Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 086, 28 pages      arXiv:1603.07915      https://doi.org/10.3842/SIGMA.2017.086

Parallelisms & Lie Connections

David Blázquez-Sanz a and Guy Casale b
a) Universidad Nacional de Colombia, Sede Medellín, Facultad de Ciencias, Escuela de Matemáticas, Calle 59A No. 63 - 20, Medellín, Antioquia, Colombia
b) IRMAR, Université de Rennes 1, Campus de Beaulieu, bât. 22-23, 263 avenue du Général Leclerc, CS 74205, 35042 RENNES Cedex, France

Received September 16, 2016, in final form October 25, 2017; Published online November 04, 2017

Abstract
The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard-Vessiot theory of principal connections.

Key words: parallelism; isogeny; $G$-structure; linear connection; principal connection; differential Galois theory.

pdf (481 kb)   tex (34 kb)

References

  1. Beilinson A., Drinfeld V., Chiral algebras, American Mathematical Society Colloquium Publications, Vol. 51, Amer. Math. Soc., Providence, RI, 2004.
  2. Bonnet P., Minimal invariant varieties and first integrals for algebraic foliations, Bull. Braz. Math. Soc. (N.S.) 37 (2006), 1-17, math.AG/0602274.
  3. Cartan E., Les sous-groupes des groupes continus de transformations, Ann. Sci. École Norm. Sup. (3) 25 (1908), 57-194.
  4. Chevalley C., Théorie des groupes de Lie, Tome III, Théorèmes généraux sur les algèbres de Lie, Actualités Sci. Ind. no. 1226, Hermann & Cie, Paris, 1955.
  5. Guillemin V., Sternberg S., Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc. 64 (1966), 80 pages.
  6. Kolchin E.R., Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54, Academic Press, New York - London, 1973.
  7. Malgrange B., Pseudogroupes de Lie et théorie de Galois différentielle, Preprint IHES/M/10/11, Institut des Hautes Études Scientifiques, 2010.
  8. Malgrange B., Leon Ehrenpreis: some old souvenirs, in The Mathematical Legacy of Leon Ehrenpreis, Springer Proc. Math., Vol. 16, Springer, Milan, 2012, 3-6.
  9. Onishchik A.L., Vinberg E.B., Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990.
  10. Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, Vol. 166, Springer-Verlag, New York, 1997.
  11. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
  12. Wang H.C., Complex parallisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776.
  13. Winkelmann J., On manifolds with trivial logarithmic tangent bundle, Osaka J. Math. 41 (2004), 473-484.
  14. Winkelmann J., On manifolds with trivial logarithmic tangent bundle: the non-Kähler case, Transform. Groups 13 (2008), 195-209.

Previous article  Next article   Contents of Volume 13 (2017)