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Abstract. Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120–348]
showed that the Chazy XII equation y′′′− 2yy′′+ 3y′2 = K(6y′− y2)2, K ∈ C, is equivalent
to a projective-invariant equation for an affine connection on a one-dimensional complex
manifold with projective structure. By exploiting this geometric connection it is shown that
the Chazy XII solution, for certain values of K, can be expressed as y = a1w1 +a2w2 +a3w3

where wi solve the generalized Darboux–Halphen system. This relationship holds only for
certain values of the coefficients (a1, a2, a3) and the Darboux–Halphen parameters (α, β, γ),
which are enumerated in Table 2. Consequently, the Chazy XII solution y(z) is parametrized
by a particular class of Schwarz triangle functions S(α, β, γ; z) which are used to represent the
solutions wi of the Darboux–Halphen system. The paper only considers the case where α+
β+γ < 1. The associated triangle functions are related among themselves via rational maps
that are derived from the classical algebraic transformations of hypergeometric functions.
The Chazy XII equation is also shown to be equivalent to a Ramanujan-type differential
system for a triple (P̂ , Q̂, R̂).
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1 Introduction

In 1911, J. Chazy [10] considered the classification problem of all third order differential equa-
tions of the form y′′′ = F (z, y, y′, y′′) possessing the Painlevé property, where the prime ′ denotes
d/dz, and F is a polynomial in y, y′, y′′ and locally analytic in z. A differential equation in the
complex plane is said to have the Painlevé property if its general solution has no movable branch
points. In his work, Chazy introduced thirteen classes of equations referred to as Chazy classes
I–XIII. Among these, classes III and XII are particularly interesting as their general solutions
possess a movable barrier, i.e., a closed curve in the complex plane across which the solutions
can not be analytically continued. That is, the solutions are analytic (or meromorphic) on either
side of the barrier depending on the prescribed initial conditions. Both the Chazy III and XII
equations can be expressed together as

y′′′ − 2yy′′ + 3y′2 = K
(
6y′ − y2

)2
, K = 0 or K =

4

36− k2
. (1.1)

The standard form for the Chazy XII equation is given by (1.1) with the parameter K =
4/(36 − k2), whereas the Chazy III equation corresponds to K = 0, and is the limiting case of
Chazy XII as k →∞. Chazy [10] observed the remarkable fact that (1.1) is linearizable via the
hypergeometric equation

s(s− 1)χ′′ +
(
7s
6 −

1
2

)
χ′ +

(
1

4k2
− 1

144

)
χ = 0,
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for k ∈ C∪∞, k 6= 0. He also showed that (1.1) possesses the Painlevé property when K = 0 or
when the value of the parameter k is a positive integer such that k > 1 and k 6= 6 (see also [12]).
The k = 0 case is linearizable by Airy’s equation χ′′ = csχ, c constant [11], and the limiting
cases of k = ±6 can be solved via elliptic functions [10, 12]. For K = 0 or for integer values
k > 6, the general solution of (1.1) possesses a movable natural barrier in the complex plane.

The Chazy III equation arises in mathematical physics in studies concerning magnetic mono-
poles [3], self-dual Yang–Mills and Einstein equations [8, 21], topological field theory [14], as well
as special reductions of hydrodynamic type equations [16] and incompressible fluids [30]. The
Chazy XII equation is related to the generalized Darboux–Halphen system [1, 2], which arises in
reductions of self-dual Yang–Mills equations associated with the gauge group of diffeomorphism
Diff(S3) of a 3-sphere [9] as well as SU(2)-invariant hypercomplex manifolds [22] with self-dual
Weyl curvature [6]. More recently, the Chazy XII equation with specific values of the parameter k
has been linked to the study of vanishing Cartan curvature invariant for certain types of rank 2
distributions on a 5-manifold [28, 29]. Consequently, there has been renewed interest in the
study of (1.1) and the singularity structure of its solutions in the complex plane. Interested
readers are referred to the comprehensive works by Bureau [4], Clarkson and Olver [11] and
Cosgrove [12].

A significant aspect of (1.1) is the fact that its general solutions can be expressed in terms of
Schwarz triangle functions which define conformal mappings from the upper half complex plane
onto a region bounded by three circular arcs (see, e.g., [24]). For K = 0, solutions of the Chazy
III equation are related to the automorphic forms associated with the modular group SL2(Z)
and its subgroups [7]. This fact can be traced back to the work of S. Ramanujan. In 1916,
Ramanujan [25], [27, pp. 136–162] introduced certain functions P (q), Q(q), R(q), q := e2πiz,
Im(z) > 0, which correspond to the (first three) Eisenstein series associated with the modular
group SL2(Z). He showed that these functions satisfy the differential relations

1

2πi
P ′(z) =

P 2 −Q
12

,
1

2πi
Q′(z) =

PQ−R
3

,
1

2πi
R′(z) =

PR−Q2

2
. (1.2)

System (1.2) can be reduced to a single third order differential equation for P (q). In fact, the
function y(z) := πiP (q) satisfies the Chazy III equation.

For K 6= 0, the solutions of the Chazy XII equation are also related to Schwarz functions
automorphic on curvilinear triangles that tessellate the interior of the natural barrier for integer
values of the parameter k > 6. For 2 ≤ k ≤ 5 the solutions of (1.1) are expressed via the
polyhedral functions which are rational functions associated with symmetry groups of solids
(see, e.g., [17]).

In this paper, we primarily consider the Chazy XII equation (1.1) for integer values k > 6.
The main objective of this paper is to find all solutions y(z) that are given in terms of Schwarz
triangle functions. The central result to achieve this goal is the following:

If y(z) = 6Y (z) solves (1.1) with K 6= 0, then Y (z) is a convex linear combination

Y (z) = β1w1 + α1w2 + γ1w3, α1, β1, γ1 > 0, α1 + β1 + γ1 = 1

of the variables w1, w2, w3 satisfying the Darboux–Halphen system (2.9) with parameters (α,β,γ).
The relationship holds only for special choices of (α1, β1) and (α, β, γ) listed in Table 2 of Sec-
tion 3.3. The variables w1, w2, w3 are expressed in terms of the Schwarz triangle function
s(z) = S(α, β, γ; z) and its derivatives as shown in (2.11).

The above result is obtained by extending the geometric formulation of (1.1) by B. Dubro-
vin [14] to recast (1.1) as a purely algebraic relation. The Chazy XII solution y(z) is expressed
in a parametric form involving hypergeometric functions 2F1

y = y(s), z = z(s),
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where s(z) = S(α, β, γ; z) is the Schwarz triangle function (see Section 2.2 for details). Thus,
Table 2 provides explicit parametrizations of the Chazy XII solutions in terms of a distinct
family of Schwarz triangle functions. This family includes previously known functions, e.g.,
S(12 ,

1
3 ,

1
k ; z), 6 < k ∈ N as well as some new cases. We believe that our approach is new, and

that it can be applied to study similar nonlinear equations with natural barrier [5, 23].

The paper is organized as follows. Section 2.1 develops necessary geometric background
on affine connections on a one-dimensional complex manifold with a projective structure fol-
lowing [14]. In Section 2.2, the generalized Darboux–Halphen system is introduced and its
solutions in terms of Schwarz triangle functions are discussed. The connection between the
Chazy XII equation and the generalized Darboux–Halphen system described in Section 3.1
leads to a purely algebraic formulation of (1.1). The solvability conditions of this algebraic
system are analyzed in Section 3.2, and these lead to a classification of the Chazy XII solutions
according to their pole structures inside the natural barrier. In Section 3.3, a Ramanujan-type
triple of functions is introduced. These functions satisfy a system of first order equations that
is similar to (1.2) and is equivalent to the Chazy XII equation. In Section 4.1, the Schwarz
triangle function is presented as the inverse to the conformal map defined by the ratio of two
linearly independent solutions of the hypergeometric equation. The parametrizations of the
Ramanujan-like triple as well as the Chazy XII solution in terms of hypergeometric functions
are also discussed here. Section 4.2 outlines the rational transformations between the distinct
Schwarz functions parameterizing the Chazy XII solution. These rational maps are derived
from the well-known algebraic transformations among the hypergeometric functions. In order to
make the paper self-contained, we have included two appendices. Appendix A contains a proof
of Lemma 3.1 introduced in Section 3.2, while Appendix B contains an elementary derivation of
the radius of the natural barrier for the Chazy XII solution.

2 Background

2.1 Affine connection and projective structure

We begin this section by reviewing the relation between the solution y(z) in (1.1) with affine
connections on a one-dimensional complex manifold. We consider differential forms of order
m ∈ N denoted by f = f(z)dzm on a one-dimensional complex manifold with local coordinate z,
where f(z) is a holomorphic (or meromorphic) function. Under the local change of coordinates
z → z̃(z), f transforms according to f(z)dzm = f̃(z̃)dz̃m. The covariant derivative of a m-
differential is a (m+ 1)-differential ∇f defined by

∇f = ∇f(z)dzm+1, ∇f(z) := f ′(z)−mη(z)f(z),

where η = η(z)dz is a holomorphic (or meromorphic) affine connection on the manifold. It
follows from the transformation property of ∇f that η must transform as

η̃(z̃)dz̃ = η(z)dz −
(
z̃′′(z)/z̃′(z)

)
dz. (2.1)

The “curvature” associated with η is defined by the quadratic differential Ω = Ω(z)dz2 as

Ω(z) := η′(z)− 1
2η(z)2.

In fact, Ω is a projective connection transforming under local change of coordinates as

Ω̃(z̃)dz̃2 = Ω(z)dz2 − {z̃; z}dz2, {z̃, z} :=
z̃′′′(z)

z̃′(z)
− 3

2

(
z̃′′(z)

z̃′(z)

)2

, (2.2)
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where {z̃, z} is called the Schwarzian derivative. Under the projective (Möbius) transformations

z → z̃ =
az + b

cz + d
, ad− bc 6= 0,

Ω transforms covariantly, i.e., Ω(z)dz2 = Ω̃(z̃)dz̃2 because {z̃, z} = 0. Consequently, any m-
differential of the form Q = Q(z)dzm, where Q(Ω(z),∇Ω(z),∇2Ω(z), . . .) is a homogeneous
polynomial of degree m with deg∇rΩ = r + 2, transforms covariantly and an equation of the
form Q = 0 remains invariant under a projective transformation. It was shown in [14] that
equation (1.1) corresponds to the projective-invariant equation Q = 0 for m = 2, i.e.,

∇2Ω + JΩ2 = 0 (2.3)

for any constant J . This yields the following third order differential equation for η(z):

η′′′ − 6ηη′′ + 9η′2 + (J − 12)
(
η′ − 1

2η
2
)2

= 0, (2.4)

which reduces to (1.1) by setting y = 3η and 108K = (12 − J). Thus, the Chazy III and
Chazy XII equations (1.1) can be interpreted as a certain differential polynomial invariant of
an affine connection in a one-dimensional complex manifold with a projective structure.

