Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 051, 23 pages      arXiv:1601.05327      https://doi.org/10.3842/SIGMA.2016.051

Hypergeometric $\tau$ Functions of the $q$-Painlevé Systems of Types $A_4^{(1)}$ and $(A_1+A_1')^{(1)}$

Nobutaka Nakazono
School of Mathematics and Statistics, The University of Sydney, New South Wales 2006, Australia

Received February 01, 2016, in final form May 16, 2016; Published online May 20, 2016

Abstract
We consider $q$-Painlevé equations arising from birational representations of the extended affine Weyl groups of $A_4^{(1)}$- and $(A_1+A_1)^{(1)}$-types. We study their hypergeometric solutions on the level of $\tau$ functions.

Key words: $q$-Painlevé equation; basic hypergeometric function; affine Weyl group; $\tau$ function.

pdf (1210 kb)   tex (655 kb)

References

  1. Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, nlin.SI/0202024.
  2. Adler V.E., Bobenko A.I., Suris Yu.B., Discrete nonlinear hyperbolic equations: classification of integrable cases, Funct. Anal. Appl. 43 (2009), 3-17, arXiv:0705.1663.
  3. Agafonov S.I., Discrete $z^\gamma$: embedded circle patterns with the square grid combinatorics and discrete Painlevé equations, Theoret. and Math. Phys. 134 (2003), 3-13, nlin.SI/0110030.
  4. Agafonov S.I., Imbedded circle patterns with the combinatorics of the square grid and discrete Painlevé equations, Discrete Comput. Geom. 29 (2003), 305-319.
  5. Agafonov S.I., Bobenko A.I., Discrete $Z^\gamma$ and Painlevé equations, Int. Math. Res. Not. 2000 (2000), 165-193, solv-int/9909002.
  6. Agafonov S.I., Bobenko A.I., Hexagonal circle patterns with constant intersection angles and discrete Painlevé and Riccati equations, J. Math. Phys. 44 (2003), 3455-3469, math.CV/0301282.
  7. Ando H., Hay M., Kajiwara K., Masuda T., An explicit formula for the discrete power function associated with circle patterns of Schramm type, Funkcial. Ekvac. 57 (2014), 1-41, arXiv:1105.1612.
  8. Boll R., Classification of 3D consistent quad-equations, J. Nonlinear Math. Phys. 18 (2011), 337-365, arXiv:1009.4007.
  9. Boll R., Corrigendum: Classification of 3D consistent quad-equations, J. Nonlinear Math. Phys. 19 (2012), 618-620.
  10. Boll R., Classification and Lagrangian structure of 3D consistent quad-equations, Ph.D. Thesis, Technische Universität Berlin, 2012.
  11. Brézin É., Kazakov V.A., Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990), 144-150.
  12. Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
  13. Grammaticos B., Ohta Y., Ramani A., Sakai H., Degeneration through coalescence of the $q$-Painlevé VI equation, J. Phys. A: Math. Gen. 31 (1998), 3545-3558.
  14. Grammaticos B., Ramani A., Discrete Painlevé equations: a review, in Discrete Integrable Systems, Lecture Notes in Phys., Vol. 644, Springer, Berlin, 2004, 245-321.
  15. Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys. Rev. Lett. 67 (1991), 1825-1828.
  16. Hamamoto T., Kajiwara K., Hypergeometric solutions to the $q$-Painlevé equation of type $A_4^{(1)}$, J. Phys. A: Math. Theor. 40 (2007), 12509-12524, nlin.SI/0701001.
  17. Hamamoto T., Kajiwara K., Witte N.S., Hypergeometric solutions to the $q$-Painlevé equation of type $(A_1+A'_1)^{(1)}$, Int. Math. Res. Not. 2006 (2006), 84619, 26 pages, nlin.SI/0607065.
  18. Hay M., Kajiwara K., Masuda T., Bilinearization and special solutions to the discrete Schwarzian KdV equation, J. Math-for-Ind. 3A (2011), 53-62, arXiv:1102.1829.
  19. Itzykson C., Zuber J.B., The planar approximation. II, J. Math. Phys. 21 (1980), 411-421.
  20. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  21. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III, Phys. D 4 (1981), 26-46.
  22. Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function, Phys. D 2 (1981), 306-352.
  23. Joshi N., Kajiwara K., Mazzocco M., Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation, Funkcial. Ekvac. 49 (2006), 451-468, nlin.SI/0512041.
  24. Joshi N., Nakazono N., Lax pairs of discrete Painlevé equations: $({A}_2+{A}_1)^{(1)}$ case, arXiv:1503.04515.
  25. Joshi N., Nakazono N., Shi Y., Lattice equations arising from discrete Painlevé systems. I. $(A_2 + A_1)^{(1)}$ and $(A_1 + A_1^\prime)^{(1)}$ cases, J. Math. Phys. 56 (2015), 092705, 25 pages, arXiv:1401.7044.
  26. Joshi N., Nakazono N., Shi Y., Lattice equations arising from discrete Painlevé systems. II. ${A}_4^{(1)}$ case, arXiv:1603.09414.
  27. Kajiwara K., Kimura K., On a $q$-difference Painlevé III equation. I. Derivation, symmetry and Riccati type solutions, J. Nonlinear Math. Phys. 10 (2003), 86-102, nlin.SI/0205019.
