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Extended abstract

We introduce certain finite-dimensional algebras denoted by PCn and PFn,m which are certain
quotients of the plactic algebra Pn, which had been introduced by A. Lascoux and M.-P. Schüt-
zenberger [44]. We show that dim(PFn,k) is equal to the number of symmetric plane partitions
fitting inside the box n × k × k, dim(PCn) is equal to the number of alternating sign matrices
of size n× n, moreover,

dim(PFn,n) = TSPP(n+ 1)× TSSCPP(n),

dim(PFn,n+1) = TSPP(n+ 1)× TSSCPP(n+ 1),

dim(PFn+2,n) = dim(PFn,n+1), dim(PFn+3,n) =
1

2
dim(PFn+1,n+1),

and study decomposition of the Cauchy kernels corresponding to the algebras PCn and PFn,m;
as well as introduce polynomials which are common generalizations of the (double) Schubert,
β-Grothendieck, Demazure (known also as key polynomials), (plactic) key-Grothendieck, (plac-
tic) Stanley and stable β-Grothendieck polynomials. Using a family of the Hecke type divided
difference operators we introduce polynomials which are common generalizations of the Schu-
bert, β-Grothendieck, dual β-Grothendieck, β-Demazure–Grothendieck, and Di Francesco–Zinn-
Justin polynomials. We also introduce and study some properties of the double affine nilCoxeter
algebras and related polynomials, put forward a q-deformed version of the Knuth relations and
plactic algebra.

1 Introduction

The Grothendieck polynomials had been introduced by A. Lascoux and M.-P. Schützenberger
in [46] and studied in detail in [37]. There are two equivalent versions of the Grothendieck
polynomials depending on a choice of a basis in the Grothendieck ring K?(F ln) of the complete
flag variety F ln. The basis {exp(ξ1), . . . , exp(ξn)} in K∗(F ln) is one choice, and another choice
is the basis {1 − exp(−ξj), 1 ≤ j ≤ n}, where {ξj , 1 ≤ j ≤ n} denote the Chern classes of
the tautological linear bundles Lj over the flag variety F ln. In the present paper we use the
basis in a deformed Grothendieck ring K∗,β(Fn) of the flag variety F ln generated by the set of

elements {xi = x
(β)
i = 1− exp(βξi), i = 1, . . . , n}. This basis has been introduced and used for

construction of the β-Grothendieck polynomials in [16, 18].

A basis in the classical Grothendieck ring of the flag variety in question corresponds to

the choice β = −1. For arbitrary β the ring generated by the elements
{
x

(β)
i , 1 ≤ i ≤ n

}
has been identified with the Grothendieck ring corresponding to the generalized cohomology
theory associated with the multiplicative formal group law F (x, y) = x + y + βxy, see [21].
The Grothendieck polynomials corresponding to the classical K-theory ring K?(F ln), i.e., the
case β = −1, had been studied in depth by A. Lascoux and M.-P. Schützenberger in [47]. The
β-Grothendieck polynomials has been studied in [16, 17, 21].

The plactic monoid over a finite totally ordered set A = {a < b < c < · · · < d} is the
quotient of the free monoid generated by elements from A subject to the elementary Knuth
transformations [27]

bca = bac & acb = cab, and bab = bba & aba = baa, (1.1)

for any triple {a < b < c} ⊂ A.

To our knowledge, the concept of “plactic monoid” has its origins in a paper by C. Schen-
sted [62], concerning the study of the longest increasing subsequence of a permutation, and
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a paper by D. Knuth [27], concerning the study of combinatorial and algebraic properties of the
Robinson–Schensted correspondence1.

As far as we know, this monoid and the (unital) algebra P(A) corresponding to that monoid2,
had been introduced, studied and used by M.-P. Schützenberger, see [63, Section 5], to give
the first complete proof of the famous Littlewood–Richardson rule in the theory of symmetric
functions. A bit later this monoid, was named the “monöıde plaxique” and studied in depth by
A. Lascoux and M.-P. Schützenberger [44]. The algebra corresponding to the plactic monoid is
commonly known as plactic algebra. One of the basic properties of the plactic algebra [63] is that
it contains the distinguished commutative subalgebra which is generated by noncommutative
elementary (quasi-symmetric) polynomials3

ek(An) =
∑

i1>i2>···>ik

ai1ai2 · · · aik , k = 1, . . . , n,

see, e.g., [63, Corollary 5.9] and [15].
We refer the reader to nice written overview [42] of the basic properties and applications of

the plactic monoid in combinatorics.
It is easy to see that the plactic relations for two letters a < b, namely,

aba = baa, bab = bba,

imply the commutativity of noncommutative elementary polynomials in two variables. In other
words, the plactic relations for two letters imply that

ba(a+ b) = (a+ b)ba, a < b.

