0. We note that the (2, 1)-entry of lim._,o 4 is not equal to 0, and thus
we have the linear system (3.4) of the spectral type (1)21, (11)(1) by € — 0.

Remark 2.10. It is easy to obtain the HTL form at = oo, which corresponds to (1)21,
of (3.4). In the same manner as Example 2.9, the shearing at x = oo can be done by the matrix
S = diag(1,z~1/2,1).

On the other hand, the degeneration of a HTL form (1)21 — (1)3 does not correspond to
the degeneration of a Jordan canonical form. Let us see the degeneration (1)1, (11)(1) —
(1)3,(11)(1). In the course of the degeneration, the Jordan canonical form of the leading matrix
stays unchanged. Instead, the (2,1)-entry of the subsequent matrix goes to zero. In fact,
changing the variables of (3.4) as in Appendix A.2, we have

01 0
G tA4G=10 0 0],
00 0
—P2q2 —p2 —Pp1P2
GAG=| 0  —pd +p2q2+92 I
t p1g1 + 09

—tP1P2 0 0
0 0 |+0(?),
tprgr + 0 tpe  tp1Po

where G = diag(t,1,1) (we have omitted the expression of G~1A45G). The limit £ — 0 causes
the degeneration of the HTL form (1)21 — (1)s. In this way, we obtain the system (3.5). The
construction of the HTL form at x = oo of (3.5) has been given in Section 2.3.2.

We determine the possibility of degeneration as follows. For example, (1)21 is a direct sum
of two direct summands (see the Riemann scheme of (1)21, (11)(1))

(0 ) 2 (0 o)
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and 65°/z. From this, we expect that it is possible to take a limit ¢ — 0 and indeed this
corresponds to the degeneration (1)21 — (1)3. On the other hand, (1)s itself consists of a single
Galois orbit, see (2.4). Thus we conclude that (1)3 does not admit degeneration.

Let us make a remark on degeneration of HTL forms. We do not consider the degeneration of
the HTL form (2)(1) since the degeneration of (2)(1) does not preserve the number of accessory
parameters.

Remark 2.11. Accessory parameters of a linear system are free parameters remaining in the
linear system when the Riemann scheme is fixed. The number of accessory parameters of
a linear system coincides with the dimension of the phase space of the corresponding Painlevé-
type equation.

To see this, for example, suppose that the HTL form (2)(1) of the (2)(1),111,111-system

degenerates. Then the degenerated linear system has the following form:

av _
de

Ay A
?Oju LYY, A, ~diag(0,65,65), x=0,1. (2.7)

010

0 0 O+
000 v-1
By a direct calculation, we find that the number of accessory parameters of the above system
is six. In fact, there is a Fuchsian equation with spectral type 21,111,111,111, which has
six accessory parameters. The system (2.7) turns out to be the degenerated system of the
21,111,111, 111-system. The same argument applies to the degeneration of ((11))((1)) of the
((11))((1)), 111-system.

3 Lax pairs of degenerate F'S and Garnier systems

The Garnier systems and the Fuji-Suzuki systems are non-linear differential equations, which
are regarded as generalizations of the Painlevé equations.

The Garnier system in N variables was derived as the isomonodromic deformation equation
of a second order Fuchsian equation with N + 3 singular points [5]. The Fuji-Suzuki systems
were originally derived from the Drinfeld—Sokolov hierarchy by similarity reductions [3].

In Section 3.1, we present the Riemann schemes, Lax pairs, and corresponding Hamiltonians
of degenerate Garnier systems. In Section 3.2, we present similar data of degenerate Fuji—Suzuki
systems.

3.1 degenerate Garnier systems

The Garnier systems were originally derived from a second order single Fuchsian equation with
N + 3 singular points. However, unlike the original study by Garnier, we adopt first order
systems concerning linear equations. In [28], the Garnier system in N variables was derived
from the first order 2 x 2 system of the form

N
dY A A Ay
=224+ Yy Ly (3.1)

do T r—1 T —tj

j=1
When N equals 2, the Painlevé-type equation corresponding to (3.1) has a four-dimensional
phase space. In [15], confluences from this linear system were considered.

The degeneration of the Garnier system in two variables was considered by Kimura [17]. He
treated mainly the confluence of singular points of associated linear equations, and he obtained
the degenerated Garnier systems with the singularity pattern 24+1+1+4+1,3+1+1,2+2+1,
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3+4+2,4+1,5, and 9/2. Kawamuko [16] further considered the degeneration of HTL canonical
forms and obtained eight degenerate Garnier systems.

In this subsection, we give the Riemann schemes, Lax pairs, and Hamiltonians for degenerate
Garnier systems associated with ramified linear equations. Although all the Hamiltonians in
this subsection are equivalent to those in [17, 16], we recalculated them. The following is the list
of Hamiltonians for the degenerate Garnier systems associated with ramified linear equations:

Spiti+t (o, Bt qi,p1
tlH(z}ar,tl ( ) " ) = tlHIII(Dg) (—a,y — ast15q1,p1) + q(qip1 — a)p2
0 2 q2,D2
1
+ (p1(q1 — q2) — @) (p2(q2 — q1) — ),
t1 — 12
Spiti+tl (o, Bt q1,p1
t2H(2}ar,t2 ( ) + ) = t2HIII(D6) (—=B,v = Bst2; q2, p2) + q2(qep2 — B)p1
Y 2 q2,P2
15
to— (p1(q1 — q2) — @) (p2(q2 — q1) — ),
2 — 11
S4+1+1 t1 q1,m
He et (a,ﬂ;t ) = Hyp (—oiti;q1,p1) + pip2
’ 2 q2,P2
1
+ (p1(q1 — @2) — @) (p2(q2 — 1) — B),
t1 — 1o
4141 1 q1,p1
He s (a,ﬁ;t ; = Hi1 (—B;t2; g2, p2) + p1p2
’ 2 q2,D2
1
+ (p1(q1 — @2) — @) (p2(g2 — q1) — B),
to — 11
2+3+1 1 q1,m
b g,y <a’ By ) = tiHiypg) (—o, =B — o t1;.q1, p1) + tapipe
’ 2 42,P2
to 192
— P22 (2p1q1 — @) + qul — %(mm — ),
2+3+1 1 q1,m
taHe, .y, <a, B; N 7 = toHuy(p,) (B + 1;t25 g2, p2) — tap1p2
’ 2 42,P2
to 192
— —=pi1q1 + ﬁ(plql — ),
t t

41 tioqunp ) 2
Gar,ty ( o e ) Hi (t1;q1,01) +p2(201 — g2° — t2) + age,

3+l th q1,p1
HE, to (O‘; ;o = po? — tapage® — ta’pa + atago
’ t2 q2, P2

+ 2p1p2g2 — q192(P2g2 — @) — p2qi(q1 — t2) — tip2 — api,

t1H3+% < toqum

Gartr \ 4 q27p2) = t1Hiy(p,) (a5t15q1,p1) + p2g2(p2ge + @) — g2

+ q1(p2q1 + 2p1p2ga2 — t2 — 1),

343 tioqup
Gar,to

) = poq1(p1q1 + 2p2q2 + a — 1) + p1g2 — q1 + t1p2 — tapaqo,

) )
to" q2,p2
5+2 1 q1,m
éart [ = Hp (a;tl; Q1,P1) — 2paqoq1 — topo — qo,
i to" q2,p2
542 t1 q1,p1 2 92 2
toHZ ( A =p27q2” + apaq + topa(p1 — 17 — t1) — p1g2 — taqy,
Gar,t2 ta” g2, p2 ( )
34341 t1 q1,p1 q1q2
G HE, 5, (043 £y o) t1Hyri(pg) (@, a5 t13q1,p1) + T(puh + o) — 2p1qi1p292
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tap1
—apaqy — —,
q2
3+3+1 1 q1,m q192 t2p1
2 J— .
tall .05, < I taHiry(py) (t25 g2, p2) — » (P11 +a) + -
2 t1 q1,p1
Hepr |70 ) = =pi®p2 4+ p1°@2” + tipr® — 2p1q1g2 — 2p1p2” + p2g2”
"\ t2 g2, p2
+tipipa + @12 — t1ga® + t1%p1 + tapo,
2 t1 q1,p1
HE ., ; =p1* + 3p1%p2 + p1go® — 2q1g2 + pa® — top1 + tipa,
2 \t2 q2,p2
5+3 (th q1,; to
me: (0 — Hiy (0; 11 —2 — g 2,
Car,tq <t27 42, D2 1 (0515 q1,p1) P292q91 — 42 “
543 ([t qu,p1
toH G <t2; 92, P2 =p2e” — P + (pl —a® - t1).