A projective structure on a one-dimensional complex manifold M ⊆ CP1 is defined by an
atlas of local coordinates with transition functions given by Möbius transformations. In a local
coordinate chart, the Möbius transformations are generated by the vector fields 〈∂z, z∂z, z2∂z〉
isomorphic to the Lie algebra sl2(C). A nontrivial representation of sl2(C) is given by the vector
fields 〈u21∂s, u1u2∂s, u22∂s〉 where u1(s), u2(s) is a pair of linearly independent solutions of the
complex Schrödinger equation

u′′ + 1
4V (s)u = 0, (2.5)

(where the factor 1
4 is inserted for convenience). Then the identification of the vector field ∂z

with u21∂s induces a local change of coordinates s→ z(s) on M via the ratio

z(s) =
u2(s)

u1(s)
. (2.6)

If M is not simply connected, the monodromy group G ⊂ GL2(C) resulting from the analytic
extensions of the pair (u2, u1)→ (au2 + bu1, cu2 + du1) along all possible closed loops in M acts
projectively on the ratio in (2.6) via the Möbius transformations

z → γ(z) :=
az + b

cz + d
,

(
a b
c d

)
∈ G. (2.7)

The projectivized monodromy group is the quotient group Γ ∼= G/λI2 ⊆ PSL2(C), where I2
is the 2 × 2 identity matrix. A different choice for the basis (u1, u2) would lead to a different
projective structure on M .

Note that the Schwarzian derivative is a differential invariant of the projective transformation,
i.e., {γ(z); s} = {z; s}. For a projective structure induced by the Schrödinger equation (2.5),
z(s) satisfies the third order Schwarzian equation

{z; s} = 1
2V (s), (2.8a)

which can be linearized via (2.5) and (2.6). It follows that the inverse function s(z) (if it
exists globally) is a projective invariant function on the manifold M with the automorphism
s(z) = s(γ(z)), γ ∈ Γ, and satisfies

{s; z}+ 1
2V (s)s′(z)2 = 0. (2.8b)
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An affine connection on the one-dimensional complex manifold M can be defined uniquely by
its trivialization η(s) = 0 in the projective invariant coordinate s. Then the transformation
s → z(s) = u2(s)/u1(s) in terms of the solutions of the Schrödinger equation leads to the
following expression of the affine connection in the z-coordinate

η(z) = s′′(z)/s′(z) = −z′′(s)/z′(s)2 = 2u1(s)u
′
1(s),

using the transformation rule (2.1). Furthermore, from (2.2), the differential Ω(z) is then given
in terms of the Schrödinger potential V (s) as

Ω(z) = {s; z} = −{z; s}/z′(s)2 = −1
2u

4
1(s)V (s).

Consequently, the solutions of the Chazy III and XII equations (1.1), which are equivalent
to (2.4), can be expressed via the solutions and the potential of the complex Schrödinger equa-
tion (2.5). It is worth noting that if the affine connection is trivialized in a different coordi-
nate x(s) with dx = f(s)ds, then from (2.1), η(z)dz = d log(f(s)s′(z)). We will utilize this
fact and the geometric framework discussed above to construct a solution method in Section 3
for (1.1), by exploiting its relationship to another nonlinear differential system described below.

2.2 The Halphen system and Schwarz triangle functions

In 1881, Halphen considered a slight variant [20, p. 1405, equation (5)] of the following nonlinear
differential system

w′1 = −w2w3 + w1(w2 + w3) + τ2,

w′2 = −w3w1 + w2(w3 + w1) + τ2, (2.9)

w′3 = −w1w2 + w3(w1 + w2) + τ2,

τ2 = α2(w1 − w2)(w2 − w3) + β2(w2 − w1)(w1 − w3) + γ2(w3 − w1)(w2 − w3),

for functions wi(z) 6= wj(z), i 6= j, where i, j ∈ {1, 2, 3}, and α, β, γ are constants. A special
case of this equation with α = β = γ = 0 originally appeared in Darboux’s work of triply
orthogonal surfaces on R3 in 1878 [13]. Its solution was given by Halphen [19] in 1881 in terms
of hypergeometric functions. Subsequently, Chazy [10] showed that y(z) := 2(w1 + w2 + w3)
satisfies the Chazy III equation introduced in Section 1. More recently, (2.9) was re-discovered
as a certain symmetry reduction of the self-dual Yang–Mills equations, and was referred to as
the generalized Darboux–Halphen (gDH) system [1, 2].

The gDH system can be solved via the Schrödinger equation (2.5) with the potential

V (s) =
1− α2

s2
+

1− β2

(s− 1)2
+
α2 + β2 − γ2 − 1

s(s− 1)
, (2.10)

and defining a projective structure on M via the ratio z(s) in (2.6) as described in Section 2.1.
Note that in this case (2.5) is a second order Fuchsian differential equation with three regular
singular points, and α, β, γ are the exponent differences (for any pair of linearly independent
solutions u1 and u2) prescribed at the singular points 0, 1 and ∞, respectively. The generators
of the projectivized monodromy group Γ are determined by the exponent differences. If the
gDH variables w1(z), w2(z), w3(z) are expressed in terms of the projective invariant inverse
function s(z) (and its derivatives) as follows:

w1 =
1

2

[
log

(
s′

s

)]′
, w2 =

1

2

[
log

(
s′

s− 1

)]′
, w3 =

1

2

[
log

(
s′

s(s− 1)

)]′
, (2.11)
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then a straightforward calculation shows that (2.9) reduces to the Schwarzian equation (2.8b)
for s(z), where the constants α, β, γ in V (s) are the same as those appearing in τ2 of (2.9).
Equation (2.8b) is equivalent to (2.8a) (after interchanging the dependent and independent
variables) which is then reduced to (2.5). Thus, the gDH system can be effectively linearized by
the Schrödinger equation (2.5) with the potential V (s) given by (2.10).

The ratio z(s) in (2.6) of any two linearly independent solutions u1, u2 of (2.5) with the
potential V (s) given by (2.10) defines a conformal mapping that was studied extensively by
H.A. Schwarz [31] in 1873. The map z(s) is, in general, branched at the regular singular points
s = 0, 1,∞. However, if the parameters α, β, γ are either zero or reciprocals of positive
integers, and satisfy α + β + γ < 1, then the mapping z(s) defines a plane region D, which is
tessellated by an infinite number of non-overlapping hyperbolic, circular triangles on the complex
z-plane. The interior of each triangle is an image of the upper (lower)-half s-plane under the
map z(s) and its analytic extensions, and is bounded by three circular arcs forming interior
angles απ, βπ, and γπ at the vertices z(0), z(1), and z(∞), respectively. Two adjacent triangles
are obtained via Schwarz reflection principle, and are images of each other under reflection
across the circular arc that forms their common boundary. In this case, the inverse s(z) is
a single-valued, meromorphic, automorphic function whose automorphism group is the projective
monodromy group Γ associated with (2.5) and (2.10). That is, s(γ(z)) = s(z) for all γ ∈ Γ
where γ(z) is the Möbius transformation defined in (2.7). When the exponent differences
satisfy the conditions prescribed above, Γ is a discrete subgroup of PSL(2,R), and turns out to
be the group of Möbius transformations generated by an even number of reflections across the
boundaries of the circular triangles. This automorphic inverse function

s(z) := S(α, β, γ; z)

is called the Schwarz triangle function, and the automorphism group Γ is referred to as the
triangle group. It is worth noting that if α, β, γ in (2.10) are either zero or reciprocals of
positive integers, but either α+ β + γ = 1 or α+ β + γ > 1, then the map z(s) in (2.6) tiles the
z-plane either into infinitely many plane triangles, or the extended z-plane (Riemann sphere)
into a finite number of spherical triangles, respectively. The triangle group Γ is a simply or
doubly periodic group when α+β+γ = 1, and corresponds to one of the four symmetry groups
of the regular solids when α+ β + γ > 1. A detailed discussion of the automorphic groups can
be found in the monograph [17].

It follows from (2.8b) or from (2.5) with V (s) as in (2.10) that the only possible singularities
of s(z) and its derivatives on the domain D are located at the vertices of each triangle where s(z)
takes the value of 0, 1, or∞. The boundary of D in the z-plane is a Γ-invariant circle C which is
orthogonal to all three sides of each triangle and its reflected images. This orthogonal circle C is
the set of limit points for the automorphic group Γ, and corresponds to a dense set of essential
singularities which form a natural barrier for the function s(z). In its domain of existence D, the
only possible singularities of s(z) are poles which correspond to the vertices where s(z) =∞.

In summary, when the parameters α, β, γ in (2.10) are either zero or reciprocals of positive
integers and α + β + γ < 1, the general solution of (2.8b) is obtained as the unique inverse of
the ratio

z(s) =
au2(s) + bu1(s)

cu2(s) + du1(s)
, a, b, c, d ∈ C, ad− bc = 1, (2.12)

where u1 and u2 are two linearly independent solutions of (2.5). The solution is single-valued
and meromorphic inside a disk in the extended z-plane, and can not be continued analytically
across the boundary of the disk. This boundary is movable as its center and radius are com-
pletely determined by the initial conditions, which depend on the complex parameters a, b, c, d.
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Recently, a number of new nonlinear differential equations whose solutions possess movable nat-
ural boundaries have been found [5, 23]. These can be solved by first transforming them into
a Schwarzian equation (2.8b) and then following the linearization scheme described above.

3 Chazy XII and triangle functions

In this section we present a solution method for the Chazy XII equation based on the geo-
metric approach discussed in Section 2. Specifically, we exploit the fact that the Chazy XII
equation in (1.1) is equivalent to the coordinate independent form in (2.3) for the quadratic
differential Ω. We express the affine connection η associated with Ω via the gDH variables
introduced in Section 2.2 so that the Chazy XII equation can be expressed in terms of the
Schrödinger potential V (s) in (2.10) and its derivatives, in a simple algebraic fashion. Then the
solution of the Chazy XII equation is obtained via the Schwarz triangle function S(α, β, γ; z)
for specific values of the triple (α, β, γ), which we identify. Recall that in this article we only
consider the Chazy XII equation. The parametrization of the Chazy III equation by Schwarz
triangle functions was studied in [7].