It has been proved in [15] that these relations together with the Knuth relations (1.1) for three
letters a < b < c, imply the commutativity of noncommutative elementary quasi-symmetric
polynomials for any number of variables.

In the present paper we prove that in fact the commutativity of noncommutative elementary
quasi-symmetric polynomials for n = 2 and n = 3 implies the commutativity of that polynomials
for all n, see Theorem 2.234.

One of the main objectives of the present paper is to study combinatorial properties of the
generalized plactic Cauchy kernel

C(Pn, U) =
n−1∏
i=1


i∏

j=n−1

(1 + pi,j−i+1uj)

 ,

where Pn stands for the set of parameters {pij , 2 ≤ i + j ≤ n + 1, i > 1, j > 1}, and U := Un
stands for a certain noncommutative algebra we are interested in, see Section 5.

We also want to bring to the attention of the reader on some interesting combinatorial
properties of rectangular Cauchy kernels

F(Pn,m, U) =

n−1∏
i=1


1∏

j=m−1

(1 + p
i,i−j+1

(m)uj)

 ,

where Pn,m = {pij} 1≤i≤n
1≤j≤m

; see Definition 6.6 for the meaning of symbol a(m).

1See, e.g., https://en.wikipedia.org/wiki/Robinson-Schensted_correspondence.
2If A = {1 < 2 < · · · < n}, the elements of the algebra P(A) can be identified with semistandard Young

tableaux. It was discovered by D. Knuth [27] that modulo Knuth equivalence the equivalence classes of semistan-
dard Young tableaux form an algebra, and he has named this algebra by tableaux algebra. It is easily seen that the
tableaux algebra introduced by D. Knuth is isomorphic to the algebra introduced by M.-P. Schützenberger [63].

3See, e.g., [34] for definition of noncommutative quasi-symmetric functions and polynomials.
4Let us stress that conditions necessary and sufficient to assure the commutativity of noncommutative elemen-

tary polynomials for the number of variables equals n = 2 and n = 3 turn out to be weaker then that listed in [15].

https://en.wikipedia.org/wiki/Robinson-Schensted_correspondence
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We treat these kernels in the (reduced) plactic algebras PCn and PFn,m correspondingly. The
algebras PCn and PFn,m are finite-dimensional and have bases parameterized by certain Young
tableaux described in Sections 5.1 and 6 correspondingly. Decomposition of the rectangular
Cauchy kernel with respect to the basis in the algebra PFn,m mentioned above, gives rise
to a set of polynomials which are common generalizations of the (double) Schubert. β-Gro-
thendieck, Demazure and Stanley polynomials. To be more precise, the polynomials listed above
correspond to certain quotients of the plactic algebra PFn,m and appropriate specializations of
parameters {pij} involved in our definition of polynomials Uα({pij}), see Section 6.

As it was pointed out in the beginning of Introduction, the Knuth (or plactic) relations (1.1)
have been discovered in [27] in the course of the study of algebraic and combinatorial proper-
ties of the Robinson–Schensted correspondence. Motivated by the study of basic properties of
a quantum version of the tropical/geometric Robinson–Schensted–Knuth correspondence – work
in progress, but see [3, 24, 26, 57, 58] for definition and basic properties of the tropical/geometric
RSK, – the author of the present paper came to a discovery that certain deformations of the
Knuth relations preserve the Hilbert series (resp. the Hilbert polynomials) of the plactic alge-
bras Pn and Fn (resp. the algebras PCn and PFn).

More precisely, let {q2, . . . , qn} be a set of (mutually commuting) parameters, and Un :=
{u1, . . . , un} be a set of generators of the free associative algebra over Q of rank n. Let Y,Z ⊂
[1, n] be subsets such that Y ∪ Z = [1, n] and Y ∩ Z = ∅. Let us set p(a) = 0, if a ∈ Y and
p(a) = 1, if a ∈ Z. Define q-deformed super Knuth relations among the generators u1, . . . , un
as follows:

SPLq : (−1)p(i)p(k)qkujuiuk = ujukui, i < j ≤ k,
(−1)p(i)p(k)qkuiukuj = ukuiuj , i ≤ j < k.