Singularity pattern % +14+1+4+1

The Riemann scheme is given by

r=0 =%t x=ty ZL‘:OO(i)

0

90

——
0 0 1 6°/2 |
0" 62 -1 67°/2

and the Fuchs-Hukuhara relation is written as 6° 40" + 62 +0° = 0. The Lax pair is expressed

as
oy
ox
oy
Oty
Here

0 ( ;
Ao = (1) (1 —Pp1— D2 90) ) Ay, = (ql) (pi f" _piqi) )

N =

(

(p:a; — Ot
1 ’ N; = ¢i(piqi )N, i=1,2.
0 t;

The Hamiltonians are given by

G

toHE

H2+1+1+1 <9t179t2_ 1 q1,p

ar,t1

ar,to

3 114141 <9t1, 0" t1 qi,m

) = t1Hii(pg) (=0, —60° — 0" t1;q1, p1) + a1 (aapr — 6" )p2

11
t, — to

—60 "ty g2, po

+ (p1(qr — g2) — 0") (p2(q2 — q1) — 6™),

) = toHyr(pg) (—0", —0° — 05 t9; 42, p2) +q2(q2p2 — 0™)p1

to
ty — 1

—600 " t3” q2,p2
(pl((h - Q2) - th)(pQ(QQ — ql) — 0t2).
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Singularity pattern g +1+4+1

The Riemann scheme is given by

2

0 0 V=1 0 0 6°/2]:
oi g2 —/=1 0 0 65°/2

r=1%t1 x =1t x:oo(l)

and the Fuchs—Hukuhara relation is written as 8% + 0% + 62° = 0. The Lax pair is given as

Y A A
O _ (A Ae g Ny,
ox T—1t1 T —to

oy Ay, oy Ay,
3t1_<N1 ﬂz—t1>Y’ 8752_<N2 x—t2>Y'

—4q; , 0 1

0 —p1— .
Aoo1:<_1 - p2>, Ni=-pN, =12

Here

The Hamiltonians are written as

SH1+1 (4 e T Q1,P1
H2 9 1 9 2. .
Gar,ty ( oty Q2,p2>

(p1(q1 — g2) — 0") (p2(g2 — q1) — 6™),

= Hy (—0":t1;q1,p1) + pip2 +

A (9“ gtz 11 Q17P1>
Gar,t1 t2 q2,p2

t1 — to

= Hy (—9t2;t2; %7102) + pip2 + (pr(q1 — q2) — 0) (p2(q2 — 1) — 6%).

to — 11

Singularity pattern 2 4+ % +1
The Riemann scheme is given by

r=0 x=1% x:oo(%)

—_— ——
0 0 0 1 622>
—ty 0V 0 -1 0502

and the Fuchs-Hukuhara relation is written as 0 + 6 + 63° = 0. The Lax pair is expressed as

M 40
aY:<AO LAY, A +N>Y,

or 2 x T —t
(1)
oy Ar, oy 540

0 0 0 —D2g2 topo 0 1
A0 _ 40 _ N
0 <q2 _t2> ’ 0 1—p1 poge+ 6° )’ 0 0/’



Four-Dimensional Painlevé-Type Equations Associated with Ramified Linear Equations III 19

—oh
Ay, = <qll> (1 0" —piqn), Ny = m(mqtll)N, Ny = —p2N.

The Hamiltonians are given by

2+3+1 1 q1,p1
1 H Gt <9t1 6°; . q2:p2> = t1 Hypy(pg) (—6", —0° — 0" t15q1,p1) + topipe

q192

ot
4 (p1qr — 60™),

to
— p2g2(2p1qn — 0") + -

2+3+1 (4 0. 1 q1,p1
toH, 0,0
Garta < Tty Q2,p2>

t2 q1G2
= toHmy(pyy (0° + Lit2; g2, p2) — tap1p2 — —p1ga + T(plql —0").

3]

Singularity pattern % +1

The Riemann scheme is given by

=0 ZL':OO(%)

0 L3t g,
0 —4 3% geo/o

and the Fuchs-Hukuhara relation is written as 8° + 07° = 0. The Lax pair is expressed as

oY A
(3+A2+A1x+on )

P
oY oY
o = Ao+ Bo)Y, o~ = (—Aoz® + By1z + Bay) Y.
Here
(0 1 (0 g1 — 2t
_ —Pp1 —p2+ @1? — taqn + t1 + 122 _ (a2 B 0
AQ_(—Ql—h P1 >’ A3—(1>(p2 P22 +6°),

_ (0 2q1 —t (0 2 -q

By — ( D1 2p2 — 12 +toqy — 1 — t22>
q1 + to —P1 ’

The Hamiltonians are given by

I+1 i q,p;
Hepr 1 ( 0, 70 > = Hi (t1;q1,p1) + p2 (201 — ¢2° — t2) + g,
l2" q2,p2
41 1 qi,p1
HE o, ( ; b q;pz = po® — topaqa® — ta’pa + 0°t2q2 + 2p1page — q1g2(p2g2 — 0°)
)

— paqi(q1 — t2) — t1pa — 6°p1.
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Singularity pattern 3 4+ %
The Riemann scheme is given by
z=0 (%) T =00

——
Vi 0 0 0 6
Vi 0 1 —ty 65°

and the Fuchs-Hukuhara relation is written as 07° + 05° = 0. The Lax pair is expressed as

a— 7+7+A1—|—A0$ 7:(E2£L'—|-Bl)y
ox T

oY Az As oY As oY
= Y — =Y
< 2 ) ’ oty tixz Oto

Here

1\, (1 .
Ag = u Ag )’ E2 = dlag(O, 1),

1 . - 0 Q1
Ag =t o 1), Ag=—FEy A= |
s (pz) (=p2 1) 0 2 ! <p2(p2(h —ta) +p1 tz)

A - <—P2Q1(p2ql —t2) —p1g1 — 0%° @1 (p2q1 —t2) — @2 )
9= . o
(A2)21 P21 (p2qi — t2) + p1ga + 65
0 (_A1>12>
B = ,
! <(—A1)21 0
where

(A2)21 = —pa2qi(paqi — t2) — pa (20101 + pago + 265°) + 1.

The Hamiltonians are given by

3+3 t1, q1,p1
bl Gary, (29?0? by g py ) — PHHIID) (261751501, P1) + Pagz (p2go +205°) — g

+ q1(p2g1 + 2p1p2g2 — t2 — 1),

H3+% < Oo_tl.thl

Gar.ts U p2> = paqi (P1q1 + 2p2ga + 205° — 1) + p1ga — 1 + t1p2 — tapags.

The gauge parameter u satisfies
1 0u

1 Ou 2
—_—_— = — — 600 _— = —2 .
e 0 (p1a1 + p2gz + 65°), w0t Daq1

Singularity pattern % + 2

The Riemann scheme is given by

z=0 x:oo(%)
—
0 0 1 0 —t1/2 6°/2]>
ta 00 —1 0 /2 65°/2

and the Fuchs—Hukuhara relation is written as 8 + 3° = 0. The Lax pair is expressed as

oY A A
_(§+2+m+mﬁx
ox T T
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Y Y As
— = (zB Bi1g)Y. — =(—-——"+1B Y,
a1, (xB11+ Bio) Y, ot < tor + 20) )

where
_ (0 1 (o m—a?i-t
Ay — <P2Q2 i) Oo> L A= ( 0 0) ’
—p1 —p2qe — 0] topa 12

_ (0 -1 ([~ O (0 —q2/t2
Bn(O O)’ Bm(_l q1>, B20<0 0 .

The Hamiltonians are given by

1
Gar,ty "ta” q2,p2
+2 ( . t1.q1,p1

1
artz "t g2, p2

542 1 q1,p1
H¢ < s = Hy(07%:t1;q1,1) — 2p2g2q1 — tap2 — g2,

5
t2HE ) = p2°q2” + 05°paga + tap2 (p1 — 1 — t1) — prg2 — Lo

. . 3 3
Singularity pattern 5 + 5 + 1
The Riemann scheme is given by
z=0 (%) r=1 T =00 (%)
—~—

Viz 0 0 1 622
—VE 0 6 —1 62

and the Fuchs—Hukuhara relation is written as 6'* + 65° = 0. The Lax pair is expressed as

Yy AL 40 A
87 — ( 02 + 0 + t1 + N Y"
ox T T T —t

(1)
oY Ay oY LAy
— = (N -y, — =Ny -2 Y.
8t1 < ! J}—t1> ’ 3t2 < 2 X

Here

0 0 0) —p2g2  —t2/qo 0 1
A= (G 0) = ( ) v=(00)
0 —q2 0 0 1—p1  poge 0 0

—9h 1
Ay = <qll> (p1 6" —pign) , Ny = (11(]31(];)]\]7 Ny = q;N'

The Hamiltonians are given by

3+3+1 t1 q1,p1
1 H G (0?}; ty’ q2, P2

q192 lap1
= t1Hyi(pe) (077, 0775 1151, p1) + o (P11 + 05°) — 2p1qup2ge — 03°p2ga — o

q192 tap1
> = taHipy(py) (t2; g2, p2) — = (p1q1 + 607°) + ——.

p T3 < . 1. q1,m
t1 q2

Gar.t 1 )
antz t2” q2,p2
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22

Singularity pattern %

The Riemann scheme is given by

The Lax pair is expressed as

Y
87 = (A()Jﬁg + A1x2 + Asx + Ag)Y,

ox
oY oY
ot (Aoz” + A1z + By)Y, ot (—Aoz + Bao)
where
0 1 0 p1 @ pi?+pe+2h
= = A ==
4o (O 0>, A (1 0), ) (pl ey,
_ (01 —paz pi®+2pip2 — @2+ tipr — t2>
s —p2+ 1 —q1 + p1ge ’
2 J—
By = G2 p1°+2p2+t ’ Bog = 0 2p1 .
—D1 —q2 -1 0

The Hamiltonians are given by
t1 q1,p1
;) ) = —p1°pa + 1@ + t1p1® — 2p1q1ge — 2p1p® + pago

9
HZ ;
Gar,ty (tz q2, 2
+tpips + 1% — t1ga® + t1%p1 + tapo,

9 t1 q1,p1
< q1,p > = p1? 4 3p1%ps + prge® — 212 + P2 — tap1 + tipo.