3.1 The gDH system and the Chazy XII equation

Note first from (2.11) and (2.1) that 2wi = d log(fi(s)s
′(z))/dz transforms as an affine connec-

tion that is trivialized in the coordinate xi(s) with dxi = fi(s)ds for

f1(s) =
1

s
, f2(s) =

1

s− 1
, f3(s) =

1

s(s− 1)
.

In particular, under a Möbius transformation z → γ(z) given by (2.7) with ad−bc = 1, wi trans-
forms as

wi(γ(z)) = (cz + d)2wi(z) + c(cz + d), γ ∈ Γ,

which leaves the gDH system (2.9) invariant. Next let us define the function

y(z) := a1w1 + a2w2 + a3w3, (3.1)

in terms of the gDH variables wi, where the coefficients ai are nonnegative constants. Then
from (2.11), y(z) can be expressed in terms of s(z) and its derivatives as follows:

y(z) =
p

2

φ′(z)

φ(z)
, φ(z) =

s′(z)

s(z)1−α1(s(z)− 1)1−β1
, (3.2)

with p := a1 + a2 + a3, α1 := a2/p and β1 := a1/p and 0 ≤ α1, β1 ≤ 1. If we set p = 6 above,
then it is possible to define an affine connection η such that in the z-coordinate,

η(z) =
y(z)

3
=

d log(φ)

dz
.

It follows from (2.1) that η is trivialized in the coordinate x such that dx = φ(z)dz = f(s)ds
where f(s) = s−1+α1(s− 1)−1+β1 . Moreover, in the s-coordinate,

η(s) = (log f)′(s) = −1− α1

s
− 1− β1

s− 1
, Ω(s) = η′(s)− 1

2η
2(s), (3.3)

which are rational functions of s. The curvature in the z-coordinate is obtained using the
transformation property (2.2) as

Ω(z) = (Ω(s)− {z; s})s′(z)2 = (Ω(s)− 1
2V (s))s′(z)2 := −V2(s)s′(z)2,
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where the second equality above follows from (2.8a) with V (s) as in (2.10). Then the covariant
derivatives of the quadratic differential Ω are given by the transformation rule

∇mΩ(z) = −(∇mV2(s))s′(z)m+2 := −Vm+2(s)s
′(z)m+2, m ≥ 1,

where Vm+2(s) are rational functions of s defined recursively for n ≥ 2 as

Vn+1(s) = ∇Vn(s) = V ′n(s)− nη(s)Vn(s), V2(s) = 1
2V (s)− η′(s) + 1

2η(s)2, (3.4)

with η(s) defined in (3.3).
Our next goal is to derive conditions under which Ω(z) will satisfy the projective-invariant

equation (2.3), equivalently, the affine connection η(z) will satisfy (2.4). Then the function
y(z) = 3η(z) defined in (3.2) with p = 6 will solve the Chazy XII equation in (1.1). Henceforth,
the value p = 6 will be used throughout the rest of this article.

It follows from the expressions for Ω(z) and its covariant derivatives obtained above, that
for m = 2, (2.3) implies a simple algebraic relation between rational functions V2(s) and V4(s),
namely,

V4(s) = JV 2
2 (s), J 6= 12, (3.5)

that should hold for all s. This condition imposes certain restrictions on the parameters (α, β, γ)
and (α1, β1) appearing in the functions V2(s) and V4(s). It is worth pointing out here that (3.5)
together with (3.1) lead to the central result advertised in Section 1.

In what follows, we will systematically determine the sets of parameters for which (3.5) holds.
In particular, we will identify the values of the triple (α, β, γ) in the Schwarz triangle functions
S(α, β, γ; z) which determine the solution of the Chazy XII equation y(z) via (3.2).

3.2 The Schwarz function parametrization

From equations (2.10), (3.3) and (3.4), the rational function V2(s) can be written as

V2(s) =
1

2

[
A

s2
+

B

(s− 1)2
+

C

s(s− 1)

]
,

A = α2
1 − α2, B = β21 − β2, C = γ21 −A−B − γ2, (3.6)

where the parameters (α1, β1, γ1) are defined as follows:

α1 =
a2
6
, β1 =

a1
6
, γ1 =

a3
6
, 0 ≤ α1, β1, γ1 ≤ 1, α1 + β1 + γ1 = 1. (3.7)

Then V4(s) is readily computed from the recurrence relation in (3.4). Upon substituting the
expressions for V2(s) and V4(s) into (3.5) and rationalizing the resulting expression, one finds
that (3.5) is satisfied if and only if

u1s
4 + u2s

3(s− 1) + u3s
2(s− 1)2 + u4s(s− 1)3 + u5(s− 1)4 = 0

for all values of s. The last identity is equivalent to the vanishing of the coefficients ui, i.e.,

u1 := JB2 − 12Bβ21 = 0, (3.8a)

u2 := 2JBC − 4[(1− α1)(1− 6β1)B + 1
2(1− 2β1)(1− 3β1)C] = 0, (3.8b)

u3 := J(2AB + C2)− 4
[
(2− 3β1)(1− β1)A+ (2− 3α1)(1− α1)B

+ 1
2 [(2− 3β1)(1− 2α1) + (2− 3α1)(1− 2β1)]C

]
= 0, (3.8c)

u4 := 2JAC − 4[(1− β1)(1− 6α1)A+ 1
2(1− 2α1)(1− 3α1)C] = 0, (3.8d)

u5 := JA2 − 12Aα2
1 = 0. (3.8e)
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System (3.8) represents a set of coupled, algebraic equations for the parameters (α, β, γ), (α1, β1)
and J subject to the conditions

α, β, γ ∈
{

1
n , n ∈ N

}
∪ {0}, α+ β + γ < 1, 0 ≤ α1, β1 ≤ 1, (3.9)

and J 6= 12. The case J = 0 corresponds to K = 1
9 or k = 0 in (1.1). The Chazy XII equation

for this case can be linearized via Airy’s equation as mentioned in Section 1. Hence, the J = 0
case is distinct from the cases considered here which correspond to Schrödinger potential V (s)
in (2.10) with three regular singular points. Furthermore, the following lemma is proven in
Appendix A.

Lemma 3.1. If J = 0, then (3.8) has no admissible solution satisfying conditions (3.9).

Henceforth, we take J 6= 0 through the remainder of the main text of this paper.

Lemma 3.2. If a triple (α, β, γ) of non-negative numbers satisfying α + β + γ < 1 solves the
system (3.8) with J 6= 12, then α 6= 0, β 6= 0, and γ 6= 0.

Proof. If α = 0, then A = α2
1 from (3.6). The condition (3.8e) with J 6= 12 implies α1 = 0.

Hence, A = 0. Then equations (3.8c) and (3.8d) imply B = 0 and C = 0. Consequently, β = β1,
γ = γ1 from (3.6). Therefore, β + γ = β1 + γ1 = 1 contradicting α+ β + γ < 1.

If β = 0, the proof is similar to above, starting from condition (3.8a) first, then using
equations (3.8b) and (3.8c).

If γ = 0 then D := A+B + C = γ21 . The condition
5∑
i=1

ui = 0 in (3.8) yields JD2 = 12γ21D,

which implies that γ1 = 0. Hence, α1 + β1 = 1 and D = 0. Using the last condition to
eliminate C from (3.8b) and (3.8d), one obtains

JAB = (1− 2β1)(1− 3β1)A− (1− 6β1)(1− 2α1 − β1)B, (3.10a)

JAB = −(1− 6α1)(1− 2β1 − α1)A+ (1− 2α1)(1− 3α1)B, (3.10b)

where (3.8a) and (3.8e) are also used to eliminate terms involving A2 and B2. It follows
from (3.10a) and (3.10b) together with α1 + β1 = 1 that if either A = 0, or B = 0, then
both A and B vanish. Hence, α+ β = α1 + β1 = 1, which contradicts α+ β + γ < 1.

Finally, let A 6= 0 and B 6= 0. Then (3.8e) and (3.8a) imply that JA = 12α2
1, JB = 12β21 .

Substituting these into (3.10a) and (3.10b) to eliminate A and B, yields two equations for α1

and β1. The resulting equations have no solution (α1, β1) that satisfies the condition α1+β1 = 1.
Thus, γ can not be 0. �

One can also make the inequalities for α1, β1, γ1 in (3.7) strict, i.e., 0 < α1, β1, γ1 < 1.

Lemma 3.3. If α1, β1, γ1 satisfy (3.7) and solve the system (3.8) with (α, β, γ) as in Lemma 3.2,
then α1, β1, γ1 /∈ {0, 1}.

Proof. If α1 = 0, then it follows from (3.8e) that A = 0. Then, (3.6) implies that α = α1 = 0,
contradicting Lemma 3.2. Thus α1 6= 0. A similar argument starting from (3.8a) shows that
β1 6= 0.

If α1 = 1, then (3.7) implies that β1 = 0, which is not possible. Similarly, β1 = 1 or γ1 = 1
is not possible.

Finally, assume that γ1 = 0. Since JD2 = 12γ21D where D := A + B + C (see Lemma 3.2),
it follows that D = 0. Then, (3.6) implies that γ = γ1 = 0, contradicting Lemma 3.2. �
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Lemma 3.2 implies that α, β, γ ∈ { 1n , n ∈ N} in (3.9). Let s(z) = S(α, β, γ; z) be the
triangle function associated with those parameters, and let z0 be a vertex of a triangle in the
domain of existence D of s(z) such that s(z0) := s0 ∈ {0, 1,∞}. The map z(s) defined via the
equations (2.6), (2.5) and (2.10), behaves locally near s = s0 as (see, e.g., [24])

z(s) = z0 + (s− s0)µψ1(s), s0 ∈ {0, 1} and

z(s) = z0 + s−µψ2

(
s−1
)
, s0 =∞,

where ψi is analytic near s0 with ψi(s0) 6= 0, and µ ∈ {α, β, γ} is the corresponding exponent
difference at the singular point s0. Consequently, the inverse s(z) is single-valued function
defined locally as

s(z) = s0 + (z − z0)mφ1(z), z0 ∈ {z(0), z(1)} and

s(z) = (z − z0)−mφ2(z), z0 = z(∞),

where φi(z) is analytic in the neighborhood of z = z0 with φi(z0) 6= 0, and m = µ−1 ∈ N. Thus,
s− s0 has a zero of order 1

α , 1
β at the vertices z0 = z(0), z(1), respectively, and s(z) has a pole

of order 1
γ at the vertex z0 = z(∞) of each triangle in the domain D. As mentioned earlier

in Section 2, it is sufficient to examine the behavior of the function s(z) and its derivatives
near the vertices z(0), z(1), and z(∞) of just one triangle inside the domain D. The Schwarz
reflection principle and the automorphic property then ensure that s(z) will have the same
behavior at the vertices of the reflected triangles in D. A straightforward calculation using the
above behavior of s(z) in (3.2) shows that y(z) is a meromorphic function in D with simple poles
at the vertices z(0), z(1), z(∞) of each triangle in D with the residues

Resz(0) = 3(α1
α − 1), Resz(1) = 3(β1β − 1), Resz(∞) = 3(γ1γ − 1).