We define

• q-deformed superplactic algebra SQPn to be the quotient of the free associative alge-
bra Q〈u1, . . . , un〉 by the two-sided ideal generated by the set of q-deformed Knuth rela-
tions (SPLq),

• reduced q-deformed superplactic algebras SQPCn and SQPFn,m to be the quotient of the
algebra SQPn by the two-sided ideals described in Definitions 5.14 and 6.7 correspon-
dingly.

We state

Conjecture 1.1. The algebra SQPn and the algebras SQPCn and SQPFn,m, are flat defor-
mations of the algebras Pn, PCn and PFn,m correspondingly.

In fact one can consider more general deformation of the Knuth relations, for example take
a set of parameters Q := {qik, 1 ≤ i < k ≤ n} and impose on the set of generators {u1, . . . , un}
the following relations

qikujuiuk = ujukui, i < j ≤ k, qikuiukuj = ukuiuj , i ≤ j < k.

However we don’t know how to describe a set of conditions on parameters Q which imply the
flatness of the corresponding quotient algebra(s), as well as we don’t know an interpretation and
dimension of the algebras SQPCn and SQPFn,m for a “generic” values of parameters Q. We
expect the dimension of algebras SQPCn and SQPFn,m each depends piece-wise polynomially on
a set of parameters {qij ∈ Z≥0, 1 ≤ i < j ≤ n}, and pose a problem to describe its polynomiality
chambers.

We also mention and leave for a separate publication(s), the case of algebras and polynomials
associated with superplactic monoid [36, 54], which corresponds to the relations SPLq with
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qi = 1, ∀ i. Finally we point out an interesting and important paper [53] wherein the case
Z = ∅, and the all deformation parameters are equal to each other, has been independently
introduced and studied in depth.

Let us repeat that the important property of plactic algebras Pn is that the noncommutative
elementary polynomials

ek(u1, . . . , nn−1) :=
∑

n−1≥a1≥a2≥ak≥1

ua1 · · ·uak , k = 1, . . . , n− 1,

generate a commutative subalgebra inside of the plactic algebra Pn, see, e.g., [15, 44]. Therefore
all our finite-dimensional algebras introduced in the present paper, have a distinguished finite-
dimensional commutative subalgebra. We have in mined to describe these algebras explicitly in
a separate publication.

In Section 2 we state and prove necessary and sufficient conditions in order the elementary
noncommutative polynomials form a mutually commuting family. Surprisingly enough to check
the commutativity of noncommutative elementary polynomials for any n, it’s enough to check
these conditions only for n = 2, 3. However a combinatorial meaning of a generalization of the
Lascoux–Schützenberger plactic algebra Pn obtained in this way, is still missing.

The plactic algebra PFn,m introduced in Section 6, has a monomial basis parametrized by the
set of Young tableaux of shape λ ⊂ (nm) filled by the numbers from the set {1, . . . ,m}. In the
case n = m it is well-known [19, 33, 56], that this number is equal to the number of symmetric
plane partitions fitting inside the cube n × n × n. Surprisingly enough this number admits
a factorization in the product of the number of totally symmetric plane partitions (TSPP) by
the number of totally symmetric self-complementary plane partitions (TSSCPP) fit inside the
same cube. A similar phenomenon happens if |m − n| ≤ 2, see Section 6. More precisely, we
add to the well-known equalities

#|B1,n| = 2n, #|B2,n| =
(

2n+ 1

n

)
, #|B3,n| = 2n Catn+1 [65, A003645],

#|B4,n| =
1

2
Catn+1 Catn+2 [65, A000356],

#|Bn,5| =
(
n+5

5

)(
n+7

7

)(
n+9

9

)(
n+2

2

)(
n+4

4

) [65, A133348],

the following relations

#|Bn,n| = TSPP(n+ 1)×ASM(n), #|Bn,n+1| = TSPP(n+ 1)×ASM(n+ 1),

#|Bn+2,n| = #|Bn,n+1|, #|Bn+3,n| =
1

2
#|Bn+1,n+1|,

#|PP(n)| = #|TSSCPP(n)| ×#|ASMHT(2n)| = #|CSSCPP(2n)| ×#|CSPP(n)|,
#|CSPP(2n)| = #|TSPP(2n)| ×#|CSTCPP(2n)|,
#|CSPP(2n+ 1)| = 22n#|TSPP(2n+ 1)| ×#|TSPP(2n)|,