3
Garta \ o go, p2

Singularity pattern % + %

The Riemann scheme is given by

r=0(3) w=00()
Ve 0 1 0 —t1/2 0
-tz 0 -1 0 t/2 0

The Lax pair is expressed as

Ay = P2g2 a2
—P1 —P2q2

Y A A
= = <§’+2+A1+A0x) Y,
ox T T
Y Y Az
— = (zB Big)Y. —=—-——"+B Y,
a1, (xB11 + B1o) Y, o5 < tow + 20>
where
_ (0 1 [ p—qai—t
AO_ (0 O)7 Al_ (1 —q )7
0 0
A =
), ) (tm 0),
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_ (0 -1 (—an O (0 —q2/t2
B11—<0 0>, B10—<_1 Ch)’ Bzo—<0 0 .

The Hamiltonians are given by

542 ([t qi,p1
Gar,ty

to
) = Hi (0;t15q1,p1) — 2p2g2q1 — @2 — —,

t2’ q2,p2 9

243 t1 q1,p1 2 9 to 2
toHZ, .5 ( ; =p2 " —p1@a+ —(p1 — 1" —t1).
Gart2 \ 5" go, p2 Q2( )

3.2 Degenerate Fuji—Suzuki systems

The Fuji-Suzuki systems were discovered by Fuji and Suzuki [3] in their study on similarity re-
ductions of the Drinfeld—Sokolov hierarchies. A family of Painlevé-type equations which includes
the Fuji-Suzuki system with As-symmetry was independently proposed by Tsuda [31].

Sakai [28] derived the Fuji-Suzuki system of type As from the isomonodromic deformation
of the following Fuchsian system:

vy (4, A A
—<°+ L t)Y (3.2)

de \a2z " 2—-1"z—t
where Ag, A1, and A; are 3 x 3 matrices satisfying the following conditions
Ag ~ diag (0,69,63), Ay ~diag (0,0,6"),  A; ~ diag (0,0,6"),
and
Ao = —(Ag + Ay + A;) = diag (67°,65°,605°). (3.3)

Thus the spectral type of the Fuchsian system (3.2) is 21,21,111,111. Taking the trace of (3.3),
we have the Fuchs relation

09 4+ 69 4+ 0" 4 0" 4+ 65° + 05° + 65° = 0.
The isomonodromic deformation equation of (3.2) is equivalent to the Hamiltonian system

dg; _ OHgS  dp, _ OHS . _
P (R , = — , 1 =1,2,
dt Op; dt 0qi

where the Hamiltonian is given by

00 4 65°. 0.6 g, 69 + 65°, 61 + 6°
HIéS5<2 2 "QIp1>:HVI< 2 i 't;%apl)

0179?703 ’ ’q27p2 9t+9§o’0(1)_9(2)+17
0° 6’0+91_|_900
H 3 V2 2 t
+ VI<08+0t+950,0?—08_9§O+17 7q27p2)
T —1)(q2 — D{ (pras — 09 — 05°)ps + p1 (paga — 6F) }.

The linear system of the spectral type 21,21,111,111 has one deformation parameter. How-
ever, linear systems which are degenerated from the 21,21,111,111-system sometimes admit
two-dimensional deformation, since a degeneration process does not necessarily preserve the
number of deformation parameters. Such degenerations were pointed out in [15].

In the present paper, the following linear systems

(D2(1),21,21,  ((1))(1)2,21,  (((1)))=1,21,  ((1))3,21,21,
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(D2(1), (2)(1), (1)) (D)2, (D)3, (2)(1),  ((((1))))s, 21,

which are degenerated systems of the 21,21,111, 111-system, also admit two-dimensional defor-
mations and the Painlevé-type equations associated with these linear systems are degenerate
Garnier systems.

The following are the Hamiltonians for the degenerate Fuji—-Suzuki systems associated with
ramified linear equations:

243 [«
tHS:‘ZQ < ’ﬁ,t, Q1»p1>
Y q2, P2

= tHyy(p,) (a3 t5q1,p1) + tHiyp,) (8515 g2, p2) + p2qi(p1(@1 + @2) + ) — a1,
3.3
i (o)
= tHi(py) (a3 t5q1, p1) + tHiyp,) (85t g2, p2) — P1gip2qz — t(pip2 + p1 + p2),

3.4
tHI%;SS (a;t; Q17p1>
q2, P2

P2
= tHyy(p,) (a3 t5q1, p1) + tHiyp,) (1 — a;t5q2, p2) — prgapeqe —t <q1 +p1 +p2> ;

4,4 ( qlap1>
tHE-S | ¢
KES \ ™ g2, po

q1492
= tHyi(py) (1, p1) + tHiypg) (¢ 42, p2) — p1q1p2ge + (T +q1+ Q2> :

243
Here the Hamiltonian Hs. 2 can be transformed into the Hamiltonian oHs in [30] via the fol-

Suz
lowing canonical transformation:
t Q1 9
@ pr= =P+, e —tp, pro

Singularity pattern 2 +1 41

Spectral type (1)2(1),21,21. The Riemann scheme is given by

r=0 z=1 x:oo(%)

0 0 0 iz 652
0 0 0 —i 622
0 -t 0 6y

and the Fuchs-Hukuhara relation is written as §° 46 +65° +65° = 0. The Lax pair is expressed

as
)4 Ag Aq oY )4 1
— = (A + — Y, — = (FE B)Y, —=|(—Nzx+DBy)Y.
693 < + €T + ZL‘—].) Btl ( 3$+ 1) 8t2 <t2 T 2>
Here
01 0 0
Aw=1(0 0 0], Ap=[1](t0-p) a pi(1—aq)—065),
0 0 q1
q2
Ay = t9 (p2 a1 3 (paga +65°)),
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010
E; = diag(0,0,1), N=1[0 0 0],
000

1 0 —P — BB (prgr +605°) B+ E(pian +05°)
Bl = — 0 0 D1 )
ta(q1 — p2) (B1)32 (B1)33
1 (P22 + 0% % —%1
By = o to 1 —p2go 0 ;
? 0 Z2—q) 1—q(@+p—1)

where
ao =prqi(qr — 1) +65°q + 6°,

1
ay = g((pﬂh +605°)(1 — q1) — p2go +01)7

t
(B1)s2 = (q1 — 1)(p1q1 — p2ga) + (65° — 65°) a1 + i(q1 — o) — O — 65,
(B1)sz = (p1+t1)(q1 — 1) + (p1 + 2)q1 — p2go.

The Hamiltonians are given by

—03°, —05° t —00 — 63> — 67°, —67° + 605°
t1H2+2+1< 20T, 1.Q1’p1> :t1Hv< 2 SN §t1§QI7P1>

N —0% Tt q2,p2 0° + 67
to
+ qra2(pran + 65°) + paga(—605° + p1 — 2maq1) — ap1(p2 - q),

" H2+2+1 —980,_9?)'151‘(11)[)1 — o H (00+900_|_000 O o )
2 Gar t —00 Tty qo,pp) 2O 1 Y Ut q2, P2

to
- (p1CJ1 + 95°)Q2(Q1 - 1)+ Epl(m —q1).

Singularity pattern 3 4+ 1
Spectral type ((1))(1)2,21. The Riemann scheme is given by

=0 x:oo(%)

0 10t 0 05°
0 00 0 & 652/2
00 0 —VhH 63)2

and the Fuchs-Hukuhara relation is written as 8 + 63° 4 65° = 0. The Lax pair is expressed as

oY Ao )4 oY
—— = A A Y. — = (B Bip)Y. — = (B Bog)Y.
9 < or + A1 + x) , ot (Bniz + Bio)Y, T (Bo1z + Ba)Y,
where
-1 0 0 —t9 1 0
Ao=|( 0 0 0, A= | —p1q1 +p2g2 —05° 0 1],
0 0 O qi1q2 +t1 0 0
1

As=|p2 | (-1 + P22+ 6° —q2 m1),
q1
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0 0 O 1 0 0 1
Biu=(0 0 1/t |, Bm:t— Qg2+t 0 q2 + t2 :
00 0 ! 0 ti 2pign +0° +1
-1 0 0 0 1 0
Boy=10 0 0}, B = | =p1q1 +p2g2 —05° @2 +ta 1—p1
0 00 q1q2 +t1 0 g2 +to
The Hamiltonians are given by
1 q1,p1
H3+2 (900’ 90; : >
Gar,ty |\ 72 ta” q2,p2
0 poo q1G2
= Hiy(py) (—6°,05° + 1;t1;5q1,p1) — p1 — T(QQ —p2 +t2) + p1p2 — @2,

1 q1,p1
Hé:f,h <9§°,90; ty 4o pz) = Hiv (05°,0% t2; g2, p2) — p1au (p2 — 2q2 — t2) — quqa + t1p1.

