Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 108, 69 pages      arXiv:1505.02271      https://doi.org/10.3842/SIGMA.2016.108

From Conformal Group to Symmetries of Hypergeometric Type Equations

Jan Dereziński a and Przemysław Majewski ab
a) Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
b) Bureau of Air Defence and Anti-missile Defence Systems, PIT-RADWAR S.A., Poligonowa 30, 04-025 Warszawa, Poland

Received February 24, 2016, in final form October 20, 2016; Published online November 05, 2016

Abstract
We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ${}_0F_1$ equation follow from the Helmholtz equation in 2 dimensions.

Key words: Laplace equation; hypergeometric equation; confluent equation; Kummer's table; Lie algebra; conformal group.

pdf (798 kb)   tex (54 kb)

References

  1. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  2. Beukers F., Hypergeometric functions, how special are they?, Notices Amer. Math. Soc. 61 (2014), 48-56.
  3. Bôcher M., Über die Reihenentwickelungen Potentialtheorie, Teubner, Leipzig, 1894.
  4. Bod E., Algebraic $\mathcal{A}$-hypergeometric functions and their monodromy, Ph.D. Thesis, Utrecht University, 2013.
  5. Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Sci. Publ. Co., Inc., River Edge, NJ, 2001.
  6. Dereziński J., Hypergeometric type functions and their symmetries, Ann. Henri Poincaré 15 (2014), 1569-1653, arXiv:1305.3113.
  7. Dereziński J., Wrochna M., Exactly solvable Schrödinger operators, Ann. Henri Poincaré 12 (2011), 397-418, arXiv:1009.0541.
  8. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions. Vol. I, McGraw-Hill Book Company, New York, 1953.
  9. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions. Vol. II, McGraw-Hill Book Company, New York, New York, 1953.
  10. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions. Vol. III, McGraw-Hill Book Company, New York, New York, 1955.
  11. Flügge S., Practical quantum mechanics, Classics in Mathematics, Vol. 177, Springer-Verlag, Berlin, 1999.
  12. Hagen C.R., Scale and conformal transformations in galilean-covariant field theory, Phys. Rev. D 5 (1972), 377-388.
  13. Hochstadt H., The functions of mathematical physics, Pure and Applied Mathematics, Vol. 23, Wiley-Interscience, New York - London - Sydney, 1971.
  14. Infeld L., Hull T.E., The factorization method, Rev. Modern Phys. 23 (1951), 21-68.
  15. Kalnins E.G., Miller Jr. W., Lie theory and the wave equation in space-time. IV. The Klein-Gordon equation and the Poincaré group, J. Math. Phys. 19 (1978), 1233-1246.
  16. Kalnins E.G., Miller Jr. W., The wave equation and separation of variables on the complex sphere $S_{4}$, J. Math. Anal. Appl. 83 (1981), 449-469.
  17. Kalnins E.G., Miller Jr. W., Reid G.J., Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for ${\rm S}_{n{\bf C}}$ and ${\rm E}_{n{\bf C}}$, Proc. Roy. Soc. London Ser. A 394 (1984), 183-206.
  18. Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. I, John Wiley & Sons, Inc., New York - London - Sydney, 1963.
  19. Kobayashi S., Nomizu K., Foundations of differential geometry. Vol. II, John Wiley & Sons, Inc., New York - London - Sydney, 1969.
  20. Koornwinder T.H., Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators, SIGMA 11 (2015), 074, 22 pages, arXiv:1504.08144.
  21. Kummer E.E., Über die hypergeometrische Reihe $1+\frac{\alpha\cdot \beta}{1\cdot \gamma}x+ \frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot 2\cdot \gamma (\gamma+1)}x^2+\frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma+1)(\gamma+2}x^3+\cdots$, J. Reine Angew. Math. 15 (1836), 39-83.
  22. Kummer E.E., Über die hypergeometrische Reihe $1+\frac{\alpha\cdot \beta}{1\cdot \gamma}x+ \frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot 2\cdot \gamma (\gamma+1)}x^2+\frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma+1)(\gamma+2}x^3+\cdots$, J. Reine Angew. Math. 15 (1836), 127-172.