where PP(n) stands for the set of plane partitions fit in a cub of size n × n × n; AMSHT(2n)
denotes the set of alternating sign matrices of size 2n × 2n invariant under a half-turn and
CSSPP(2n) denotes the set of cyclically symmetric self-complementary plane partitions fitting
inside a cub of size 2n × 2n × 2n, see, e.g., [6]; CSTCPP(n) stands for the set of cyclically
symmetric transpose complementary plane partitions fitting inside a cub of size 2n × 2n × 2n,
see, e.g., [65, A051255]. See Section 6 for the definition of the sets Bn,m and examples. In
Exercise 6.3 we state some (new) divisibility properties of the numbers #|Bn+4,n|.
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It is well-known that ASMHT(2n) = ASM(n)×CSPP(n), where CSPP(n) denotes the number
of cyclically symmetric plane partitions fitting inside n-cube, and CSSCPP(2n) = ASM(n)2,
see, e.g., [6, 35] and [65, A006366].

Problem 1.2.

• Construct bijection between the set of plane partitions fit inside n-cube and the set of
(ordered) triples (π1, π2, ℘), where (π1, π2) is a pair of TSSCPP(n) and ℘ is a cyclically
symmetric plane partition fitting inside n-cube.

• Describe the involution κ : PP(n) −→ PP(n) which is induced by the involution (π1, π2, ℘)
−→ (π2, π1, ℘) on the set TSSCPP(n)×TSSCP(n)×CSPP(n), and its fixed points. Clearly
one has #|Fix(κ)| = ASMHT(2n).

• Characterize pairs of plane partitions (Π1,Π2) ∈ PP(n)× PP(n) such that

(a) ℘(Π1) = ℘(Π2); (b) (π1(Π1), π2(Π1)) = (π1(Π2), π2(Π2)).

These relations have straightforward proofs based on the explicit product formulas for the
numbers

#|SPP(n)| =
∏

1≤i≤j≤k

n+ i+ j + k − 1

i+ j + k − 1
,

#|TSPP(n)| =
n∏
i=1

n∏
j=i

n∏
k=j

i+ j + k − 1

i+ j + k − 2
,

#|PP(n)| =
n∏
i=0

n−1∏
j=1

3n− i− j
2n− i− j

=
n∏
i=1

(
2n+i
n

)(
n+i
n

) ,
but bijective proofs of these identities are an open problem.

It follows from [40, 44] that the dimension of the (reduced) plactic algebra PCn is equal
to the number of alternating sign matrices of size n × n (note that ASM(n) = TSSCPP(n)).
Therefore the key-Grothendieck polynomials can be obtained from U -polynomials (see Section 6,
Theorem 6.12) after the specialization pij = 0, if i+ j > n+ 1.

In Section 4 following [25] we introduce and study a family of polynomials which are a com-
mon generalization of the Schubert, β-Grothendieck, dual β-Grothendieck, β-Demazure, β-key-
Grothendieck, Bott–Samelson and q-Demazure polynomials, Whittaker functions (see [7] and
Lemma 4.18) and Di Francesco–Zinn-Justin polynomials (see Section 4). Namely, for any per-
mutation w ∈ Sn and composition ζ ⊂ δn := (n− 1, n− 2, . . . , 2, 1), we introduce polynomials

KN (β,α,γ,h)
w (Xn) = h`(w)Tsi1 · · ·Tsi`

(
xδn
)
,

KD
(β,α,γ,h)
ζ (Xn) = h`(vζ)Tsi1 · · ·Tsi`

(
xζ

+)
,

where

Ti := T
(β,α,γ,h)
i = −α+ ((α+ β + γ)xi + γxi+1 + h

+ h−1(α+ γ)(β + γ)xixi+1)∂i,i+1, i = 1, . . . , n− 1,

denote a collection of divided difference operators which satisfy the Coxeter and Hecke relations

TiTjTi = TjTiTj , if |i− j| = 1; TiTj = TjTi, if |i− j| ≥ 2,

T 2
i = (β − α)Ti + βα, i = 1, . . . , n− 1;
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by definition for any permutation w ∈ Sn we set

Tw := Tsi1 · · ·Tsi` ,

for any reduced decomposition w = si1 · · · si` of a permutation in question; ζ+ denotes a unique
partition obtained from ζ by ordering its parts, and vζ ∈ Sn denotes the minimal length permu-
tation such that vζ(ζ) = ζ+.