Singularity pattern g +1+4+1
Spectral type ((1))s,21,21. The Riemann scheme is given by

r=0 z=1 T =00 (%)
0 0 — %tléb 07°/3
2 1
00 01 —t12§w %tl §1t2w2 9?0/3
0 0 —t1§w2 %tlﬁtzw 0%0/3

where w = €2™/3 is a cube root of unity. The Fuchs-Hukuhara relation is written as §° 46" 4+ 65°
= 0. The Lax pair is expressed as

oY A A Y Y
= (Aoo + ?0 + ) Y, = = (Buz + B)Y, 5. = (Baiz + By)Y.

E N r—1 8t1 8t2
Here
010 0
A=10 0 1], Ag= (0] (tiqigz a0 6°),
0 0 O 1
g2—p2+t2 1
t1q1 q1° t1po 0 1
A= /¢ (tl(Q1CI2+t1) ar pq+ 2 -0 +0 ),
1
1 010 1 0 0 1
Bn:t— 00 1], Bglz—tf 00 0],
Y\o o0 o Y\o o0 o
(B1o)11 (B1o)12 0
Big = o q2 + i% (B10)22 0 7
! th —ga—ta— 2 (g — 00 +2)+ 22
—q2 — to — % (B20)12 0
Bay = —ty 0 0 ;
0 -t @+
where

ao = q1q2(q2 —p2 +t2) + @1 (p1Q1 - 90) + 1192,



Four-Dimensional Painlevé-Type Equations Associated with Ramified Linear Equations I1I 27

tq
a1 =q@r— @ —t) —apa —0°) -t (2(12 + o + tz) )

1 . i
(Bio)11 = <<QQ+ )(QQ — p2 + t2) + 67 ) +%21,

tl q1

1 t1(3q2 + t2
(B1o)12 = ) <<p1ql —q@(p2 —q2 — t2) + (q1) - 90) (p2 —q2 —t2) — 2t1p1)

260 — 9! 3q2 + 2to t1
tiq1 q? @3

1 200 +t2 4
Bio)2z = — (q2(p2 — g2 — t2) —prp — 0" +1) — - —,
(B bt ( ( ) ) q1 02

1 2t1 to t1
(B2o)i2 = - <<Q2 + ) (P2 — g2 — t2) +prg1 + 6" — 1) +=-=.

tq Q1 a Q1

The Hamiltonians are given by

1 q1,p1
H3+2 91 _ 00 90 ’
Gar,ty "ta’ q2,p2
1 0 q1492
= Hypg) (—0%0" —0° + Liti;q1,p1) — p1 — (g2 — p2 + t2) + p1p2 — g2,

t1

1 q1,p1

H3+2 <01 00 00 )
Gar,t2 "t g2, p2

= Hryv (0" — 6°,0% 25 g2, p2) — p1au(p2 — 2q2 — t2) — quge + t1p1.

Singularity pattern % +1
Spectral type (((1)))21,21. The Riemann scheme is given by

=0 x:oo(%)

0 1ty —t1/2 65°/2
0 -1 to t1/2 65°/2
®© 0 0 0 63°

and the Fuchs-Hukuhara relation is written as 0 + 63° + 03° = 0. The Lax pair is expressed as

Y A oY oY
— = <A0$ + A1 + 2) Y, = (Bnz + B)Y, — = (Bax + Bzo)Y.

ox 8751 Ot
Here
010 G-t m—qai-t -1
Ao =0 0 0 s A1 = 1 —q1 — to 0 s
0 00 0 Dp2ga — 05° 0
0
A= 1 | (-1 P22 +6° @),
—D2
0 -1 0 —q P2 1
Bii=10 0 0], Bijp=1 -1 7 0 ;
0 0 O 0  —p2ga+65° q2—to
-1 0 0 0 P2 —q2+t2) g1 —q2+t2
Bu=|0 -1 0|, By= 0 0 1 ,
0 0 0 —p2qa + 05° (B20)32 (B20)33



28 H. Kawakami

where

(B20)s2 = —p1p2 + (p2q2 — 05°) (q1 — t2), (B20)s3 = p1 — t1 — ta® — qalq1 — t2).

The Hamiltonians are given by

1 q1,p1
HEH (930790; b q2’p2 = Hyt (—60°t1;q1,p1) + paga(q1 — @2 + t2) + pip2 + 05°qs,
bl

1 q1,p1
HEH <9§° 0% b a) —p2°qa — tapaqa” + t2°paga + 05°taqa — 0°ps
+ pip2(q1 — 2g2 + t2) + qra2 (p2g2 — 65°) + 65°p1 + t1p2ge.

Singularity pattern 2 + 2

Spectral type (1)2(1),(2)(1). The Riemann scheme is given by

z=0 T =00 (%)
AN\ N\
0 O 0 V—ta  67°/2
0 O 0 —/—t2 07°)/2
160 -t 0 65°

and the Fuchs-Hukuhara relation is written as 8 + 63° 4 65° = 0. The Lax pair is expressed as

v _ (AQ+Al+Ao> Y, 8*Y:(Ezaﬂl?—i-Bl)Y, o _ <1N9?+B2> Y.
X

oz 22 ot1 Oty \ s
Here
01 O 0
Ag=(0 0 0], As=(1](e2 1=p1 p1),
0 0 t1 1
—P2q2 (1 — 1)p2 —Pp1p2
A= —t2 p2g2 — 07° —p1q1 —05° |,
q1q2 —t2 (1 —p1)q1 + p2ge — 07° —03°
010
Es = diag(0 0 1), N=|0 0 0],
0 0 O
e 05°
1 0 D1 (P2+%)+% —pi(p2 + &) — %
B, = 4 0 0 —p1q1 — 65° ’
q1q2 — t2 (B1)32 (B1)33
1 [—tip2g2 —07°) —prgy —0° p1g1 + 05°
By = e —tity t1(p2g2 + 1) 0
142 0 —q1q@2 +t2  qug2 +t1(p2g2 + 1) — ta,
where

t
(Bi)s2 = q1 (-pl + % + 1> + <p2Q2 — 077 — ti) ,

to
(B1)33 = —q2 (pz + 2) —q + 077 — 605 + i
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The Hamiltonians are given by

24341 1 q1,p1
t1H oy, <—9§Oa— s by q2’p2 = 11 Hypy(pg) (65°, 07° + 05°5 15 q1,p1) + tapipa
)

to 142
— p2q2(2p1q1 + 05°) + ol Ltq (P11 +65°),
1 1

2+3+1 t1 q1,p1
y <_9§Oa —07%; 5 = o Hypy(p,) (—07° + 15 t2; g2, p2) — tapipe

t2H 5
Gar,t Yt go,p2

to q192
- = + — + 65°).
tlplfh t (plql 2)

Singularity pattern 2 + g
Spectral type ((1))s,(2)(1). The Riemann scheme is given by

r=0 x:oo(%)

t
0 0 -1 % 05°/3
0 0 —w <=2 ¢%/3
tr 00 —w? <2 g3

and the Fuchs-Hukuhara relation is written as §° + §3° = 0. The Lax pair is expressed as

oY [Ay A oy (B oY
_ < 2,4 ) Y, = <x“ + Bm) Y, o—=(Bur+ Bx)Y,

gt _ (22 41y g
ox 2 + T +A ot1 Oty
where
0 010
Ap =N, Ay=t1 (0] (=p2 1 1), N=10 0 1/,
1 0 0 0
P2qg2 —DP1q2 —q2
Av=|-pan  pa q ;

1 p2q1 —t2  —p1qn — p2g2 — O0F°

1
By = _EAQ’ By = —N?,
p2qi —ta  —p1qi —2p2q2 —0°+1 0

1 0 —q1 q2
By = o 0 0 -a], Byy = -1 0 0
\o 0o o 0 -1 —p2q1

The Hamiltonians are given by

3+3 1 q1,p1
tlHGarQ,tl < s t2; . o = t1Hiy(py) (Hfo;tl;thapl) + D22 (p2QQ + 93”) —q2

+ q1(p2q1 + 2p1p2g2 — t2 — 1),

3+3 t1 q1,p1
Heols, < s t2; . 1o =paqi (P1q1 + 2p2g2 + 07° — 1) + p1g2 — q1 + tip2 — tapago.
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Singularity pattern 4

Spectral type (((1)))(1)2. The Riemann scheme is given by

e (3
1000t 0 6°
0000 0 iz 6522
0000 0 —/& 622

and the Fuchs-Hukuhara relation is written as 07° + 05° = 0. The Lax pair is expressed as

oy oy oy

— = (A’ + A A5)Y, — =(B B1)Y, — = (B By)Y.
or ( 02" + A1x + 2) ) o1, (Biiz + B1)Y, a1, (Ba1z + Bp)Y,
where
-1 0 0 0 1 0 p1— 11 -1 —Qq2
Ap=10 0 0], Ap=1|p1 0 0], Ay = | p1qy +p2q2 +07° —p1 t2 |,
0 0O p2 0 0 p2q1 + 1 —-p2 0
-1 0 0 0O 1 O
Bii={(0 0 0], Bio=1|p @1 a|,
0 00 p2 0 @
0 0 O 0 0 1
By1r=10 0 1], Byy=|p2 O q
000 0 1/ta —¢(2p2q2 + 07°)

