Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 038, 31 pages      arXiv:1512.09315      https://doi.org/10.3842/SIGMA.2016.038
Contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications

Bôcher Contractions of Conformally Superintegrable Laplace Equations

Ernest G. Kalnins a, Willard Miller Jr. b and Eyal Subag c
a) Department of Mathematics, University of Waikato, Hamilton, New Zealand
b) School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
c) Department of Mathematics, Pennsylvania State University, State College, Pennsylvania, 16802 USA

Received January 24, 2016, in final form April 11, 2016; Published online April 19, 2016

Abstract
The explicit solvability of quantum superintegrable systems is due to symmetry, but the symmetry is often ''hidden''. The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebras. Distinct systems on constant curvature spaces are related by geometric limits, induced by generalized Inönü-Wigner Lie algebra contractions of the symmetry algebras of the underlying spaces. These have physical/geometric implications, such as the Askey scheme for hypergeometric orthogonal polynomials. However, the limits have no satisfactory Lie algebra contraction interpretations for underlying spaces with 1- or 0-dimensional Lie algebras. We show that these systems can be best understood by transforming them to Laplace conformally superintegrable systems, with flat space conformal symmetry group ${\rm SO}(4,{\mathbb C})$, and using ideas introduced in the 1894 thesis of Bôcher to study separable solutions of the wave equation in terms of roots of quadratic forms. We show that Bôcher's prescription for coalescing roots of these forms induces contractions of the conformal algebra $\mathfrak{so}(4,{\mathbb C})$ to itself and yields a mechanism for classifying all Helmholtz superintegrable systems and their limits. In the paper [Acta Polytechnica, to appear, arXiv:1510.09067], we announced our main findings. This paper provides the proofs and more details.

Key words: conformal superintegrability; contractions; Laplace equations.

pdf (1484 kb)   tex (811 kb)