Assume that h = 1.5 If α = γ = 0, these polynomials coincide with the β-Grothendieck
polynomials [16], if β = α = 1, γ = 0 these polynomials coincide with the Di Francesco–Zinn-
Justin polynomials [12], if β = γ = 0, these polynomials coincide with dual α-Grothendieck

polynomials H(α)
w (Xn),6 where by definition we set Xn := (x1, . . . , xn).

Conjecture 1.3. For any permutation w ∈ Sn and any composition ζ ⊂ δn, polynomials

KN (β,α,γ,h)
w (Xn) and KD

(α,β,γ,h)
ζ (Xn) have nonnegative coefficients, i.e.,

KN (β,α,γ,h)
w (Xn) ∈ N[α, β, γ, h][Xn], KD

(β,α,γ,h)
ζ (Xn) ∈ N[α, β, γ, h][Xn].

We expect that these polynomials have some geometrical meaning to be discovered.

More generally we study divided difference type operators of the form

Tij := T
(a,b,c,h,e)
ij = a+ (bxi + cxj + h+ exixj)∂ij ,

depending on parameters a, b, c, h, e and satisfying the 2D-Coxeter relations

TijTjkTij = TjkTijTjk, 1 ≤ i < j < k ≤ n,
TijTkl = TklTij , if {i, j} ∩ {k, l} = ∅.

We find that the necessary and sufficient condition which ensure the validity of the 2D-Coxeter
relations is the following relation among the parameters7:

(a+ b)(a− c) + he = 0.

Therefore, if the above relation between parameters a, b, c, h, e holds, then for any permu-
tation w ∈ Sn the operator

Tw := T (a,b,c,h,e)
w = T

(a,b,c,h,e)
i1

· · ·T (a,b,c,h,e)
i`

,

5Clearly that if h 6= 0, then after rescaling parameters α, β and γ one can assume that h = 1. However,
see, e.g., [25, Section 5], the parameter h plays important role in the study of different specializations of the
variables xi, 1 ≤ i ≤ n− 1 and parameters α, β and γ.

6To avoid the reader’s confusion, let us explain that in our paper we use the letter α either as the lower index to
denote a composition, or as the upper index to denote a parameter which appears in certain polynomials treated in
our paper. For example H(α)

α (Xn) denotes the dual α-Grothendieck polynomial corresponding to a composition α.

Note that the α-Grothendieck polynomial G
(α)
w (Xn) can be obtained from the polynomial G

(β)
w (Xn) by replacing β

by α.
7In other words, the divided difference operators {Tij := T

(a,b,c,h,e)
ij } which obey the 2D-Coxeter relations,

have the following form:

T
(a,b,c,h)
ij =

(
1 +

(a+ b)

h
xi

)(
1 +

c− a
h

xj
)
∂ij + aσij , if h 6= 0, a, b, c arbitrary.

If h = 0, then either Tij = ((c− a)xj + exixj)∂ij + aσij , or Tij = (a+ b)xi + exixj)∂ij + aσij , where σij stands
for the exchange operator: σij(F (zi, zj)) = F (zj , zi).
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where w = si1 · · · si` is any reduced decomposition of w, is well-defined. Hence under the
same assumption on parameters, for any permutation w ∈ Sn one can attach the well-defined
polynomial

G(a,b,c,h,e)
w (X,Y ) := T (x)

w

(a,b,c,h,e)
( ∏

i≥1,j≥1
i+j≤n+1

(xi + yj)

)
,

and in much the same fashion to define polynomials

D(a,b,c,h,e)
α (X,Y ) := T (x)

wα

(a,b,c,h,e)(
xα

+)
for any composition α such that αi ≤ n− i, ∀ i. We have used the notation T (x)(a,b,c,h,e)

w to point
out that this operator acts only on the variables X = (x1, . . . , xn); for any composition α ∈ Zn≥0,
α+ denotes a unique partition obtained from α by reordering its parts in (weakly) decreasing
order, and wα denotes a unique minimal length permutation in the symmetric group Sn such
that wα(α) = α+.

In the present paper we are interested in to list a conditions on parameters A := {a, b, c, h, e}
with the constraint

(a+ b)(a− c) + he = 0,

which ensure that the above polynomials G
(a,b,c,h,e)
w (X) and D

(a,b,c,h,e)
α (X) or their specialization

xi = 1, ∀ i, have nonnegative coefficients. We state the following conjectures:

• KN (β,α,γ)
w (Xn) ∈ N[α, β, γ][Xn],

• G(−b,a+b+c,c,1,(b+c)(a+c)
w (Xn) ∈ N[a, b, c][Xn],

• G(−b,a+b+c,c+d,1,(b+c+d)(a+c)
w (xi = 1, ∀ i) ∈ N[a, b, c, d], where a, b, c, d are free parameters.