The Hamiltonians are given by

549 < t1 q1,p1
Hg 15,
Garti \ ™17 1) go, po
+2 ( o 1 q,m
arta \ "1 40" ga, o

) = Hy(07%;t15q1, 1) — 2p2g2q1 — tap2 — g2,

5
t2HE ) = p2°q2” + 05°paga + tap2 (p1 — 1 — 1) — prg2 — L2

Singularity pattern % +1

Spectral type ((((1))))s, 21. The Riemann scheme is given by

z=0 T =00 (%)
1 0 =2t —t1/3 65°/3
0 w 0 —2w’ -—wh/3 67°/3
0 w? 0 —%wtg —w?t1 /3 0%°/3

and the Fuchs-Hukuhara relation is written as 6° + 07° = 0. The Lax pair is expressed as

oY As 5)4 )4
— =1 A A —1Y. — = (B B19)Y. — = (B B5y)Y,
o ( or + A1 + ;1;> , ot (Biiz + B1o)Y, oty (Ba1x + Byy)Y,
where
010 0 pr—qug2—1t1 —p2
Ao=10 0 0|, 4, =10 0 1|,
0 0 O 1 g —p2+ 2t 0
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0
A= |1 |(2 —pa+6° p),
q1
0 -1 0 0 —q(p2+ @) P2t
Bu=(0 0 o], Bw=|[o0 0 1],
0 0 0 —1 p2—2(q2 +1t2) 0
00 -1 @ —p2+te qi(p1 —2q12 —t1) —p1+2qq2 + 11
By =10 0 0], Byy = -1 p2 — t2 0
01 0 0 2p1 — g2 — —q2 — 12

The Hamiltonians are given by
5 0 t1 q1,p1 0
Heart, (9 b p2> = —q1(p1q1 = 0°) + @2(q1(p2 + q2) — 2p1 + t1) + pa(pa — 2t2),

t1 q1,p1
Ho, 0% 37 = Hyv(—1,0% 2t3; g2, p2)
’ la q2,p2

+ q1q2(q1q2 — 2p1 + t1) + p1(p1 — paq1 — t1).

Singularity pattern % +1+4+1
Spectral type (1)21,21,111. The Riemann scheme is given by

z=0 =1 :v:oo(%)

——
0 0 V=t 05°)2
69 0 —V—t 6°/2
09 o1 0 05°

and the Fuchs-Hukuhara relation is written as 69 + 69 + 6 + 6 + 03° = 0.
The Lax pair is expressed as

oY Ao Ay oY 1
= = (2 As | Y, — = | Axz+ By | Y.
Oz <$+x—1+ > ot <t v 0>
Here
R 0 1 0
A¢ =P AP (£=0,1), P= 1 0 —t]|,
%(pl(h —63°) 0 0
. 07 —p2 q R 1
Ag=1|0 09 qe—t]|, Al=|@| Pma+0-—p)e+0' p-1 —q),
0 0 0 b1
0t 0 (Ap + A1)11 0 0
Aw=1[0 0 0], By=- —1 (Ao + A1)22 t
0 0 O (Ao + A1)31 0 (p2 — 1)QQ + 98 —1

The Hamiltonian is given by
tHAg( *950a1+9(1)+91 : ;q1ap1
TS\ 09 — 69,09 — 60 — 61" g,
+ tHiiy(py) (98 — 67, 05 — 67 — 0;¢; Q2ap2) —p1p2(q1q2 + ).

> = tHyy(pg) (—05°, 1+ 0 + 0 t;q1,p1)
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Remark 3.1. Note that the expression of the Hamiltonian for the degenerate Fuji—Suzuki
system of type As is slightly different from that in [15]. Here we adopted the following expression:

As (B, q1,p1
tHyd (7 5;t; 0 p2> = tHii(pe) (o, B g1, p1) + tHiripg) (7, 63 15 g2, p2) — p1pe(qige + 1).

This Hamiltonian can be transformed into the expression of Hﬁ‘g in [15] via the following canon-
ical transformation:

t q2
qQ — —, P2 = ——(p2q2 + 7).
q2 t

Singularity pattern 2 4+ %
Spectral type (1)21,(11)(1). The Riemann scheme is given as

z=0 x:oo(%)

— = ——

16y Vt 0%)/2

0 65 —Vt 6°/2

0 0 0 05°
and the Fuchs-Hukuhara relation is written as 69 +69 +609° +65° = 0. The Lax pair is expressed
as

8;; = (;122 + A1 + A0> Y, 88}; = <1on + Bo) Y, (3.4)
where
0 ¢t O
Ao=[0 0 o],
0 00
(p1 +p2)n Q P21
Ay = 1 —p1q1 — p2ga + 67 1 ,
p2(q2 — qu) + 09 + 63° @ —q pa(q2 — q1) + 63
0 0 0
Ay=|p1+p2 1 p2,
0 0 0
1 (m +p2)@ 0 0
By = — 1 —p1q1 — p2q2 + 0% 1
p2(g2 — q1) + 09 + 65° 0 Pp2g2 + 69

The Hamiltonian is given by
242 (=07, 05 — 67 Q1,P1> 0
tHg,,’ s =tH —01:t:q1,p1
Su < 05° . IH(D7)( 1 )

+ tHyi(py) (09 — 693 g2, p2) + p2a1 (P11 + a2) + 05°) — 1.
Singularity pattern % +1+4+1
Spectral type (1)3,21,111. The Riemann scheme is given by

r=0 z=1 z=00 (%)
0 0tz 673
69 0  wts 62/3
03 0w 6°/3
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and the Fuchs-Hukuhara relation is written as 69 + 69 + 6! +67° = 0. The Lax pair is expressed

as

3Y_<Ao+ Ay +A00>Y7 8Y:<1Aooa:—|—Bo>Y.

r  \ =z r—1 ot t
Here
0 0 0 010

Av=1| —a2 0 piga—60+69], Asc=10 0 0],

@1—q O 09 0 00

—Pp2
Ar=| 1 (Q2 Pigi +p2qe + - — 00 + 03+ 60" —pigi — -+ 67 — 93) ;

1
1 [ P2%2 — 1 0 0
By = n 0 Q1 +p2g2+qi1+98+91 —t/q1
il 0 P11+ p2(q + q2) + 65 + 601

The Hamiltonian is given by

213 (05— 00+ 01 +1,09+0"+1  qi,;m 0_ g0 pl
tHg,,’ < 69 — 69 it . 1o = tHHI(D7)(02 — 07 4+0" +1;tq1,p1)

+ tHyypyy (05 + 0" + 185 g2, p2) + paqr (p1(q + q2) + 69 — 67) — qu.

Singularity pattern g + %

Spectral type (1)21, (1)21. The Riemann scheme is given by

r=0(3) z=00(3)
—— ——
0 0 vVt 62
1 6%2 —/t 63°)2
-1 6°%2 o o

and the Fuchs-Hukuhara relation is written as 6 4+ 65° + 63° = 0. The Lax pair is expressed as

Y (A A Yy /1
0 —<2+;+A0>Y, 0 =<tAo:c+Bo>Y,

or  \ a2 ot
where
0t O —P2q2 0 —tp2
Ag=10 0 0], Ay = 1 —p1q1 +page — 05° T :
0 00 D1 1 p1q1 — 65°
0 00 —p2qo + 07° 0 0
Ay = | g/t 0 1], By = n 1 —Pp1q1 + P2G2 q1
0 0 0 D1 0 —p1q1 + P2q2

The Hamiltonian is given by

343 (g0 _ poo 0. ;. 01, D1 o peo
tHgpg | 077 — 057, 1 — 677, ' 42, o = tHyy(p,) (07° — 05°5 91, p1)

+ tHii(py) (1 — 05°:t: g2, p2) — pra1pagz — t(p1ip2 + p1 + p2).
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Singularity pattern 2 4+ %

Spectral type (1), (11)(1). The Riemann scheme is given by

z=0 T = 00 (%)
—_~ T
169 —t5  67/3
0 6 —wts 6°/3
0 0 _w23 ¢°/3

and the Fuchs—Hukuhara relation is written as 69 + 63 + 05° = 0. The Lax pair is expressed as

Y (A Ay ay (1
dr <:J:2 + x +A0> Y, ot <tA0x+BO> Y

(3.5)
where
0 10 —P2q2 —Dp2 —Pp1D2
Aog=10 0 0], A = 0 —p1q1 + p2q2 + 65 1 ,
000 t Q piq1 + 09
0 0 0 | [P -1 0 0
A=|qgp 1 p|, By = n 0 —p1q1 + paga + 65 1
0 0 O t 0 piq + 69

The Hamiltonian is given by

tH%+% 00_00 00+1't' q1,P1 —tH (GO_GO.t. )
KFS 1 2y V2 ’ 7q2 Do = 1I1(D7)\Y1 2;0541,P1

+ tHHI(D7) (08 + 17 ta q27p2) — P1491P2q2 — t(p1p2 +p1 —|—p2)
Singularity pattern % + %

Spectral type (1)s,(1)21. The Riemann scheme is given by

r=0(}) w=co(d)
e e 1

0 0 —t3 67/3
1 60°/2 —wis  65°/3
-1 0Y/2

— w2t 67°/3

and the Fuchs-Hukuhara relation is written as 6° + 07° = 0. The Lax pair is expressed as

Y (A Ay oy (1
or <:U2 T +A0> Y ot (tAO$+BO)Y’

where
0 1 0) —P2q2 0 —p2
4o=10 0 0}, A = 0  —pgg+pgp—0° ¢ |,
000 t/q1 1 P1q1
0 0 O 1 —paqo — 1 0 0
As=|qg 0 1], By = — 0 —p1q1 + p2q2 — 07° 7
0 00 t/m 0

—p1q1 + p2q2 — 07°
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The Hamiltonian is given by

3+3 q1, 1
tHgRg (9?"; ;qz’p2> = tHyp(py (655 85 41, p1)

P2
+ tHIII(D7)(1 — 073 t; Q2,p2) —D1gqip2gq2 —t <q1 + p1 +P2> .