Of course, at the boundary of the domain D, y(z) inherits the same natural barrier of essential
singularities as the function s(z). Note that it is possible for y(z) to be analytic at a vertex z0
in the interior of D provided that the residue vanishes at z0, i.e., if either α = α1, β = β1, or
γ = γ1. However, it is impossible for all three residues to vanish simultaneously because then
α+β+γ = α1 +β1 +γ1 = 1, which violates the condition α+β+γ < 1 in (3.9). The discussion
above concerning the singularity structure of y(z) in the interior of its domain of definition D
can be summarized in the following proposition.

Proposition 3.4. The solution y(z) of the Chazy XII equation given by (3.2) in terms of the
triangle function s(z) = S(α, β, γ; z) where α, β, γ satisfy (3.9), is meromorphic with only simple
poles inside its domain of definition D. These poles can only occur at the vertices z(0), z(1)
and z(∞) of the circular triangles tessellating the domain D. Moreover, y(z) must have at least
one simple pole at one of the vertices of each triangle.

Hence, there are three distinct cases resulting from Proposition 3.4, namely, y(z) has a simple
pole at (1) only one vertex z0 ∈ {z(0), z(1), z(∞)}, (2) only two of the three vertices, and (3) all
three vertices. The admissible parameters that satisfy (3.8) can be determined by considering
each case separately.

Case 1. Suppose y(z) is analytic at z(0) and z(1), and has a simple pole only at z(∞) on each
triangle in D. Then the vanishing of residues at z(0) and z(1) is equivalent to α = α1 and β = β1,
which implies that A = B = 0. Note however that C 6= 0 since Resz(∞) 6= 0. In this case (3.8a)
and (3.8e) are identically satisfied, while (3.8b) and (3.8d) imply that (1 − 2α1)(1 − 3α1) =
(1− 2β1)(1− 3β1) = 0. Hence,

(α, β) ∈
{(

1
2 ,

1
2

)
,
(
1
2 ,

1
3

)
,
(
1
3 ,

1
2

)(
1
3 ,

1
3

)}
.
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Since the subcase α = β = 1
2 is not admissible due to the condition α + β + γ < 1, and the

subcases (α, β) ∈ {(12 ,
1
3), (13 ,

1
2)} are the same modulo a vertex permutation, there are only two

distinct subcases, namely, (α, β) = (12 ,
1
3) and (α, β) = (13 ,

1
3).

If (α, β) = (12 ,
1
3), the remaining condition (3.8c) yields JC = 1

3 . Choosing γ = 1
k , k ∈ N,

gives J = 12k2/(k2 − 36), which is consistent with the value of K in (1.1). Recall (from the
definition below (2.4)) that K = (12− J)/108.

If (α, β) = (13 ,
1
3), then (3.8c) implies that JC = 4

3 . In this case, choosing γ = 1
k , k ∈ N gives

J = 12k2/(k2 − 9) so that K = 1/(9 − k2), which is different from the value used by Chazy
in (1.1). However, the rescaling k → k

2 restores the value of K in (1.1) while modifying the value
of γ to γ = 2

k . If the simple pole of y(z) is chosen to be at z(0) or z(1) instead, the values of
the parameters are simply permuted. Thus, modulo permutations, there are two possible sets
of admissible parameters:

(i) (α, β, γ) =
(
1
2 ,

1
3 ,

1
k

)
, (α1, β1, γ1) =

(
1
2 ,

1
3 ,

1
6

)
,

(ii) (α, β, γ) =
(
1
3 ,

1
3 ,

2
k

)
, (α1, β1, γ1) =

(
1
3 ,

1
3 ,

1
3

)
,

for the same value of K as in (1.1), and the rescaled (k → 2k) version of subcase (ii) above.
Case 2. Suppose now y(z) is analytic at only one vertex z(0) and has a simple pole at each

of z(1) and z(∞). Then α = α1, which means A = 0, so that (3.8e) is automatically satisfied.
Here, B 6= 0 and B + C 6= 0 since the residues at z(1) and z(∞) do not vanish. Then (3.8d)
leads to three subcases: (i) α1 = 1

2 , (ii) α1 = 1
3 , and (iii) C = 0.

In the case where α1 = 1
2 , one solves first for β1, then for B and B + C from the remaining

equations in (3.8). The admissible values of the parameters up to a permutation, are β1 = 1
6 ,

and (α, β, γ) = (12 ,
1
k ,

2
k ), k ∈ N with the value of K as in (1.1). However, one also obtains

(α, β, γ) = (12 ,
1
2k ,

1
k ) with K = 1/(9− k2) as in Case 1 above, which can be rescaled via k → k

2
to Chazy’s choice for K.

If α1 = 1
3 , a similar analysis as above yields β1 = 1

6 , and (α, β, γ) = (13 ,
1
k ,

3
k ), k ∈ N with K

as in (1.1). There is also a second case with (α, β, γ) = (13 ,
1
3k ,

1
k ) and K = 4/(36− 9k2), which

can be rescaled back to the previous case via k → k
3 .

Finally, if C = 0, (3.8c) reduces to (2−3α1)(1−α1)B = 0. Therefore, α1 = 2
3 since α1 = α 6= 1

and B 6= 0. The remaining equations in (3.8) yield β1 = 1
6 , β = γ = 1

k , k ∈ N with K as in (1.1).
Case 3. If y(z) has a simple pole at each of the vertices z(0), z(1) and z(∞), then A 6= 0,

B 6= 0, and A+B+C 6= 0. The equations (3.8a) and (3.8e) imply, respectively, that JB = 12β21
and JA = 12α2

1. Substituting these into (3.8b) and (3.8d), one obtains

(1− 6β1)
[
2(1− α1)B + (1 + β1)C

]
= 0,

(1− 6α1)
[
2(1− β1)A+ (1 + α1)C

]
= 0.

The above equations lead to four distinct subcases: (i) α1 = β1 = 1
6 , (ii) α1 = 1

6 , β1 6= 1
6 ,

(iii) α1 6= 1
6 , β1 = 1

6 , (iv) α1 6= 1
6 , β1 6=

1
6 . From the remaining condition (3.8c) and the above

equations one finds that the first three subcases yield, modulo permutations, only one distinct
set of admissible parameter values given by

(α, β, γ) =
(
1
k ,

1
k ,

4
k

)
, k ∈ N, (α1, β1, γ1) =

(
1
6 ,

1
6 ,

2
3

)
,

with K as in (1.1). Like the previous two cases, an additional set (α, β, γ) = ( 1
4k ,

1
4k ,

1
k ) with

K = 1/(9− 4k2) is also found by first choosing γ = 1
k and then solving for α, β. This case can

be reduced to the one displayed above by the rescaling k → k
4 .

Subcase (iv) leads to α1 = β1 and α = β. Using condition (3.8c), one obtains the equi-
lateral triangle corresponding to α = β = γ = 2

k , k ∈ N and α1 = β1 = γ1 = 1
3 with K

as in (1.1). It is also possible to choose α = β = γ = 1
k for the same values of α1 and β1
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Case (α, β, γ) (α1, β1) K (Resz(0),Resz(1),Resz(∞))

1(a) (12 ,
1
3 ,

1
k ) (12 ,

1
3) 4

36−k2 (0, 0, k−62 )

1(b) (13 ,
1
3 ,

2
k ) (13 ,

1
3) 4

36−k2 (0, 0, k−62 )

1(b)∗ (13 ,
1
3 ,

1
k ) (13 ,

1
3) 1

9−k2 (0, 0, k − 3)

2(a) (12 ,
1
k ,

2
k ) (12 ,

1
6) 4

36−k2 (0, k−62 , k−62 )

2(a)∗ (12 ,
1
2k ,

1
k ) (12 ,

1
6) 1

9−k2 (0, k − 3, k − 3)

2(b) (13 ,
1
k ,

3
k ) (13 ,

1
6) 4

36−k2 (0, k−62 , k−62 )

2(b)∗ (13 ,
1
3k ,

1
k ) (13 ,

1
6) 4

9(4−k2) (0, 3k−62 , 3k−62 )

2(c) (23 ,
1
k ,

1
k ) (23 ,

1
6) 4

36−k2 (0, k−62 , k−62 )

3(a) ( 1k ,
1
k ,

4
k ) (16 ,

1
6) 4

36−k2 (k−62 , k−62 , k−62 )

3(a)∗ ( 1
4k ,

1
4k ,

1
k ) (16 ,

1
6) 1

9−4k2 (2k − 3, 2k − 3, 2k − 3)

3(b) ( 2k ,
2
k ,

2
k ) (13 ,

1
3) 4

36−k2 (k−62 , k−62 , k−62 )

(3b)∗ ( 1k ,
1
k ,

1
k ) (13 ,

1
3) 1

9−k2 (k − 3, k − 3, k − 3)

Table 1. Parameters of triangle functions associated with the Chazy XII solution.

but with K = 1/(9 − k2). These are related by the rescaling k → k
2 . The results of our

classification of the Chazy XII solution in terms of the Schwarz triangle functions S(α, β, γ; z)
are summarized in Table 1. The parameters (α, β, γ) of the triangle function are listed in the
second column, while the parameters (α1, β1) in the third column determine the correspond-
ing solution y(z) given by (3.2). This solution has a simple pole at one or more of the ver-
tices z(0), z(1), z(∞) as stated in Proposition 3.4. The residue at each simple pole is listed
in the last column. The values of the Chazy parameter K are given in the fourth column.
The parameter values listed in each row are modulo all possible permutations of the vertices,
which also permutes the triples (α, β, γ) and (α1, β1, γ1) accordingly, but K is the same for
all permutations. Except for the Case 1(a) which was known to Chazy [10] and Cases 1(b)
and 3(b) which were found in [2] using a different method, the remaining cases are new to
the best of our knowledge. Note that in some cases, the second column of Table 1 contains
a parameter other than the reciprocal of a positive integer. The corresponding Schwarz func-
tion is then not single-valued in its domain of definition but the Chazy XII solution y(z) given
by (3.2) still remains single-valued. Such multi-valued Schwarz functions are related to a single-
valued Schwarz function via a rational transformation. For example, S(23 ,

1
k ,

1
k ; z) in Case 2(c)

is related to the single-valued function S(12 ,
1
3 ,

1
k ; z) in Case 1(a) via a degree-2 rational trans-

formation [24]

S
(
1
2 ,

1
3 ,

1
k ; εz

)
=

[
S(23 ,

1
k ,

1
k ; z)− 2

]2
4
[
1− S(23 ,

1
k ,

1
k ; z)

] , ε = 3

√
−1

4 .