In the present paper we treat the case

A = (−β, β + α+ γ, γ, 1, (α+ γ)(β + γ)). (1.2)

As it was pointed above, in this case polynomials GAw(X) are common generalization of Schu-
bert, β-Grothendieck and dual β-Grothendieck, and Di Francesco–Zinn-Justin polynomials. We
expect a certain interpretation of the polynomials GAw for general β, α and γ.

As it was pointed out earlier, one of the basic properties of the plactic monoid Pn is that the
noncommutative elementary symmetric polynomials {ek(u1, . . . , un−1)}1≤k≤n−1 generate a com-
mutative subalgebra in the plactic algebra in question. One can reformulate this statement as
follows. Consider the generating function

Ai(x) :=
i∏

a=n−1

(1 + xua) =

i∑
a=0

ea(un−1, . . . , ui)x
i−a,

where we set e0(U) = 1. Then the commutativity property of noncommutative elementary
symmetric polynomials is equivalent to the following commutativity relation in the plactic as
well as in the generic plactic, algebras Pn and Pn [15], and Theorem 2.23,

Ai(x)Ai(y) = Ai(y)Ai(x), 1 ≤ i ≤ n− 1.

Now let us consider the Cauchy kernel

C(Pn, U) = A1(z1) · · ·An−1(zn−1),
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where we assume that the pairwise commuting variables z1, . . . , zn−1 commute with the all
generators of the algebras Pn and Pn. In what follows we consider the natural completion P̂n of
the plactic algebra Pn to allow consider elements of the form (1 +xui)

−1. Elements of this form
exist in any Hecke type quotient of the plactic algebra P̃n. Having in mind this assumption,
let us compute the action of divided difference operators ∂zi,i+1 on the Cauchy kernel. In the
computation below, the commutativity property of the elements Ai(x) and Ai(y) plays the key
role. Let us start computation of ∂zi,i+1(C(Pn, U)) = ∂zi,i+1(A1(z1) · · ·An−1(zn−1)). First of all

write Ai+1(zi+1) = Ai(zi+1)(1+zi+1ui)
−1. According to the basic property of the elements Ai(x),

one sees that the expression Ai(zi)Ai(zi+1) is symmetric with respect to zi and zi+1, and hence
is invariant under the action of divided difference operator ∂zi,i+1. Therefore,

∂zi,i+1(C(Pn, U)) = A1(z1) · · ·Ai(zi)Ai(zi+1)∂zi,i+1

(
(1 + zi+1ui)

−1
)

×Ai+2(zi+2) · · ·An−1(zn−1).

It is clearly seen that ∂zi,i+1((1 + zi+1ui)
−1) = (1 + ziui)

−1(1 + zi+1ui)
−1ui. Therefore,

∂zi,i+1(C(Pn, U)) = A1(z1) · · ·Ai(zi)Ai+1(zi+1)(1 + ziui)
−1uiAi+2(zi+2) · · ·An−1(zn−1).

It is easy to see that if one adds Hecke’s type relations on the generators

u2
i = (a+ b)ui + ab, i = 1, . . . , n− 1,

then

(1 + zui)
−1ui =

ui − zab
(1 + bz)(1− az)

.

Therefore in the quotient of the plactic algebra Pn by the Hecke type relations listed above and
by the “locality” relations

uiuj = ujui, if |i− j| ≥ 2,

one obtains

(−b+ (1 + zib))∂
z
i,i+1 (A1(z1) · · ·An−1(zn−1)) = (A1(z1) · · ·An−1(zn−1))

(
ei − b

1− azi

)
.

Finally, if a = 0, then the above identity takes the following form

∂zi,i+1 ((1 + zi+1b)A1(z1) · · ·An−1(zn−1)) = (A1(z1) · · ·An−1(zn−1)) (ei − b).

In other words the above identity is equivalent to the statement [18] that in the idCoxeter
algebra ICn the Cauchy kernel C(Pn, U) is the generating function for the b-Grothendieck poly-
nomials. Moreover, each (generalized) double b-Grothendieck polynomial is a positive linear
combination of the key-Grothendieck polynomials.

