Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 083, 20 pages      arXiv:1104.0153      https://doi.org/10.3842/SIGMA.2016.083
Contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy

On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators

Folkmar Bornemann
Zentrum Mathematik - M3, Technische Universität München, 80290 München, Germany

Received April 15, 2016, in final form August 16, 2016; Published online August 19, 2016

Abstract
By applying an idea of Borodin and Olshanski [J. Algebra 313 (2007), 40-60], we study various scaling limits of determinantal point processes with trace class projection kernels given by spectral projections of selfadjoint Sturm-Liouville operators. Instead of studying the convergence of the kernels as functions, the method directly addresses the strong convergence of the induced integral operators. We show that, for this notion of convergence, the Dyson, Airy, and Bessel kernels are universal in the bulk, soft-edge, and hard-edge scaling limits. This result allows us to give a short and unified derivation of the known formulae for the scaling limits of the classical random matrix ensembles with unitary invariance, that is, the Gaussian unitary ensemble (GUE), the Wishart or Laguerre unitary ensemble (LUE), and the MANOVA (multivariate analysis of variance) or Jacobi unitary ensemble (JUE).

Key words: determinantal point processes; Sturm-Liouville operators; scaling limits; strong operator convergence; classical random matrix ensembles; GUE; LUE; JUE; MANOVA.

pdf (462 kb)   tex (24 kb)

References

  1. Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.
  2. Anderson G.W., Guionnet A., Zeitouni O., An introduction to random matrices, Cambridge Studies in Advanced Mathematics, Vol. 118, Cambridge University Press, Cambridge, 2010.
  3. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  4. Borodin A., Olshanski G., Asymptotics of Plancherel-type random partitions, J. Algebra 313 (2007), 40-60, math.PR/0610240.
  5. Collins B., Product of random projections, Jacobi ensembles and universality problems arising from free probability, Probab. Theory Related Fields 133 (2005), 315-344, math.PR/0406560.
  6. Deift P.A., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, Vol. 3, New York University, Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc., Providence, RI, 1999.
  7. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions. Vol. II, McGraw-Hill Book Company, New York, 1953.
  8. Forrester P.J., Log-gases and random matrices, London Mathematical Society Monographs Series, Vol. 34, Princeton University Press, Princeton, NJ, 2010.
  9. Gohberg I., Goldberg S., Krupnik N., Traces and determinants of linear operators, Operator Theory: Advances and Applications, Vol. 116, Birkhäuser Verlag, Basel, 2000.
  10. Hutson V., Pym J.S., Cloud M.J., Applications of functional analysis and operator theory, Mathematics in Science and Engineering, Vol. 200, 2nd ed., Elsevier B.V., Amsterdam, 2005.
  11. Johansson K., Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), 437-476, math.CO/9903134.
  12. Johnstone I.M., On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist. 29 (2001), 295-327.
  13. Johnstone I.M., Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy-Widom limits and rates of convergence, Ann. Statist. 36 (2008), 2638-2716, arXiv:0803.3408.
  14. Kuijlaars A.B.J., Universality, in The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford, 2011, 103-134, arXiv:1103.5922.
  15. Lax P.D., Functional analysis, Pure and Applied Mathematics, Wiley-Interscience, New York, 2002.
  16. Lubinsky D.S., A new approach to universality limits involving orthogonal polynomials, Ann. of Math. 170 (2009), 915-939, math.CA/0701307.
  17. Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York - London, 1972.
  18. Simon B., Trace ideals and their applications, Mathematical Surveys and Monographs, Vol. 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005.
  19. Stolz G., Weidmann J., Approximation of isolated eigenvalues of ordinary differential operators, J. Reine Angew. Math. 445 (1993), 31-44.
  20. Tao T., Topics in random matrix theory, Graduate Studies in Mathematics, Vol. 132, Amer. Math. Soc., Providence, RI, 2012.
  21. Tracy C.A., Widom H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174, hep-th/9211141.
  22. Tracy C.A., Widom H., Level spacing distributions and the Bessel kernel, Comm. Math. Phys. 161 (1994), 289-309, hep-th/9304063.
  23. Wachter K.W., The limiting empirical measure of multiple discriminant ratios, Ann. Statist. 8 (1980), 937-957.
  24. Weidmann J., Linear operators in Hilbert spaces, Graduate Texts in Mathematics, Vol. 68, Springer-Verlag, New York - Berlin, 1980.
  25. Weidmann J., Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, Vol. 1258, Springer-Verlag, Berlin, 1987.

Previous article  Next article   Contents of Volume 12 (2016)