In this case the associated triangle in the z-plane with interior angles {2π3 ,
π
k ,

π
k } is divided along

the bisector of the angle 2π
3 into two triangles each with interior angles {π2 ,

π
3 ,

π
k }. We shall dis-

cuss such rational transformations among the Schwarz triangle functions in Section 4.2, which
correspond to decomposition of a curvilinear triangle into two or more similar sub-triangles.
Each of the cases marked with an asterisk corresponds to a single valued triangle function
but the parameter K is different from that considered by Chazy. Each such case can be
transformed to one in the immediately preceding row by a rescaling k → k

m for m = 2, 3
or 4.
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It is useful to note1 that if one rescales the Chazy function by introducing Y (z) = y(z)/6
then (1.1) takes the form

Y ′′′ − 12Y Y ′′ + 3Y ′ 2 = K ′
(
Y ′ − Y 2

)2
, K ′ = 0 or K ′ =

864

36− k2
.

Then using (3.1) and (3.7), Y (z) can be expressed as a convex linear combination of the gDH
variables as follows

Y (z) = β1ω1 + α1ω2 + γ1ω3, α1 + β1 + γ1 = 1,

where the possible values of (α1, β1) are listed in Table 1.

3.3 Chazy XII and 3 × 3 systems

We now make a couple of observations regarding the equivalence between the Chazy XII equation
and systems of first order equations. The first is the relationship between the Chazy XII
solution y(z) and the gDH variables wi given by (3.1). Note that for each case in Table 1,
there is a gDH system (2.9) defined by the triple (α, β, γ). Then from (3.1) with coefficients
given by a1 = 6β1, a2 = 6α1 and a3 = 6γ1, this gDH system can be reduced to the Chazy XII
equation (1.1) with the corresponding Chazy parameter K listed in Table 1. It should be evident
from Table 1 that there are several gDH systems corresponding to the same Chazy XII equation.
This fact is illustrated in Table 2, where we list the combinations of the gDH variables wi which
give the same y(z) satisfying the Chazy XII equation with parameter K = 4

36−k2 . However, in

each case the wi satisfy the gDH system (2.9) with a different function τ2 parameterized by the
triple (α, β, γ) listed in the corresponding row of Table 2.

Case (α, β, γ) (α1, β1) y = a1w1 + a2w2 + a3w3 φ(z) = s′(z)/[s1−α1(s− 1)1−β1 ]

1(a) (12 ,
1
3 ,

1
k ) (12 ,

1
3) 2w1 + 3w2 + w3 φ = s′/[s

1
2 (s− 1)

2
3 ]

1(b) (13 ,
1
3 ,

2
k ) (13 ,

1
3) 2w1 + 2w2 + 2w3 φ = s′/[s

2
3 (s− 1)

2
3 ]

2(a) (12 ,
1
k ,

2
k ) (12 ,

1
6) w1 + 3w2 + 2w3 φ = s′/[s

1
2 (s− 1)

5
6 ]

2(b) (13 ,
1
k ,

3
k ) (13 ,

1
6) w1 + 2w2 + 3w3 φ = s′/[s

2
3 (s− 1)

5
6 ]

2(c) (23 ,
1
k ,

1
k ) (23 ,

1
6) w1 + 4w2 + w3 φ = s′/[s

1
3 (s− 1)

5
6 ]

3(a) ( 1k ,
1
k ,

4
k ) (16 ,

1
6) w1 + w2 + 4w3 φ = s′/[s

5
6 (s− 1)

5
6 ]

3(b) ( 2k ,
2
k ,

2
k ) (13 ,

1
3) 2w1 + 2w2 + 2w3 φ = s′/[s

2
3 (s− 1)

2
3 ]

Table 2. Distinct gDH systems associated with Chazy XII equation with K = 4
36−k2 .

The last column of Table 2 lists the function φ(z) whose logarithmic derivative in (3.2) gives
the solution y(z) for the Chazy XII equation. Since φ(z) are expressed in terms triangle functions
S(α, β, γ; z) and their derivatives, it is possible for the same solution y(z) to be parametrized by
two different triangle functions s1(z) and s2(z). For instance, Cases 1(a) and 1(b) correspond
to s1(z) = S(12 ,

1
3 ,

1
k ; z) and s2(z) = S(13 ,

1
3 ,

2
k ; z). Then it follows from (3.2) that the correspon-

ding φ(z) must be proportional. This leads to a differential relation between the two triangle
functions, namely,

s′1(z)

s
1/2
1 (s1 − 1)2/3

= C
s′2(z)

s
2/3
2 (s2 − 1)2/3

,

1We thank a referee for this observation.



14 O. Bihun and S. Chakravarty

for some constant C, and can be solved to yield s1(z) = (2s2(εz) − 1)2, ε = C4−
1
3 . In fact, all

the triangle functions listed in Table 2 are related via rational transformations, which will be
deduced in the next section by employing certain well-known transformations between solutions
of hypergeometric equations.

Lastly, we introduce a Ramanujan-type system that is equivalent to the Chazy XII equation.
Recall from Section 1 that the Ramanujan system (1.2) is equivalent to the Chazy III equation
given by (1.1) with K = 0 if one identifies y(z) = πiP (q). It will be shown that both (1.2) and
the differential system (3.12) introduced below have a simple geometric interpretation. Using
the notations in Section 2.1, let us define

P̂ (z) :=
3

πi
η(z), Q̂(z) :=

18

π2
Ω(z), R̂(z) :=

27i

π3
∇Ω(z). (3.11)

Then, if η(z) satisfies (2.4), the triple (P̂ , Q̂, R̂) satisfies the differential system

1

2πi
P̂ ′(z) =

P̂ 2 − Q̂
12

,
1

2πi
Q̂′(z) =

P̂ Q̂− R̂
3

,
1

2πi
R̂′(z) =

P̂ R̂

2
− J

24
Q̂2. (3.12)

The first two equations in (3.12) are simply the definitions of the quadratic differential Ω =
η′−η2/2 and its covariant derivative ∇Ω = Ω′−2ηΩ associated with the affine connection η(z).
The third one is equation (2.3) which is equivalent to the Chazy XII equation with J = 12−108K,
K being the Chazy parameter. When J = 12, (3.12) reduces to the Ramanujan system (1.2)
which is equivalent to the Chazy III equation. More explicitly, if y(z) is a solution of (1.1) then

P̂ =
y

πi
, Q̂ = −6y′ − y2

(πi)2
, R̂ =

9y′′ − 9yy′ + y3

(πi)3

satisfy (3.12) which subsumes the Ramanujan system (1.2). The Ramanujan triple (P,Q,R) has
a modular interpretation since it is related to the Eisenstein series associated with the modular
group SL2(Z). The functions P̂ , Q̂, R̂ are also automorphic forms for the triangle group Γ and
are parameterized by the triangle functions S(α, β, γ; z) via (3.2). In fact they transform as
follows:

P̂ (γ(z)) = (cz + d)2P̂ (z) +
6c(cz + d)

πi
, Q̂(γ(z)) = (cz + d)4Q̂(z),

R̂(γ(z)) = (cz + d)6R̂(z), where γ(z) =
az + b

cz + d
,

(
a b
c d

)
∈ Γ.

However, we are not aware of any deep automorphic interpretation for (P̂ , Q̂, R̂) similar to that
of the Ramanujan triple. Ramanujan [26] also gave a parametrization of his triple using the
hypergeometric function 2F1(

1
2 ,

1
2 , 1; s) that is related to the complete elliptic integral of the first

kind. In the following section, we discuss the parametrizations of the Chazy XII solution y(z)
as well as (P̂ , Q̂, R̂) in terms of hypergeometric functions.

4 Parameterization of Chazy XII solutions

Explicit solutions of the Chazy equation were presented in terms of the triangle functions listed
in Table 1 of Section 3. Recall that the triangle functions satisfy the nonlinear third order
equation given by (2.8b) with the potential V (s) as in (2.10). Equation (2.8b) is linearized
via solutions of the Fuchsian equation (2.5) associated with V (s) using (2.12). Consequently,
it is more convenient to express the Chazy solution y(s(z)) implicitly, that is, in terms of the
variable s and a solution u(s) of the linear equation (2.5). Thus it is possible to treat the
solutions of the nonlinear Chazy XII equation in terms of the classical theory of linear Fuchsian
differential equations with three regular singular points, equivalently, via the hypergeometric
equation. This is the main purpose of the present section.
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4.1 Hypergeometric parametrization

In the following the domain D of the triangle functions s(z) will be taken as the interior of
the orthogonal circle C discussed in Section 2.2, and the hypergeometric form of the Fuchsian
differential equation (2.5) will be considered, in order to make contact with standard literature.
If u(s) is a solution of (2.5), then the function

χ(s) = s(α−1)/2(s− 1)(β−1)/2u(s) (4.1)

satisfies the hypergeometric equation

χ′′ +

(
1− α
s

+
1− β
s− 1

)
χ′ +

(α+ β − 1)2 − γ2

4s(s− 1)
χ = 0, (4.2a)

which can be written in more standard form as

s(s− 1)χ′′ + [(a+ b+ 1)s− c]χ′ + abχ = 0, (4.2b)

where a = 1
2(1−α− β − γ), b = 1

2(1−α− β + γ), and c = 1−α. The transformation (4.1) sets
the local exponents to (0, α) at s = 0, (0, β) at s = 1 and (12(1−α−β− γ), 12(1−α−β+ γ)) at
s =∞. Note, however, that the exponent differences as well as the ratio z(s) of any two linearly
independent solutions of (4.2b) coincide with those for (2.12). Consequently, one can employ the
ratio of two independent solutions of (4.2a) instead of (2.5) to construct the conformal mapping
and triangle function described in Section 2.2.