A proof of this statement is a corollary of the more general statement which will be frequently
used throughout the present paper, namely, if an equivalence relation ≈2 is a refinement of
that ≈1, that is if assumption a≈2 b =⇒ a≈1 b holds ∀ a, b, then each equivalence class w.r.t.
relation ≈1 is disjoint union of the equivalence classes w.r.t. relation ≈2.

In the special case b = −1 and Pij = xi + yj if 2 ≤ i + j ≤ n + 1, pij = 0, if i + j > n + 1,
this result had been stated in [41].

As a possible mean to define affine versions of polynomials treated in the present paper, we
introduce the double affine nilCoxeter algebra of type A and give construction of a generic family
of Hecke’s type elements8 we will be put to use in the present paper.

8Remind that by the name a family of Hecke’s type elements we mean a set of elements {e1, . . . , en} such that
e2i = Aei +B, A, B are parameters (Hecke type relations), eiej = ejei, if |i− j| ≥ 2, eiejei = ejeiej , if |i− j| = 1
(Coxeter relations).



10 A.N. Kirillov

In Section 5.1 we suggest a common generalization of some combinatorial formulas from [10]
and [20]. Namely, we give explicit formula∏

1≤i≤k, 1≤j≤n
j−i≤n−k

N − i− j + 1

i+ j − 1

∏
1≤i≤k, 1≤j≤n
j−i>n−k

N + i+ j − 1

i+ j − 1
(1.3)

for the number of k-tuples of noncrossing Dyck paths connecting the points (0, 0) and (N,N −
n−k). Interpretations of the number (1.3) as the number of certain k-triangulations of a convex
(N + 1)-gon, or that of certain alternating sign matrices of size N ×N , are interesting tasks.

In the case N = n + k we recover the [10, r.h.s. of formula (2)]. In the case k = 2 our
formula (1.3) is equivalent to that obtained in [20]. Our proof that the number (1.3) counts
certain k-tuples of noncrossing Dyck paths is based on the study of combinatorial properties of
the so-called column multi-Schur functions s∗λ(Xn) introduced in Theorem 5.6, cf. [56, 70]. In
particular we show that for rectangular partition λ = (nk) the polynomial s∗λ(Xn+k) is essentially

coincide with the Schubert polynomial corresponding to the Richardson permutation 1k ×w(n)
0 .

We introduce also a multivariable deformation of the numbers ASM(n), namely,

ASM(Xn−1; t) :=
∑
λ⊂δn

s∗λ(X)t|λ|.

As Appendix we include several examples of polynomials studied in the present paper to
illustrate results obtained in these notes. We also include an expository text concerning the
MacNeille completion of a poset to draw attention of the reader to this subject. It is an exami-
nation of the MacNeille completion of the poset associated with the (strong) Bruhat order on the
symmetric group, that was one of the main streams of the study in the present paper. Namely,
our concern was the challenge how to attach to each edge e of the MacNeille completionMN (Sn)
of the Bruhat order poset on the symmetric group Sn an operator ∂e acting on the ring of
polynomials Z[Xn], such that ∂e(Kh(e)) = Kt(e) together with compatibility conditions among
the set of operators {∂e}e∈MN (Sn), that is for any two vertices of MN (Sn), say α and β, and
a path pα,β in the MacNeille completion which connects these vertices, the naturally defined
operator ∂pα,β depends only on the vertices α and β taken, and doesn’t depend on a path pα,β
selected. As far as I know, this problem is still open.

2 Plactic, nilplactic and idplactic algebras

Definition 2.1 ([44]). The plactic algebra Pn is an (unital) associative algebra over Z generated
by elements {u1, . . . , un−1} subject to the set of relations

(PL1) ujuiuk = ujukui, uiukuj = ukuiuj , if i < j < k,

(PL2) uiujui = ujuiui, ujuiuj = ujujui, if i < j.

Proposition 2.2 ([44]). Tableau words9 in the alphabet U = {u1, . . . , un−1} form a basis in the
plactic algebra Pn.

9For the reader convenience we recall a definition of a tableau word. Let T be a (regular shape) semistandard
Young tableau. The tableau word w(T ) associated with T is the reading word of T is the sequence of entries
of T obtained by concatenating the columns of T bottom to top consecutively starting from the first column. For
example, take

T =

1 2 3 3
2 3 4
3 4
5
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In other words, each plactic class contain a unique tableau word. In particular,

Hilb(Pn+1, t) = (1− t)−n
(
1− t2

)−(n2).