  28. Kajiwara K., Masuda T., A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations, J. Phys. A: Math. Gen. 32 (1999), 3763-3778, solv-int/9903014.
  29. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., $_{10}E_9$ solution to the elliptic Painlevé equation, J. Phys. A: Math. Gen. 36 (2003), L263-L272, nlin.SI/0303032.
  30. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Hypergeometric solutions to the $q$-Painlevé equations, Int. Math. Res. Not. 2004 (2004), 2497-2521, nlin.SI/0403036.
  31. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Construction of hypergeometric solutions to the $q$-Painlevé equations, Int. Math. Res. Not. 2005 (2005), 1439-1463, nlin.SI/0501051.
  32. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Point configurations, Cremona transformations and the elliptic difference Painlevé equation, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 169-198, nlin.SI/0411003.
  33. Kajiwara K., Nakazono N., Hypergeometric solutions to the symmetric $q$-Painlevé equations, Int. Math. Res. Not. 2015 (2015), 1101-1140, arXiv:1304.0858.
  34. Kajiwara K., Noumi M., Yamada Y., A study on the fourth $q$-Painlevé equation, J. Phys. A: Math. Gen. 34 (2001), 8563-8581, nlin.SI/0012063.
  35. Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, arXiv:1509.08186.
  36. Kajiwara K., Ohta Y., Determinant structure of the rational solutions for the Painlevé IV equation, J. Phys. A: Math. Gen. 31 (1998), 2431-2446, solv-int/9709011.
  37. Kajiwara K., Ohta Y., Satsuma J., Casorati determinant solutions for the discrete Painlevé III equation, J. Math. Phys. 36 (1995), 4162-4174, solv-int/9412004.
  38. Kajiwara K., Ohta Y., Satsuma J., Grammaticos B., Ramani A., Casorati determinant solutions for the discrete Painlevé-II equation, J. Phys. A: Math. Gen. 27 (1994), 915-922, solv-int/9310002.
  39. Kruskal M.D., Tamizhmani K.M., Grammaticos B., Ramani A., Asymmetric discrete Painlevé equations, Regul. Chaotic Dyn. 5 (2000), 273-280.
  40. Masuda T., Hypergeometric $\tau$-functions of the $q$-Painlevé system of type $E_7^{(1)}$, SIGMA 5 (2009), 035, 30 pages, arXiv:0903.4102.
  41. Masuda T., Hypergeometric $\tau$-functions of the $q$-Painlevé system of type $E^{(1)}_8$, Ramanujan J. 24 (2011), 1-31.
  42. Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2000.
  43. Nakazono N., Hypergeometric $\tau$ functions of the $q$-Painlevé systems of type $(A_2+A_1)^{(1)}$, SIGMA 6 (2010), 084, 16 pages, arXiv:1008.2595.
  44. Nijhoff F.W., Ramani A., Grammaticos B., Ohta Y., On discrete Painlevé equations associated with the lattice KdV systems and the Painlevé VI equation, Stud. Appl. Math. 106 (2001), 261-314, solv-int/9812011.
  45. Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, Vol. 223, Amer. Math. Soc., Providence, RI, 2004.
  46. Ohta Y., Nakamura A., Similarity KP equation and various different representations of its solutions, J. Phys. Soc. Japan 61 (1992), 4295-4313.
  47. Okamoto K., Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{{\rm VI}}$, Ann. Mat. Pura Appl. 146 (1987), 337-381.
  48. Okamoto K., Studies on the Painlevé equations. II. Fifth Painlevé equation $P_{\rm V}$, Japan. J. Math. (N.S.) 13 (1987), 47-76.
  49. Okamoto K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{{\rm II}}$ and $P_{{\rm IV}}$, Math. Ann. 275 (1986), 221-255.
  50. Okamoto K., Studies on the Painlevé equations. IV. Third Painlevé equation $P_{{\rm III}}$, Funkcial. Ekvac. 30 (1987), 305-332.
  51. Periwal V., Shevitz D., Unitary-matrix models as exactly solvable string theories, Phys. Rev. Lett. 64 (1990), 1326-1329.
  52. Ramani A., Grammaticos B., Discrete Painlevé equations: coalescences, limits and degeneracies, Phys. A 228 (1996), 160-171, solv-int/9510011.
  53. Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), 1829-1832.
  54. Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., Special function solutions of the discrete Painlevé equations, Comput. Math. Appl. 42 (2001), 603-614.
  55. Sakai H., Casorati determinant solutions for the $q$-difference sixth Painlevé equation, Nonlinearity 11 (1998), 823-833.
  56. Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
  57. Tamizhmani K.M., Grammaticos B., Carstea A.S., Ramani A., The $q$-discrete Painlevé IV equations and their properties, Regul. Chaotic Dyn. 9 (2004), 13-20.
  58. Tsuda T., Tau functions of $q$-Painlevé III and IV equations, Lett. Math. Phys. 75 (2006), 39-47.
  59. Tsuda T., Masuda T., $q$-Painlevé VI equation arising from $q$-UC hierarchy, Comm. Math. Phys. 262 (2006), 595-609.

Previous article  Next article   Contents of Volume 12 (2016)