We next outline how to construct the triangle functions s(z) listed in Table 1 together
with their orthogonal circles using pairs of linearly independent hypergeometric solutions (see,
e.g., [24]). Notice from (2.12) that z(s) is defined up to an arbitrary Möbius transformation
with three complex parameters of the z-plane depending on the choice of linearly independent
solutions χ1 and χ2 of (4.2b). One can then choose two of the three parameters in the Möbius
transformation in such a manner that the conformal map (2.12) results in a triangle which has
the vertex z(0) placed at the origin of the z-plane, and the two circular arcs meeting there
can be transformed to linear segments subtending angle πα at this vertex z(0). The remaining
freedom in the Möbius transformation can be used to rotate the line segment connecting the
vertices z(0) and z(1) onto the real axis. The remaining side joining z(1) and z(∞) is formed
by the arc of a circle such that the origin O is in the exterior of this circle when the sum of
the interior angles of the triangle is less than π, i.e., when α + β + γ < 1. Hence, it is possible
to draw a line from the origin tangent to this circle at some point F (see Fig. 1, Appendix B).
Then there exists a unique circle C with center at the origin O and passing through the point F,
thus having radius OF, that is orthogonal to the straight edges of the triangle thus constructed.
Consequently, C is orthogonal to each side of the triangle.

A pair of hypergeometric solutions whose ratio maps the upper half s-plane onto a triangle
constructed above is given by χ1 = 2F1(a, b; c; s) and χ2 = s1−c 2F1(a− c+ 1, b− c+ 1; 2− c; s).
Here the notation of (4.2b) has been used and 2F1(a, b; c; s) is the standard hypergeometric
series solution of (4.2b), analytic in the neighborhood of s = 0 with 2F1(a, b; c; s = 0) = 1. Note
that χ2 vanishes at the branch point s = 0 if α = 1 − c > 0. The explicit form of the map is
then

z(s) =
χ2

χ1
=
s1−c 2F1(a− c+ 1, b− c+ 1; 2− c; s)

2F1(a, b; c; s)
. (4.3)

Since the triples (α, β, γ) listed in Table 1 satisfy (3.9), α > 0. Hence, it is clear that z(0) = 0.
Furthermore, the parameters (a, b, c) are real and positive. Consequently, the 2F1 functions are
also real and positive for Re(s) > 0. Moreover, if we take the real, positive branch of s1−c when
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Re(s) > 0, then it follows from (4.3) that z(s) is also real and positive as s varies from 0 to 1
along the real s-axis. This confirms that one side of the triangle lies on the positive z-axis joining
the vertices z(0) = 0 and z(1). The other side of the triangle originating from the vertex z(0) = 0
is the conformal image of the negative real s-axis on which the 2F1 functions are also real but
the factor s1−c = (−|s|)1−c = |s|eiπα. This shows that the negative real s-axis is mapped to
a linear segment joining z(0) and z(∞), and making an angle πα with the positive z-axis. One
can also compute the vertices z(1) and z(∞) by considering the analytic continuations of the 2F1

functions into the neighborhoods of s = 1 and s =∞. These are given by (see, e.g., [15, 24])

z(1) =
Γ(2− c)Γ(c− a)Γ(c− b)

Γ(c)Γ(1− a)Γ(1− b)
, z(∞) = eπi(1−c)

Γ(b)Γ(c− a)Γ(2− c)
Γ(c)Γ(b− c+ 1)Γ(1− a)

,

where Γ(·) is the Gamma function. From the expressions for z(1) and z(∞), it is possible
to determine the radius R of the orthogonal circle C which forms the natural barrier beyond
which s(z) can not be analytically continued. In terms of the triple (α, β, γ) parameterizing the
triangle function S(α, β, γ; z) the square of the radius of the barrier is [12]

R2 =

(
Γ(1 + α)

Γ(1− α)

)2 ∏
εi=±1

Γ(12(1− α+ ε1β + ε2γ))

Γ(12(1 + α+ ε1β + ε2γ))
.

The above expression appears in [10, 12] but without a derivation, which, although elementary,
is not immediately obvious. For that reason, we have included a brief derivation in Appendix B.

The map z(s) in (4.3) is a Puiseux series in s of the form z(s) = sαψ(s) where ψ(s) is analytic
near s = 0 with ψ(0) 6= 0. In fact, the power series for ψ(s) can be readily derived from the
series expansion of the 2F1 functions in (4.3). Since α = 1

n , n ≥ 2, n ∈ N, the series for z(s) can
be inverted to obtain the power series of the inverse s(z) in the form

s(z) = zn
(
1 + b1z

n + b2z
2n + · · ·

)
,

where the coefficients bj can be obtained recursively from the coefficients in the series expansion
of ψ(s). The series for s(z) converges in a neighborhood of z(0) = 0 and defines a single-valued,
holomorphic function in this neighborhood as discussed earlier in Section 3.2. By analytic
continuation of the hypergeometric functions onto the neighborhoods of s = 1 and s =∞, it is
possible to obtain similar series expansions for s(z) near z(1) and z(∞) as well. Note that s(z)
has a pole of order 1

γ at z(∞).
Let (χ1, χ2) be the pair of hypergeometric solutions whose ratio defines z(s) as in (4.3),

then s′(z) = 1/z′(s) = χ2
1/W (χ1, χ2) where the Wronskian of the pair of solutions W (χ1, χ2) =

Asα−1(s − 1)β−1 from Abel’s formula. The nonzero constant A is found by explicitly calcula-
ting the Wronskian of (χ1, χ2) in (4.3) and letting s → 0. Thus one obtains A = (−1)1−βα.
Substituting the expression for s′(z) in (3.2) yields a parametrization for y(z) in terms of χ1(s)
and χ′1(s), namely

y(s(z)) =
3

α
s1−α(1− s)1−β

(
2χ1χ

′
1 +

[
α1 − α
s

+
β1 − β
s− 1

]
χ2
1

)
. (4.4)

To be clear y(z) is expressed parametrically by z(s) in (4.3) and y(s) given by (4.4).
Note that when α = α1, β = β1, y(s(z)) is analytic at the vertices z = z(0), z(1) since χ1(s)

is analytic at s = 0, 1. On the other hand, if α = α1 but β 6= β1 then y(s(z)) is analytic at z(0)
but has a simple pole at z = z(1). These observations are consistent with Cases 1 and 2 in
Section 3.2.

The Ramanujan-type triple (P̂ , Q̂, R̂) of automorphic functions introduced in Section 3.3 can
also be formulated in terms of the hypergeometric function χ1(s) = 2F1(a, b; c; s). The function
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P̂ = y/(πi) is obtained directly from (4.4) above. In order to obtain expressions for Q̂, R̂, one
first recalls from Section 3.1 that the quadratic differential Ω and its covariant derivatives are
given in terms of s(z) and s′(z) by

Ω(s(z)) = −V2(s(z))s′(z)2, ∇Ω(s(z)) = −V3(s(z))s′(z)3,

where the rational functions V2(s) and V3(s) are obtained from (3.4). Then from (3.11) together
with the relation s′(z) = χ2

1/W (s) it follows that

Q̂ = −2

(
3

πW (s)

)2

V2(s)χ
4
1(s), R̂ =

(
3i

πW (s)

)3

V3(s)χ
6
1(s), (4.5)

where W (s) = αsα−1(1 − s)β−1. The explicit form of the function V2(s) is given in (3.6), and
from (3.4) one obtains V3(s) = V ′2(s) +

(
1−α1
s + 1−β1

s−1
)
V2(s). Alternatively, one could use (4.4)

and the first two equations from (3.12) to derive (4.5).

Equations (4.4) and (4.5) provide parametrizations of the triple (P̂ , Q̂, R̂), equivalently the
differential geometric quantities (η,Ω,∇Ω) in terms of s and the hypergeometric function χ1(s).
Conversely, it is also possible to derive expressions for S(α, β, γ; z) and χ1 in terms of the
functions P̂ , Q̂ and R̂. For instance, Case 1(a) in Table 1 gives rise to the following relations(

Jπ2

12
Q̂

) 1
4

= (1− s)
1
12 2F1

(
1
12 −

1
2k ,

1
12 + 1

2k ; 1
2 ; s
)
,

s(z) = S
(
1
2 ,

1
3 ; 1

k ; z
)

=
12R̂2

12R̂2 − JQ̂3
.

Note that if k → ∞ (Chazy III case with J = 12), one recovers the well known representation
of the modular function S(12 ,

1
3 ; 0; z) from above in terms of the Ramanujan functions Q and R,

which are the Eisenstein series of weight 4 and 6 respectively, for the modular group. More-
over, the first relation above leads to (a slight variant of) a remarkable identity discovered by
Ramanujan [27]

√
πQ

1
4 = 2F1

(
1
12 ,

5
12 ; 1

2 ; R
2

Q3

)
.

This identity is obtained by first letting k → ∞ and then applying the Pfaff transformation
(1− s)1/12 2F1(

1
12 ,

1
12 ; 1

2 ; s) = 2F1(
1
12 ,

5
12 ; 1

2 ; s
s−1).

4.2 Pull-back maps of Schwarz functions

Recall that Table 2 of Section 3.3 lists the parametrizations of the Chazy XII solution y(z) with
Chazy parameter 4

36−k2 in terms of different Schwarz triangle functions. It follows from (3.2)
that any two of these Schwarz functions are related via the differential relation φ1(z) = Cφ2(z)
for some constant C, where the φi(z) are listed in the last column of Table 2. In fact, the example
given below Table 2 provides such a mapping between the triangle functions corresponding to
Cases 1(a) and 1(b) of Table 2. In this subsection we systematically outline the transformations
among the various triangle functions linking all the cases presented in Table 2.