Singularity pattern % 4+ %
Spectral type (1)s, (1)s. The Riemann scheme is given by

r=0 () w2 ()

1 0  —t5 0
1

w 0 —wt3 0

w? 0 —w¥s 0

The Lax pair is expressed as

oY A A oY 1
= <2+;—|—A0> Y, —_— = <A0$+B(]> Y,

or  \ a2 ot t
where

010 pr+1 0 e
Ao=1(0 0 0], A = 0 P1q1 — P2q2 t ,

000 1 —1/q —p1q1

0 00 1 (P22 0 0
Ay =|—t/q2 0 O], Bo=¥ 0 pigi — p2g2 t

0 0 0 1 0 —p1q1 — 1

The Hamiltonian is given by

33 (,. @01
tHypg (’5? = tHii(pg)(t; a1, p1)
q2, P2

q192
+ tHiri(pg) (t; G2, p2) — P11p2ge + (T +q+ QQ) .

4 Laplace transform

In the degeneration scheme of the Garnier system and the Fuji-Suzuki system, we can see that
the same Hamiltonian appears in several places. The linear systems corresponding to the same
Hamiltonian can be transformed into one another by the Laplace transform. In this section, we
present the correspondences through the Laplace transform.

It is known that a linear system (2.1) with 7o, < 1 can canonically be written in the following

form [34]:
%}4Qu—ﬂ4p+$y (4.1)

This system transforms into

av

o = (P~ $)7lQ-T)Y (4.2)
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by the Laplace transform = +— —d/dz, d/dx — 2. The correspondence between (4.1) and (4.2)
is known as the Harnad duality when both 7" and S are semisimple [6], while here we do not
impose the semisimplicity of T or S.

Using this, we have the following correspondences of linear systems:

HEH (1()71),(1)(1) 11 9(1)020(1) 21,21
HEZ: (1)), (1)(1) & ((1))s,21,21,
HEEZ™ (D, (1), 11 & (12(1), (2)(D),
HEZ S ()), (D26 (1))s (2)(1),
H}‘?g: (1100(1),(11)(1) <—>(1)21 21,111,
ng (1)o1, (11)(1) <> (1)3, 21,111
HEE: (Dl (1)1 ¢ (D3, (11)(1)

Here we indicated which spectral types correspond to co.

When 7o, is greater than one, the correspondence through the Laplace transform is some-
what complicated. However, by using the method described in [15], we obtain the following
correspondences:

HEZ: (D)((1), (1)) & (1)(1)y, 2L,
HEL: (W)((W)) 11 6 ((1)))eL, 2L,
HET: (D), (1) & () (D),

Hip: (D)2 21 & (WD)

5 Conclusion

The degeneration scheme presented in this series of papers focus on linear equations. Thus
the scheme is redundant in terms of Hamiltonians since it happens that a certain Hamiltonian
appears in several places.

When we focus on Hamiltonians, the degeneration scheme can be reduced to the following
scheme. This scheme shows the relationship among 40 Painlevé-type equations including those
already known.

Remark 5.1. To determine whether the Hamiltonians given different names in this series of
papers are actually different or not requires further consideration. Concerning this problem, we
refer to [19], which is an attempt to characterize the four-dimensional Painlevé-type equations
from an algebro-geometric point of view.

Remark 5.2. We think that there are no degenerations of linear systems other than what we
considered in this series of papers, and hence we believe that there are no other four-dimensional
Painlevé-type equations. However, further research is needed to show that the four-dimensional
Painlevé-type equations obtained in this series of papers actually constitute a complete list. We
think that a way to classify the unramified linear equations with four accessory parameters gives
a hint (see [7]).
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A Data on degenerations

In this appendix, we give explicit coordinate transformations used in degenerations. For examp-

le, for the linear system associated with Hé:}““, changing the variables and parameters ¢;,

pi, ti, 07, x, Y as shown in the table and taking the limit ¢ — 0, we obtain the linear system

3 3
. . S 14141 .. . = . . S 414141
associated with HZ, . Also at this time, lim._,o H; gives the Hamiltonian HZ, 4

The data that do not appear in the table below do not need to be changed.
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A.1 degenerations of the Garnier system
2-{—1-{—1—|—1—>3/2—|—1—|—1+1
07° = éfo +e7 L 03° = —e7 1, ti = ety, H;, = e~ H; i=1,2,
1 e 1 " e
@ =——, p1=cq (P —0'), @ =——, p2 = G2 (P22 — 0"),
eq1 €42
- ) -1
o=fo v=um (D) ()Y
t1 U e 1
3+1+1—5/24+1+1
03° =6 — &, 63° =76, t; = e 3 — 2), Hy, = e 'H;,
qi = 5_3 (Equ + 1)7 Di = €D, 1=1,2,
I .
v=—e(@ ), Y=¢ @R T )y
0 -1
2+24+1—2+3/2+4+1
9?0 = é?o + 6_1, 950 = —6_1, t1 = 651, to = —67,:2,
Hy, =e 'Hy, Hy, = (lT:IQ - p2~qz>
to
1 3 ]2
@ =—— p1=cq (P — 0", q2 = etapa, py = —22
eq1 gt
- ~1 N L
emg vent(U) g )
t1 U 0 —e¢
3/24+14+141—-5/24+1+1
00 = —2e73, 07° = 9~§’° + 273, t; = —e 0 (82@- + 1), H, = —&'H;
qi = 5_2(ji + 5_37 i = EQﬁiv 1= 17 27
1
—6 (24 e lg (1 —€ %
T € (E T+ ), e <0 22 )
3/24+14+14+1—52+3/2+1
0 = —¢71, 0t =00 4+ =71, ty = —¢to,
- q2 15 D22
@2 =celopa, pa=-——x, Hy=—c'(Hy—=
eto to
4+1—57/2+1
03° = 05° — 2c7 15, 05° = 2¢ 15, t) =% — 371, ty = —ety +7°,
2 ( 7 e 17
Hy =¢e~ <Hl - 2Q1> . Hi, = —e7 " Hy,
~ -5 e . 2, 7 —1x —4~ —10
@ =cq+e?, p1=5(q1 +t4)+e prteta—e Y,
@ =c@+e? p2 = %po,
x =X Y =exp _L(j_t~2)2+5_9(j-_£2) — 73 L e Y
’ 2e3 0 ¢? '
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34+2—3+3/2

90228_1, 9?0 ZéfO—E_l, 030 2550_8—17 t1 = \/—1651, to :\/—152,
1 =~ D1q1 + D2G2 1 > 1~
H == H - ~ + ~ 3 H == H + 9
. V—15( ' t1 t1p2 2 \/—1( 2+ 21)
t R B |
q1 = —, plz—f(p1Q1+p2Q2+9f°+—~>7
f ty € D2

3 1 (. pg+20° 1 o
g2 =V —1fDa, p2=\/—1<f<Q2+p1qlp~21—1522>+p2Q1>,

-1
. —1(1 0 1 0 1 0\ ~
r=+v-1z, Y=z (0 u) 0 1 (O 11) Y,
V—=1p22f

where

The new gauge parameter @ satisfies the following equations:

;gg = _;(ﬁlql + Pado + 05°), ;ng = —2p2q1.
34+2-—5/2+2
07° = éfo — &8 05° = &9, t, = ety, ty =et] — 273,
Hy, =e 'Hy— P2g2 Hy, =e"Hy —epy, q =e’lopa,  p1= —6(2?;27

StQ ’
q2 28734‘571(}14‘5(151 _t1)7 D2 :Eﬁh

— &7 = 5_2(5&_{1) 0 1 %
T = €T, Y=e (55 1/q2>Y'

5/24+14+1—7/2+1
o =60, g2 =271 9 =40 42715
t1 = 87452 - 25710, to = e2t] — 38710, o, = 54ﬁ2, o, = g2 (I:Il - 52361> ,
@ =G, p1 = &°pa, g2 =G+,

62

po=7 (0" +h)+eh+eta -,
4- 4z 10 5. € o 3\ (1 0\
T=—€ TH+e “tg—2 7, Y =exp 6‘:L‘+5:r + et 0 _g2 Y.
5/2+1+1-—5/2+2
ol = Eil, g2 = 40 — 871, to =1 + 852, H = I;’Tl — 5711{[2, Hy, = Eilﬁg,
Q@ = q, pL=p1—¢ ‘P, 2 = q1 + €4, p2 = 'po,

_ A (1 —q1\ ¢
r=—I+1t, Y—<0 1>Y.
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2+3/24+1—7/2+1