References

  1. Bôcher M., Ueber die Reihenentwickelungen der Potentialtheorie, B.G. Teubner, Leipzig, 1894.
  2. Bromwich T.J.I., Quadratic forms and their classification by means of invariant-factors, Cambridge University Press, Cambridge, 1906.
  3. Capel J.J., Kress J.M., Invariant classification of second-order conformally flat superintegrable systems, J. Phys. A: Math. Theor. 47 (2014), 495202, 33 pages, arXiv:1406.3136.
  4. Capel J.J., Kress J.M., Post S., Invariant classification and limits of maximally superintegrable systems in 3D, SIGMA 11 (2015), 038, 17 pages, arXiv:1501.06601.
  5. Daskaloyannis C., Tanoudis Y., Quantum superintegrable systems with quadratic integrals on a two dimensional manifold, J. Math. Phys. 48 (2007), 072108, 22 pages, math-ph/0607058.
  6. Evans N.W., Super-integrability of the Winternitz system, Phys. Lett. A 147 (1990), 483-486.
  7. Fordy A.P., Quantum super-integrable systems as exactly solvable models, SIGMA 3 (2007), 025, 10 pages, math-ph/0702048.
  8. Heinonen R., Kalnins E.G., Miller Jr. W., Subag E., Structure relations and Darboux contractions for 2D 2nd order superintegrable systems, SIGMA 11 (2015), 043, 33 pages, arXiv:1502.00128.
  9. Inönü E., Wigner E.P., On the contraction of groups and their representations, Proc. Nat. Acad. Sci. USA 39 (1953), 510-524.
  10. Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., Contractions of Lie algebras and separation of variables, J. Phys. A: Math. Gen. 29 (1996), 5949-5962.
  11. Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., Contractions of Lie algebras and the separation of variables: interbase expansions, J. Phys. A: Math. Gen. 34 (2001), 521-554.
  12. Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory, J. Math. Phys. 46 (2005), 053509, 28 pages.
  13. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform, J. Math. Phys. 46 (2005), 053510, 15 pages.
  14. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory, J. Math. Phys. 46 (2005), 103507, 28 pages.
  15. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory, J. Math. Phys. 47 (2006), 043514, 26 pages.
  16. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems, J. Math. Phys. 47 (2006), 093501, 25 pages.
  17. Kalnins E.G., Kress J.M., Miller Jr. W., Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties, J. Phys. A: Math. Theor. 40 (2007), 3399-3411, arXiv:0708.3044.
  18. Kalnins E.G., Kress J.M., Miller Jr. W., Post S., Laplace-type equations as conformal superintegrable systems, Adv. in Appl. Math. 46 (2011), 396-416, arXiv:0908.4316.
  19. Kalnins E.G., Kress J.M., Miller Jr. W., Winternitz P., Superintegrable systems in Darboux spaces, J. Math. Phys. 44 (2003), 5811-5848, math-ph/0307039.
  20. Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., Completeness of superintegrability in two-dimensional constant-curvature spaces, J. Phys. A: Math. Gen. 34 (2001), 4705-4720, math-ph/0102006.
  21. Kalnins E.G., Miller Jr. W., Quadratic algebra contractions and second-order superintegrable systems, Anal. Appl. (Singap.) 12 (2014), 583-612, arXiv:1401.0830.
  22. Kalnins E.G., Miller Jr. W., Post S., Wilson polynomials and the generic superintegrable system on the 2-sphere, J. Phys. A: Math. Theor. 40 (2007), 11525-11538.
  23. Kalnins E.G., Miller Jr. W., Post S., Models for quadratic algebras associated with second order superintegrable systems in 2D, SIGMA 4 (2008), 008, 21 pages, arXiv:0801.2848.
  24. Kalnins E.G., Miller Jr. W., Post S., Coupling constant metamorphosis and $N$th-order symmetries in classical and quantum mechanics, J. Phys. A: Math. Theor. 43 (2010), 035202, 20 pages, arXiv:0908.4393.
  25. Kalnins E.G., Miller Jr. W., Post S., Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials, SIGMA 9 (2013), 057, 28 pages, arXiv:1212.4766.
  26. Kalnins E.G., Miller Jr. W., Reid G.J., Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for ${\rm S}_{n{\bf C}}$ and ${\rm E}_{n{\bf C}}$, Proc. Roy. Soc. London Ser. A 394 (1984), 183-206.
  27. Kalnins E.G., Miller Jr. W., Subag E., Bôcher contractions of conformally superintegrable Laplace equations: detailed computations, arXiv:1601.02876.
  28. Kalnins E.G., Miller Jr. W., Subag E., Laplace equations, conformal superintegrability and Bôcher contractions, Acta Polytechnica, to appear, arXiv:1510.09067.
  29. Koenigs G., Sur les géodésiques a intégrales quadratiques, in Darboux G., Lecons sur la théorie générale des surfaces et les applications geométriques du calcul infinitesimal, Vol. 4, Chelsea, New York, 1972, 368-404.
  30. Kress J.M., Equivalence of superintegrable systems in two dimensions, Phys. Atomic Nuclei 70 (2007), 560-566.
  31. Miller Jr. W., Li Q., Wilson polynomials/functions and intertwining operators for the generic quantum superintegrable system on the 2-sphere, J. Phys. Conf. Ser. 597 (2015), 012059, 11 pages, arXiv:1411.2112.
  32. Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694.
  33. Nesterenko M., Popovych R., Contractions of low-dimensional Lie algebras, J. Math. Phys. 47 (2006), 123515, 45 pages, math-ph/0608018.
  34. NIST digital library of mathematical functions, available at http://dlmf.nist.gov/.
  35. Post S., Models of quadratic algebras generated by superintegrable systems in 2D, SIGMA 7 (2011), 036, 20 pages, arXiv:1104.0734.
  36. Tempesta P., Turbiner A.V., Winternitz P., Exact solvability of superintegrable systems, J. Math. Phys. 42 (2001), 4248-4257, hep-th/0011209.
  37. Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (Editors), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, Vol. 37, Amer. Math. Soc., Providence, RI, 2004.
  38. Weimar-Woods E., The three-dimensional real Lie algebras and their contractions, J. Math. Phys. 32 (1991), 2028-2033.

Previous article  Next article   Contents of Volume 12 (2016)