The mappings of the Schwarz functions stem from the well-known algebraic transformations
of the hypergeometric functions induced by the pull-back transformation of the correspond-
ing hypergeometric differential equation (4.2b) [18]. These transformations are of the form

2F1(a, b; c; s) = ξ(s) 2F1(a
′, b′; c′; θ(s)), where θ(s) is a rational function, and ξ(s) is an algebraic

function (see, e.g., [15], also [32] for more recent work). To make this paper self-contained, we
include here the details of the derivations of the relations between the triangle functions listed in
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Table 2. It suffices to derive the transformations relating Case 1(a) to all other cases in Table 2.
Let s̃ = θ(s) denote the rational map where s̃ = S(12 ,

1
3 ,

1
k ; z) corresponds to Case 1(a) and

s = S(α, β, γ; z) corresponds to any of the other cases. Let s̃ = f1(s1) = f2(s2) denote two such
rational maps for Schwarz functions s1(z) and s2(z) which parametrize the same Chazy XII so-
lution y(z). Then the transformation between s1 and s2 can be expressed as s2 = (f−12 ◦f1)(s1),
which may generally not be single valued.

Below we consider each case from Table 2 separately, treating Case (i) below as an illustrative
example of the procedure.

Case (i). The mapping between the Schwarz functions S(12 ,
1
3 ,

1
k ; z) and S(13 ,

1
3 ,

2
k ; z) corre-

sponding to Cases 1(a) and 1(b) of Table 2 follows from the well-known quadratic transforma-
tion [18]

2F1(a, b; c; s) = 2F1

(
a
2 ,

b
2 ; c; 4s(1− s)

)
, c =

a+ b+ 1

2
,

of hypergeometric functions. Note that the parameters (a, b, c) above are constrained by a linear
relation. Choosing a = 1

6 −
1
k , b = 1

6 + 1
k whence c = 2

3 , yields (α, β, γ) = (1−c, c−a− b, b−a) =
(13 ,

1
3 ,

2
k ) and (α, β, γ) = (1− c, c− 1

2(a+ b), 12(b−a)) = (13 ,
1
2 ,

1
k ). These values correspond to the

exponent differences at the singular points s = 0, 1,∞ (up to their permutations). One applies
the quadratic transformation to the 2F1 functions in the right hand side of the map (4.3) to
construct z(s) first, and then invert the obtained relation to recover the map between the two
triangle functions. Thus, in this case, one obtains from (4.3)

z(s) = s
1
3
2F1(

1
2 −

1
k ,

1
2 + 1

k ; 4
3 ; s)

2F1(
1
6 −

1
k ,

1
6 + 1

k ; 2
3 ; s)

= (s(1− s))
1
3
2F1(

5
6 −

1
k ,

5
6 + 1

k ; 4
3 ; s)

2F1(
1
6 −

1
k ,

1
6 + 1

k ; 2
3 ; s)

,

where the Euler transformation 2F1(a, b; c; s) = (1−s)c−a−b 2F1(c−a, c−b; c; s) and the symmetry

2F1(a, b; c; s) = 2F1(b, a; c; s) have been used to obtain the last equality. Note that the parameters
in the 2F1 functions of this last expression satisfy the relation c = (a + b + 1)/2. Next, the
quadratic transformation is applied to both the 2F1 functions on the numerator and denominator
to yield

z̃(s̃) :=
3
√

4z(s) = s̃
1
3
2F1(

5
12 −

1
2k ,

5
12 + 1

2k ; 4
3 ; s̃)

2F1(
1
12 −

1
2k ,

1
12 + 1

2k ; 2
3 ; s̃)

s̃ := 4s(1− s).

Inverting the above relation leads to s̃ = 4s(1 − s) where s̃(z) = S(13 ,
1
2 ,

1
k ; 3
√

4z) and s(z) =
S(13 ,

1
3 ,

2
k ; z). By making the substitution s̃ → 1 − s̃, which amounts to switching the singular

points s̃ = 0 and s̃ = 1, one obtains

s̃ = θ(s) = 1− 4s(1− s) = (2s− 1)2, s̃(z) = S
(
1
2 ,

1
3 ,

1
k ;

3
√

4z
)
,

as the rational map θ(s) of degree 2 between the two triangle functions listed in Cases 1(a)
and 1(b) of Table 2. The associated pull-back transformation is denoted in terms of the local

exponents as (12 ,
1
3 ,

1
k )

2←−(13 ,
1
3 ,

2
k ) [32].

Case (ii). Here, the transformation between the Schwarz function for each of the three
subcases in Case 2 of Table 2 and the Schwarz function in Case 1(a) will be discussed. The
mapping between Cases 2(a) and 1(a) is obtained from the cubic transformation of hypergeo-
metric equation [15, 32]

2F1

(
a, 1−a3 ; 4a+5

6 ; s
)

= (1− 4s)−a 2F1

(
a
3 ,

a+1
3 ; 4a+5

6 ; s̃
)
, s̃ =

27s

(4s− 1)3
,
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where the 2F1 parameters (a, b, c) depend only on a. Choosing a = 1
4 −

3
2k , the above transfor-

mation gives the degree 3 map ( 1k ,
1
2 ,

1
3)

3←−( 1k ,
1
2 ,

2
k ). In this case, (4.3) leads to

z(s) = s
1
k
2F1(

1
4 + 3

2k ,
1
4 −

1
2k ; 1 + 1

k ; s)

2F1(
1
4 −

3
2k ,

1
4 + 1

2k ; 1− 1
k ; s)

,

which, after applying the cubic transformation of the hypergeometric functions, leads to

z̃(s̃) := (−27)
1
k z(s) = s̃

1
k
2F1(

1
12 + 1

2k ,
5
12 + 1

2k ; 1 + 1
k ; s̃)

2F1(
1
12 −

1
2k ,

5
12 −

1
2k ; 1− 1

k ; s̃)
.

Inverting the above relation, one obtains the transformation between the triangle functions
s̃(z) = S( 1k ,

1
2 ,

1
3 ; z̃) = 27s/(4s − 1)3, s(z) = S( 1k ,

1
2 ,

2
k ; z). In order to obtain the degree 3 map

relating Case 2(a) to 1(a), one needs to switch the singular points s = 0 and s = 1 so that
s→ 1− s in above, and also permute the singular points for s̃ as (0, 1,∞)→ (∞, 0, 1) by letting

s̃→ 1− s̃−1. Thus, one obtains the degree 3 map (12 ,
1
3 ,

1
k )

3←−(12 ,
1
k ,

2
k ) given by

s̃ = S
(
1
2 ,

1
3 ,

1
k ; z̃
)

=
s(8s− 9)2

27(1− s)
, s(z) = S

(
1
2 ,

1
k ,

2
k ; z
)
.

The map between the Schwarz functions for Cases 2(b) and 1(a) of Table 2 is obtained via
a quartic transformation of the 2F1 functions [32]

2F1(a, a+ 1
3 ; 3a+5

6 ; s) = (1 + 8s)−
3a
4 2F1

(
a
4 ,

a
4 + 1

3 ; 3a+5
6 ; s

)
, s̃ =

64s(1− s)3

(1 + 8s)3
.

Choosing a = 1
3 −

2
k , the above transformation induces a degree 4 map ( 1k ,

1
2 ,

1
3)

4←−( 1k ,
3
k ,

1
3).

Then (4.3) after applying the Euler transformation to the 2F1 function in the denominator,
yields the following

z(s) =
[
s(1− s)3

] 1
k
2F1(

1
3 + 2

k ,
2
3 + 2

k ; 1 + 1
k ; s)

2F1(
1
3 −

2
k ,

2
3 −

2
k ; 1− 1

k ; s)
.

Applying the quartic transformation to the 2F1 functions in the above expression, one obtains

z̃(s̃) = (64)
1
k z(s) = s̃

1
k
2F1(

1
12 + 1

2k ,
5
12 + 1

2k ; 1 + 1
k ; s̃)

2F1(
1
12 −

1
2k ,

5
12 −

1
2k ; 1− 1

k ; s̃)
.

Then the substitutions s→ (1−s)−1 and s̃→ 1−s̃−1 yield the degree 4 map (12 ,
1
3 ,

1
k )

4←−(13 ,
1
k ,

3
k )

between Cases 2(b) and 1(a), given by

s̃(z) = S
(
1
2 ,

1
3 ,

1
k ; z̃
)

=
(27s2 − 36s+ 8)2

64(1− s)
, s(z) = S

(
1
3 ,

1
k ,

3
k ; z
)
.

The last subcase involving the mapping between Cases 2(c) and 1(a) of Table 2 is derived
once again from a quadratic transformation of hypergeometric functions. It is a degree 2 map

(12 ,
1
3 ,

1
k )

2←−(23 ,
1
k ,

1
k ) given by

s̃ = S
(
1
2 ,

1
3 ,

1
k ; z̃
)

=
(s− 2)2

4(1− s)
, s(z) = S

(
2
3 ,

1
k ,

1
k ; z
)
, z̃ =

(
−1

4

) 1
3 z.
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It is obtained by employing the quadratic transformation discussed in Case (i) with hypergeo-
metric parameters (a, b, c) = (16 −

1
k ,

5
6 −

1
k , 1−

1
k ), and then making the substitutions s→ s−1,

s̃→ 1− s̃−1. Alternatively, one can start from the quadratic transformation [15]

2F1(a, b; 2b; s) = (1− s)−
a
2 2F1

(
a
2 , b−

a
2 ; b+ 1

2 ; s̃
)
, s̃ =

s2

4(s− 1)
,

with parameters (a, b, c) = (16 −
1
k ,

1
6 ,

1
3), then apply the map s̃→ 1− s̃.

Case (iii). There are two subcases for Case 3 in Table 2. For both of these subcases the
pull-back map to Case 1(a) of Table 2 is of degree 6, which can be expressed as a composition
of a degree 2 and a degree 3 map. Specifically, the map between cases 1(a) and 3(a) can be
schematically represented as(

1
2 ,

1
3 ,

1
k

) 3←−
(
1
2 ,

1
k ,

2
k

) 2←−
(
1
k ,

1
k ,

4
k

)
.

The degree 2 map above is given by θ1(s) = (2s − 1)2 as in Case (i) above. The degree 3 map
given by θ2(s) = s(8s − 9)2/27(1 − s), is the same as the one between Cases 1(a) and 2(a) of
Table 2 and derived in Case (ii). Thus, for this case, s̃ = θ2 ◦ θ1(s).