0°=—3c75, O =0r+30, o1 =6,

t) = —e 8y — e 10, ty = 2e M +2e717,
2~ ~ ~ 11
- €°p2q2 + €p2 £ =
Hy, = &8 Hy+ 22T 02 H,, = —H,,
t1 ( 2 1—|—52t2 > to 2 1
4~
-5 27 ~ € P2
=¢e (1+e%t2)(1+eqo), = ——
qn ( 2) ( 2) PL= T
5 7~
_ ~ € £ q1 -
Qo =€ 10(1—62(11), p225_ 9 _68[)17
- T—t t 1[((@-1)? i 1 e\ -
=t1(1—¢€? Y = Lo o= = Y.
r=t(1-<%), exp[ 2e3 5 5< 4 2 0 —op
2+3/2+1—3+3/2
~ - 1 1 ~ . 2
O =03 07— 5. 0= 0F=20F  t=eh,  t=hbh+
1/ 5 L /- 1\ =~  Dp2G D21 1 -
H = - H - = t +* H — = — = 5 H :TH 5
t g < ! tl (2 6) 2 tl €t1 f2 tl 2
_ s 1/ P _ tipo o,
Q=cq, p1=—-|p1——=], @ =—, p2 = —=(e@2 + q1),
€ € € 1
t g [(—1/py O 1 0\
=2 y=:% ~ e
T ( -1 1/p2> <0 U
Here @ and v satisfies
1 04 2 ~ 1 04
—— = —=(p1q1 + P2go + 07°), —— = —2P2q1,
7 0, 7 (P1Q1 p2q2 1 ) @ Ot P2q1
1 v 1 _ 1 1ov 1 -
— = = — = ~~+~~+2000—~>, 77~:_~7—~~+t.
v oL, 7 (Plfh p2q2 1 o v Oy 2 p2q1 2
24+3/24+1—5/2+2
gl = 273, 07° = éi’o — 273, tp = My 4+ 76, ty = —e s,
Htl = 54ﬁ17 th = _54 <I~{2 - pz‘q2> 9
2
_ -3 2~ _ 2~ 27~ _ 2@
g =€ —¢& “q, p1=1—¢"py, g2 = —€ “tapo, ]92—5{,
2
_ 4 _ e th-n (0 ) g
rT=¢c T, Y=e (0 St Y.
24+3/2+1—3/2+3/2+1
00 = —2:71, 07° = éfo + 274 ty = eto, H;, = e~ H,,
B B 1 1~
2 = —qo, P2 = —p2 — —, Y=2°Y.
€q2
5—9/2
oo _ _ 5 oo _ O _ 26 5 160 b 27
1 287 2 528, 1 — 355 2 278217 2 =€ 11 38147
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Htlz—éﬁg, HtQZ;(ﬁ1+38H2+ )
Q1=85§2—€I51—%7 p1 i5(]91 +P2)+qg—% %,
@ = ZéJre%, p2 = (G — 2p1G2)e° + ( p2+t1)€ —%Jr% %;

7/24+1—9/2

2 2 t 5 - - 5
0 _ — _ 4 _ 6 16
6 __57 9?_57 tl_sig ﬁa t2—€t1—€ t2_38147
- Hy H,
Ht1 :ESHl—'—T, th :_TG’
g g
_pn_ b T et L
q1 = 54 35147 P1=—€q - + &«67
8~ 3~ 1 P2 ; 1
g2 = —€ (42 —€p1— ) D2 578 518 E287
1, 5. P 72 (1 0\
ngﬂ(e JJ—]_), Y:exp |:355+2515+525 0 —62 Y.
3+3/2—9/2
15 15 V2 3 12 - 5
0% =~ F=gon  h=—_pteth+eh), t2:—x@5t1+ﬁ,
23 7 ~
e (5 P1Q1 + (P2 — 11)Q2 1 (- Hy 5p1 .
Hy = ——5 (Hy +¢" . Hy,=—— [Hi - -5+ @,
h ﬁ( 2 1+ 8 +el2ty 2 V2e T g2 TR
- (@1 Q2 e'py 7
1=V2(14 8% +'% (— , = = = —\/55,
q ( 1 2) JSTRRNST P V2(1 + €87 + 120
o — 2(1 + &84 + 1%2) Q2 Dy = e18p1 4+ 2 (po — 1) B gt
£22 7 2(1 + &8t + e12ty) 27
)
CeT(1 —etz)’
38 44 hE+ D4k 1 o0y ] e -
Y =ex + 2 4+ 2 Y,
P 9e10 b g2 0 u D2q1 q1 (5—% - E%éi)
where
o L(p 3p® 3pp 2h 3 . 3p; 1
Q=+ 8 (56 g2 ez g2 elo)” @2 = 82 T g6
3+3/2—>5/2+3/2
To = 8_6, 980 = —6_6, t1 = 57;2, to = 5t~1 - 26_3,
Hy, =e 'Hy, Hy, = 5_1(ﬁ1 +q1),
- .. . - C s
an=c"'Gp, m = (B — @ — t1 + % (Pade — P11 + 11G1)),

g = 24(1 ~eq), m= TR (1+e%q +e'(pr — 1)),
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5 5 t - 5 26, 2
0 _ 1 4 _ 1
0" = 221 ?O_Eﬁ’ ==+t~ 73, ba=—"%~ =5
Hy
Htl - 677
23 7 3
€ i Hy € -2 35 ~ 6/~ 1 P\~ 95 ~
Hy=— |-H+ =2+ —————Ap>— o — 2¢ + &%(py + 11)p1 — 2¢ :
2= [ 1+ 5 2(1+€12t1){p1 P2 P12 + € (P2 + t1)p1 2G> }
5 ~ ~
_ 8~ Eo o = 2. b1 1 _pr 2
Q1—€Q1—5(P1 +P2+t1)—EQ2+?+?, P1="33 " Ja
2(1 + 61251) - P1 1 eld ~ x D1
= - =+, = (-t + = — — |,
92 el9 ¢ 2e3 + 29 b2 2(1 4 e'2ty) P2t g6 gl2
~3 ~ ~9 ~
1, 6. Lt LT -t 33| /1 e -
m:ﬂ(sx—l), Y =exp |— 3 + 9 +2€15 0 & Y.
5/24+2— 5/2+ 3/2
00 = 2:71, 03° = —2e71, ty = eto, Hy, = e 'H,,
. _ 1 .
72 = G2, p2=p2+ —, Y=3Y
€42
3/2+3/24+1—5/2+3/2
Qtl :26_3, Gfo = —26_3, t1 :€_4t~1+€_6, to 26_41?2,
Ht1 = 84_E[1, HtQ = 84 (.E[Q — p§q2> y
2
o _ by £2pago?
@=-cq+e? p1=1-—¢"pi, @ == 2=,
€4q2 t2
r=¢c1% Y =exp (e (t — &) L0 Y
’ 0 —e?

A.2 degenerations of the Fuji—Suzuki system

We first note that, concerning the following two linear systems, we adopt slightly different
parametrizations from those in [15] for convenience of calculation.
As for the linear system of the spectral type (11)(1),21,111, the irregular singular point is
moved to x = 0o, so that the Riemann scheme is given by
=0 z=1 z=00

—
0 0t o

69 0 0 6

09 ot 0 63°
and the Fuchs-Hukuhara relation is written as 69 + 69 + 01 + 69 + 65° + 6° = 0. The Lax pair
is expressed as

oy (A A oy (1
ar—(x‘Fx_l-i-Aoo)Y, at—<tAoo$+Bo>Y
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Here

A =U'P1APU, £=0,1, U = diag(1,u,v),

1 0 0
P = | peg — 609 — 65° 1 0,
—go)—0%°
pq— 05 PGS
Ay = (1)(1) (9? g2 —1 g1 —1 >
0 0 0 03 polqr —q) +609+65°)°
1
Av=p2 | (Mm@ +p2g2+6' —@2 —aq1),
b1
-t 0 0 . 0 (Ag+ A1)z (Ao + A1)z
Aw=10 0 0], Bo=~ | (Ao + A))n 0 0
0 0 0 (Ag + A1)s1 0 0

The Hamiltonian is given by

Pl 0 — 9 09 +0° + 1 —09 — g% 69 + g1
tHI:%( AR 't'QI’m):tH\/( NI ;t;Q1,p1>

03°,03 + 03° " g2, p2 —03 — 0" — 03°
09 4+ 01 +63°,09 — 69 + 61
+75Hv( 2 2_911 2 ;t;QQ,pz) +p1(Q2—1){P2(Q1+QQ)—98—950}'
The gauge parameters satisfy
t du t dv
- = —t 07° — 05° - =t 07° — 65°.
T P1G2 — tq2 + 0y 2 o dt q1 + 07 3

Concerning the linear system of the spectral type (11)(1),(11)(1), as the expression of the
Hamiltonian H?g changed (see Remark 3.1), the parametrization of the linear system also
changed slightly. The variables z and Y also changed in the obvious way.