  23. Kuznetsov V., PG course on special functions and their symmetries, 2003, available at \urlhttp://www1.maths.leeds.ac.uk/ kisilv/courses/sp-funct.pdf.
  24. Lie S., Ueber die Integration durch bestimmte Integration von einer Classe linearer partieller Differentialgleichungen, Arch. Math. Naturvid. 6 (1881), 328-368.
  25. Lievens S., Rao K.S., Van der Jeugt J., The finite group of the Kummer solutions, Integral Transforms Spec. Funct. 16 (2005), 153-158.
  26. Magnus W., Oberhettinger F., Soni R.P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, Vol. 52, 3rd ed., Springer-Verlag, New York, 1966.
  27. Miller Jr. W., Lie theory and special functions, Mathematics in Science and Engineering, Vol. 43, Academic Press, New York - London, 1968.
  28. Miller Jr. W., Symmetry groups and their applications, Pure and Applied Mathematics, Vol. 50, Academic Press, New York - London, 1972.
  29. Miller Jr. W., Lie theory and generalizations of the hypergeometric functions, SIAM J. Appl. Math. 25 (1973), 226-235.
  30. Miller Jr. W., Symmetries of differential equations. The hypergeometric and Euler-Darboux equations, SIAM J. Math. Anal. 4 (1973), 314-328.
  31. Miller Jr. W., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, Vol. 4, Addison-Wesley Publishing Co., Reading, Mass. - London - Amsterdam, 1977.
  32. Morse P.M., Feshbach H., Methods of theoretical physics, Vols. I, II, McGraw-Hill Book Co., Inc., New York - Toronto - London, 1953.
  33. Niederer U., The maximal kinematical invariance group of the free Schrödinger equation, Helv. Phys. Acta 45 (1972), 802-810.
  34. Nikiforov A.F., Uvarov V.B., Special functions of mathematical physics. A unified introduction with applications, Birkhäuser Verlag, Basel, 1988.
  35. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, Cambridge University Press, Cambridge, 2010, available at \urlhttp://dlmf.nist.gov/.
  36. Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1986.
  37. Ørsted B., Conformally invariant differential equations and projective geometry, J. Funct. Anal. 44 (1981), 1-23.
  38. Rainville E.D., Special functions, The Macmillan Co., New York, 1960.
  39. Saito M., Symmetry algebras of normal $\mathcal A$-hypergeometric systems, Hokkaido Math. J. 25 (1996), 591-619.
  40. Schrödinger E., A method of determining quantum-mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish Acad. Sect. A. 46 (1940), 9-16.
  41. Taylor M.E., Noncommutative harmonic analysis, Mathematical Surveys and Monographs, Vol. 22, Amer. Math. Soc., Providence, RI, 1986.
  42. Truesdell C., An essay toward a unified theory of special functions based upon the functional equation $(\partial/\partial z)F(z,\alpha)=F(z,\alpha+1)$, Annals of Mathematics Studies, Vol. 18, Princeton University Press, Princeton, NJ, 1948.
  43. Vilenkin N.Ja., Special functions and the theory of group representations, Translations of Mathematical Monographs, Vol. 22, Amer. Math. Soc., Providence, RI, 1968.
  44. Vilenkin N.Ja., Klimyk A.U., Representation of Lie groups and special functions, Vol. 1, Simplest Lie groups, special functions and integral transforms, Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht, 1991.
  45. Wawrzyńczyk A., Współczesna teoria funkcji specjalnych, Biblioteka Matematyczna, Vol. 52, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1978.
  46. Weisner L., Generating functions for Hermite functions, Canad. J. Math. 11 (1959), 141-147.
  47. Weisner L., Generating functions for Bessel functions, Canad. J. Math. 11 (1959), 148-155.
  48. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.

Previous article  Next article   Contents of Volume 12 (2016)