Similarly, Case 3(b) is mapped to Case 1(a) of Table 2 according to(
1
2 ,

1
3 ,

1
k

) 2←−
(
1
3 ,

1
3 ,

2
k

) 3←−
(
2
k ,

2
k ,

2
k

)
.

The degree 3 map transforming Case 3(b) to the intermediate step (Case 1(b) of Table 2) follows
from a different cubic transformation from the one in Case (ii). It is given by [32]

2F1

(
a, a+1

3 ; 2a+2
3 ; s

)
=
(
1 + ω2s

)−a
2F1

(
a
3 ,

a+1
3 ; 2a+2

3 ; s̃
)
, s̃ = A

s(s− 1)

(s+ ω)3
,

where A = 3(2ω+1) and ω = e
2πi
3 . Choosing a = 1

2 −
3
k and proceeding as in the previous cases,

yields the map ( 2k ,
1
3 ,

1
3)

3←−( 2k ,
2
k ,

2
k ). Then after the substitution s̃→ s̃−1, one obtains

s̃(z) = S
(
1
3 ,

1
3 ,

2
k ; (−A)

2
k z
)

=
(s+ ω)3

As(s− 1)
:= θ1(s), s(z) = S

(
2
k ,

2
k ,

2
k ; z
)
.

The degree 2 map θ2(s) : (12 ,
1
3 ,

1
k )

2←−(13 ,
1
3 ,

2
k ) was already discussed in Case (i). Hence, the

composition map s̃ = θ2 ◦ θ1(s) gives the transformation between the Schwarz functions in
Case 3(b) and Case 1(a) of Table 2.

It can be readily verified that in all the above cases, the rational map s̃ = θ(s) is a solution
of the differential relation φ(s̃) = εφ(s) for constant ε, for the functions φ listed the last column
of Table 2. An example involving the Cases 1(a) and 1(b) was presented earlier in Section 3.2
(below Table 2). Explicitly, this differential relation reads as

dx =
ds̃

s̃1/2(s̃− 1)2/3
= ε

ds

s1−α1(s− 1)1−β1
,

where s̃(z) corresponds to the Schwarz function in Case 1(a) and s(z) represents the Schwarz
function for each of the other cases in Table 2. It follows from our discussion in Section 3.1
that, geometrically, the above differentials define the “flat” coordinate x on a one-dimensional
manifold M ⊆ CP1 in which the affine connection η associated with the Chazy XII solution y(z)
is trivialized. Both s and s̃ = θ(s) are projective invariant coordinates on M . It is interesting
to note that solving the above differential relation directly provides an alternative way to derive
the map θ(s), instead of using the algebraic transformations of the hypergeometric functions.
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However, we do not pursue this direct approach here. We also remark that the differential
φ(z)dz is a primitive of the incomplete beta integral (see, e.g., [15])

B(α1, β1; s) =

∫ s

0
tα1−1(t− 1)β1−1 dt =

sα1

α1
2F1(α1, 1− β1;α1 + 1; s),

which is also related to the hypergeometric functions. Thus, the rational map s̃ = θ(s) corre-
sponds to algebraic transformation of the beta functions. The derivation of these rational maps
directly from the solutions of (1.1) have not been studied to the best of our knowledge.

5 Concluding remarks

In this article, we have presented a method that converts the Chazy XII differential equation
into an algebraic relation. This method is based on a simple differential geometric interpretation
of the Chazy XII equation given by Dubrovin in [14]. By the way of elucidating this algebraic
relationship, we have derived all possible parametrizations of the Chazy XII solution y(z) via
the Schwarz triangle functions S(α, β, γ; z) for α + β + γ < 1. Our method can be extended in
a straightforward way to the case when α + β + γ ≥ 1 but we do not pursue it here. Further-
more, we show that these parametrizations can be described in terms of classical hypergeometric
functions. Using the hypergeometric theory, the center and radius of the natural barrier for the
Chazy XII solution are found explicitly. Finally, the algebraic transformations of the hypergeo-
metric functions are used to obtain rational maps between the Schwarz functions corresponding
to the Chazy XII solution.

It is known that the Chazy III equation is equivalent to the Ramanujan differential rela-
tions (1.2) for the Eisenstein series P , Q, R for the modular group SL2(Z). Ramanujan also
derived a number of remarkable identities among the functions P , Q, R using their represen-
tation in terms of hypergeometric functions. Likewise, we have introduced a Ramanujan-like
triple (P̂ , Q̂, R̂) which satisfy differential relations that are equivalent to the Chazy XII equa-
tion. Additionally, these functions also satisfy interesting identities that can be derived from
their hypergeometric representations. We have presented an example at the end of Section 4.1,
but a comprehensive exploration of this line of investigation is for future study.

The rational maps between the Schwarz functions using the pull-backs of hypergeometric
equations were presented in Section 4.2. However, we found that these maps can be also ob-
tained by solving certain first order differential relations among the Schwarz functions. These
relations follow directly from the representation of the Chazy XII solution y(z) in terms of
the function φ(z) in (3.2). We believe that all rational maps of Schwarz functions satisfy such
differential relations although we have not pursued this question further here since it is beyond
the scope of this article. We plan to study this issue in a future work.

A Proof of Lemma 3.1

In this appendix we prove Lemma 3.1 from Section 3.2.

Proof. Suppose J = 0. Then (3.8a) and (3.8e) lead to 4 cases:

(1) A = B = 0, (2) α1 = β1 = 0, (3) A = β1 = 0, (4) B = α1 = 0.

When A = B = 0, the remaining equations yield the following conditions on α1, β1 and C

(1− 2α1)(1− 3α1)C = (1− 2β1)(1− 3β1)C

= [(1− 2α1)(2− 3β1) + (1− 2β1)(2− 3α1)]C = 0.
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If C = 0, then A = B = C = 0 implies α = α1, β = β1, and γ = γ1 from the definitions
of A, B, C given in Section 3.2. Therefore, α + β + γ = α1 + β1 + γ1 = 1, which violates the
condition α+ β + γ < 1 in (3.9). Hence, C 6= 0. Then the first two conditions above imply

α1 ∈
{
1
2 ,

1
3

}
, β1 ∈

{
1
2 ,

1
3

}
.

Except for the case {α1, β1} = {12 ,
1
2}, the remaining values of α1 and β1 do not satisfy the

third condition given above. On the other hand, if {α1, β1} = {12 ,
1
2}, then α = α1 = 1

2 and
β = β1 = 1

2 because A = B = 0. Hence, α+ β = 1, which contradicts (3.9).
If α1 = β1 = 0, then γ1 = 1. In this case, (3.8c) gives A + B + C = 0, which implies

γ = γ1 = 1, again violating (3.9).
Cases (3) and (4) are interchangeable by switching A with B, and α1 with β1. So it suffices

consider only one case, say if A = β1 = 0. Then (3.8b) implies

(1− α1)B + 1
2C = 0 (A.1)

Eliminating B from (3.8c) by using (A.1) leads to the condition (1 − 2α1)C = 0. If α1 = 1
2 ,

(A.1) implies that B +C = 0 which is equivalent to γ = γ1 = 1
2 after taking into account A = 0

and β1 = 0. Hence, α = γ = 1
2 , which contradicts α+ β + γ < 1.

Finally, if C = 0 in (A.1), then either α1 = 1, or B = 0. The case α1 = 1 is impossible
because then A = 0 would imply α = α1 = 1, which does not satisfy (3.9). If B = 0, then
A = B = C = 0. This is impossible as argued in Case (1) above. �

B Radius of the orthogonal circle

In this appendix we briefly outline a derivation of the expression in Section 4.1 for the radius R
of the orthogonal circle C, which forms the natural barrier in the complex plane to the solutions
of (1.1). Recall from Section 4.1 that (4.3) maps the upper-half s-plane onto a circular triangle

Figure 1. The fundamental triangle OAB with one side AB being an arc of the circle Q with center D. The

orthogonal circle C is centered at the origin O and has the radius OF=R. DF and OF are perpendicular.

with two straight edges denoted by OA and OB as shown in Fig. 1. The third side of the
triangle is formed by the circular arc AB which is part of the circle Q with center at D, and
radius AD = BD := r. The vertices O, A, B correspond to the image points z(0) = 0, z(1)
and z(∞) of the map (4.3), respectively. The angle πα = ∠BOA, while angles πβ and πγ are
the angles made by OA and OB respectively, with the circular arc AB. The orthogonal circle C
is centered at the origin O and its radius OF:=R. Now consider the triangles OAB and DAB
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whose common side is given by the chord AB. From elementary considerations, it follows that
∠ADB = π− π(α+ β+ γ), ∠DAB = π(α+β+γ2 ), and ∠OBA = π

2 − π(α+β−γ2 ). Applying the law
of sines to triangles OAB and DAB, and denoting OA = x, one finds that

AB =
x sinπα

cosπ(α+β−γ2 )
, BD := r =

AB sinπ(α+β+γ2 )

sinπ(α+ β + γ)
.

Eliminating AB from above, yields the following expression for the radius of the circle Q

r =
x sinπα

2 cosπ(α+β−γ2 ) cosπ(α+β+γ2 )
. (B.1)

Since the circles Q and C are mutually orthogonal, their radii OF and DF are perpendicular.
Hence from the right triangle ODF with hypotenuse OD =: d it follows that R2 = d2−r2. Next,
considering the triangle OAD with ∠OAD = π

2 + πβ, one obtains d2 = x2 + r2 + 2rx sinπβ.
Substituting this into the expression for R2 and using (B.1), one obtains

R2 = x2
sin π

2 (1− α+ β − γ) sin π
2 (1− α+ β + γ)

sin π
2 (1− α− β + γ) sin π

2 (1− α− β − γ)
, (B.2)

after using some trigonometric identities. From (4.3) the line segment OA= x along the real
axis is given by

x = z(1) =
2F1(a− c+ 1, b− c+ 1; 2− c; 1)

2F1(a, b; c; 1)
=

Γ(2− c)Γ(c− a)Γ(c− b)
Γ(c)Γ(1− a)Γ(1− b)

,

after using 2F1(a, b; c; 1) = Γ(c)Γ(c − a − b)[Γ(c − a)Γ(c − b)]−1 [15]. Substituting the above
expression for x into (B.2), using the identity Γ(t)Γ(1− t) = π csc(πt), and replacing (a, b, c) by
their values in terms of (α, β, γ), one finally obtains the expression for R2 in Section 4.1.
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