As the result, the Riemann scheme is given by

r=0 z=o00
—~ A~

16yt 6|,
0 6 0 65
0 0 0 6

and the Fuchs-Hukuhara relation is written as 69 + 69 + 03° + 65° + 63° = 0. The Lax pair is
expressed as

oY Ay Ay oY 1
(220 Ay, L= (CAw+B )Y Al
ox <m2+ x + 0> ’ ot (t oF + 0) ’ (A1)
where
1 0 0
Ae=U'PYA.PU,  ¢=1,2, P=|[-m 1 0f, U = diag(1,u,v),
—q1 q1g2—t 1
-0
-t 00 X P11 — p2g2 — 07° —q2 p1
Ao=(0 0 0], A= | pagz— 09— 05  pagy — 05° —Pp1p2 ;
0 0 0 t t —p1q1 — ggo
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A 1 1 0 (A1)12 (A1)13
Ay=10| (1 1 —f(mar+65)), By = n (A1)21 0 0
0 (A1)s31 0 0
The Hamiltonian is given by
aHB q1,pP1
tHAS 1 —tH 05°,05° — 05° + 1; ¢;
FS (7,(57 ’(p,pz) HI(DG)( 3,V3 1+ 1 7QIap1)
+ tHIII(Dg)(_Gg — 05°,07° — 05°; t;: g2, p2) — p1p2(quge +1).
The gauge parameters satisfy
tdu 9o + tdv_, +1
wdt = Dhiq1 P242 T q2, vdl P191 —P292 — q1 .
Below are the data for degenerations.
24141 —>241+1
(1)(1)(1),21,21 — (1)2(1), 21,21
03° = 05° + &1, 03° = — 1, ty = ety, Hy, = e 'Hy,
_ o - - -
Q1:(J1+E, p1 = p1, g2 = D2, D2 = —q2,
) 0 € 0 .
Y =t,°  diag(l, u,v)" L[ 0 0 ep1qr | Y.
taqa  €qa(p2ge —03°) 0
3+1—-3+1
(D@D))((1)),21 = ((1))(1)2,21
980 = égo + 6_1, 930 = —8_1, t1 = t~2 — €t~1, to = t~2,
17/ .o ) . .
Ht1 -z (Hl_p£q1> ) Ht2 :5_1H1+H2_p1?17
5 t1 ety
q = et1p1 + o, p=—2 92 = G2, P2 = fa + 1
ety ety
. 1 /10 0
r=—x, Y =exp (23:2 — t2x> U 0 1 (tl_qw Y.
v 00 T (ti—t2)q2
3+1—5/2+1
(D(D)((1)),21 = (((1)))21,21
0° =0 -5, 0 =5 02 =05,
t1 = 851 — 2873, to = —5711?2 — 673,
Q1 = —€p1, pr=¢'q—c?, @ =c"Gq, P2 = €p2,
Htl - 871];[17 Htg = _Eﬁ27
. 1 /0 -1 0
T = €7, Y =exp <m2 — tox — 6_2t~1) U 1/e —p1 O
2
v 0 0 e
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24+14+1—-3+1
(1)2(1),21,21 — ((1))(1)2,21

ol = 07° + 2, =0 05° = —e72 ty = e 2 — ey, ty = ey,

. . -1
- 7 Piq1 q1
Hy = —cHo, Hy, =¢ (Hl — — ) ) a1 = <1 + H~> )
! ? th e(qiGe + t1)

q e(Gigo + 1 G1Go + t
Q1 Loy (Q1q%+ 1)) _Dkth

p1=—(P141 — P2d2 — 0°) <

e(q1G2 + t1) Q1 eq1
(s — 00 — ) + i1 X
q2:_t1f11(101ql~ L )+ 2 g D
(132 + t1) th
etapage —t2 (@ — (e = prian) +0") + 2
T = ex, Y=f eta?pa 0 6(qi2_1)
5t22p2(q1 — 1) 0 0
where f satisfies
tof _ o lop o,
ot = —Pq ) 70t = —q2 2-
24+14+41—-5/3+1+1
(1)2(1)721721 — ((1))37 21721
9?0 = éfo + 6_2, 050 = —5_2, tl = —8751(1 + 67?2), tQ = 6_151,
1 - - 14ety ~ p1G
Hy = ———H,  Hy, =l — 227, — P10
EQtl tl tl
T (L et F
Q1:1+q1~q2+q7}7 p1:€t1 (pl_qu%.>+}7
t ety q1 €q1
S pods + 69 - 1—ep 714
G2 = ety (pl _ P22 > +t1—— p27 p2 =1+ QI~QQ,
q1 €q1 131
1 —1/t; 0
~ - —17 17 — ~
Y =0 Bt o 1 47y
q1=p2
0 0 ::2152
24+14+1—2+42
(1)2(1),21,21 — (1)2(1), (2)(1)
0 =0 —¢ 1, 912571, t1 = etq, tz——€t~2,
Ht1 =& lffl, Ht2 = —5_1 (FI — p%QQ>
t2
1 L ;- )
_ = =& + 0 5 == €t 5 = ——=
q1 G p1 a1 (plfh 2 ) q2 2P2 p2 ci
10 0Y
r=e ', Y=10 ¢ 0|Y
0 0 eq
24+2—>2+4+2

(MM, (2)(1) = (1)2(1), (2)(1)

07° = éfo —e 1 03° = el ty = eto, H, = g1 (Hg — = ) ,
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6P ~ . Go(Pado — ™1
Q1:q1+~iv P1 = P1, QQ2727 p2:_qz(p2q%—7
1 q2 to
) 0 eq 0 B
V=6 "2 diag(l,u, )t [0 0 epig | V.
to
la €p2q2 0

4 — 4
((M@ON1)) = (1)) (1)2

980 = égo + 6_1, 0§° = —8_1, t1 = 51, to = 51 +€t~2,

Ht1 = ﬁl - 8_1ﬁ2, Ht2 = 6_1];[2,

@ = q1, p1=p1— e 'Pa, g2 = q1 + £qo, p2 = e ',

333 9 O O R
r=—x, Y =exp (—3—t2x> 0 O 11Y.
0 — -1

3+1—4
(1))(1)2,21 — (((1)))(1)2

90 = 76, 07° = éf" +e7, t1 = etg, ty = ety — 2673,

Ht1 = 8_1 <ﬁ2 - pz.qz) 5 Htg = 6_11::[1,

2
- q L _ B
q = a2, D1 :—ﬁa g =ctq +e73, P2 = €D,
2
1 0 0\
r=¢c %43 Y =exp(—e %) |0 et 0]Y.
0 0 ¢t

3+1—-7/34+1
(D) (D)2, 21 = ((((1))))s, 21

07° = éf" — 374, 05° = 3e74, th=e 3t +e a4+, ty =ty — 372,

Ht1 = 831;[1, HtQ = —6_11‘}1 + }NIQ,

a=c2g+e?t, p=p—Eh,  @=@  p=p-c'q-—27

0 —e 0 }
T = €T, Y = exp(e_lfc +e7 — 6_252) 0 el—epy—£e3qy 1 Y.
1 3 2

5/24+1—>7/34+1
(((1)))21,21 — ((((1))))s, 21

0° = 6 + 12 0° = —12 t, = —ety + 2+i t ——52£+i

1 1 ) 2 3 1 1 2 468’ 2 2 2647

a=-L_ L -2 =g
1 - o 1 1~ 2 2 ; 2
~ ~ 3
- v T " t1 to 50 €1+ 53
Tr = —ex, = ex €
P 3 263 286 1
0 —ep2— 35— o7
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5/3+1+1—2+5/3
((1))3,21,21 — ((1))s, (2)(1)

0° = —Eil, o' = ¢° + 871, t1 = 851,
1/~ D1G1 + P2 ~ .
Hy, =z <H1_p1q1£pzqz>’ Hy, = Hy + p2qu,
1
t o, . - I i - G2
qQ = Tl, p1 = —L}(Em(h +epaga + 1), q2 = —p291, p2 = —p2q1 + — + to,
q1 ety q1
. (1000
r = —=, Y:ivlie 0 5{1 0 Y.
£l 0 0 &2
24+2—>4
(D2(1), (2)(1) = (((1)))(1)2
90 = éfo + 273, 07 = ~§°, 03° = —2e73, t =e 4 +e75, to = e 4y,
~ ~ D D9q 1
Hy, =e'Hy, H, =& <H2 + ~p} — p2~qz> ; G =c3—¢g? ((11 + ~> )
top2 to D2
2 ~
~ Il 0 D1
p=1-&%1,  q=—c s, p2—~(q—~2—~2>
to P2 P2
0 —1/ty B
r=—c'@+eh, Y=f| 0 0 1 |Y
-2 9 0
Here f satisfies
1of _ 10f P2 +1
[ ot Qh [ Ots ty
2+2—32+5/3
(D2(1), (2)(1) = ((1))s, (2)(1)
9?0 = éfo + 672, 950 = —872, t1 = 851, to = 5152 + 87151,
(5 1 - g D1t P2qh 1~
Hy, = ' (H — =(fa+e VHy — 282 — 22| H,, = —H,,
t1 ( 1 tl( 2 ) 2 tl €t1 to tl 2
_ - D2 t, . - q1
q1 = e(q1 — €q2), p1=—=3 q2 = — (P2 +ep1), p2 = —=,
€ € t1
- —= 1/t1 0O
r= {E’ Y = ~1‘€72+1 0° Ot1 — 1 Y.
! 0 0 1
2—{—1—{—1—)3/2—}—1—}—1
(11)(1),21,111 — (1)21,21,111
9[1) =00 -7, 0(2) = t = —et, H=—¢"1H,
@1 =1—p1—Dp2, P1 = G2, g2 =1-—p1, P2 = q1 — G-
2+2—2+3/2
(11)(1), (A1)(1) — (1)21, (11)(1)
HTO :éfo—'_eil’ ego = _8717 ago :égoa t:{;‘{, H:€71E[—p1€17
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