Remark 2.3. There exists another algebra over Z which has the same Hilbert series as that of
the plactic algebra Pn. Namely, define algebra Ln to be an associative algebra over Z generated
by the elements {e1, e2, . . . , en−1}, subject to the set of relations

(ei, (ej , ek)) := eiejek − ejeiek − ejekei + ekejei = 0,

for all1 ≤ i, j, k ≤ n− 1, j < k. Observe that the number of defining relations in the algebra Ln
is equal to 2

(
n
3

)
. Note that elements e1 + e2 and e2e1 do not commute in the algebra L3, but do

commute if are considered as elements in the plactic algebra P3. See Example 5.25(C) for some
details.

Exercise 2.4.

• Show that the dimension of the degree k homogeneous component L(k)
n of the algebra Ln

is equal to the number semistandard Young tableaux of the size k filled by the numbers
from the set {1, 2, . . . , n− 1}.

• Let us set eij := (ei, ej) := eiej − ejei, i < j. Show that the elements {eij}1≤i<j≤n−1

generate the center of the algebra Ln.

Definition 2.5.

(a) The local plactic algebra LPn, see, e.g., [15], is an associative algebra over Z generated by
elements {u1, . . . , un−1} subject to the set of relations

uiuj = ujui, if |i− j| ≥ 2,

uju
2
i = uiujui, u2

jui = ujuiuj , if |i− j| = 1.

One can show (A.K.) that

Hilb(LPn, t) =

n∏
j=1

(
1

1− tj

)n+1−j
.

(b) The affine local plactic algebra P̂Ln, see [32], is an associative algebra over Q generated
by the elements {e0, . . . , en−1} subject to the set of relations listed in item (a), where all
indices are understood modulo n.

(c) Let q be a parameter, the affine quantum local plactic algebra P̂L
(q)

n is an associative
algebra over Q[q] generated by the elements {e0, . . . , en−1} subject to the set of relations

(i) eiej = ejei, if |i− j| > 1,

(ii) (1+q)eiejei = qe2
i ej +eje

2
i , (1+q)ejeiej = qeie

2
j +e2

jei, if |i−j| = 1, where all indices
appearing in the relation (ii) are understood modulo n.

The corresponding tableau word is w(T ) = 5321432433. By definition, a tableau word is the tableau word
corresponding to some (regular shape) semistandard Young tableau. It is well-known [51] that the number of

tableau subwords contained in the staircase word I
(n)
0 := un−1un−2 · · ·u2u1︸ ︷︷ ︸un−1un−2 · · ·u2︸ ︷︷ ︸ · · ·un−1uu−2︸ ︷︷ ︸un−1︸ ︷︷ ︸ is

equal to the number of alternating sign matrices ASM(n).
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It was observed in [31] that the relations listed in (ii) are the Serre relations of U≥q
(
ĝl(n)

)
rewritten10 in generators kiEi. Some interesting properties and applications of the local and
affine local plactic algebras one can find in [31, 32, 34]. It seems an interesting problem to
investigate properties and applications of the affine pseudoplactic algebra which is the quotient
of the affine local plactic algebra L̂Pn by the two-sided ideal generated by the set of elements

{(ej , (ei, ek)), 0 ≤ i < j < k ≤ n− 1}.

Definition 2.6 (nil Temperley–Lieb algebra). Denote by T L(0)
n the quotient of the local plactic

algebra LPn by the two-sided ideal generated by the elements
{
u2

1, . . . , u
2
n−1

}
.

It is well-known that dim T Ln = Cn, the n-th Catalan number. One also has

Hilb
(
T L(0)

4 , t
)

= (1, 3, 5, 4, 1), Hilb
(
T L(0)

5 , t
)

= (1, 4, 9, 12, 10, 4, 2),

Hilb(T L6, t) = (1, 5, 14, 25, 31, 26, 16, 9, 4, 1).

Proposition 2.7. The Hilbert polynomial Hilb(T Ln, t) is equal to the generating function for the
number or 321-avoiding permutations of the set {1, 2, . . . , n} having the inversion number equals
to k, see [65, A140717], for other combinatorial interpretations of the polynomials Hilb(T Ln, t).

Exercise 2.8.

• Show that degt Hilb(T Ln, t) =
[
n2

4

]
.

• Show that

lim
k→∞

tk
2

Hilb
(
T L2k, t

−1
)

=
∏
n≥1

(
1− t4n−2

)(
1− t2n−1

)4(
1− t4n

) =
∑
n≥0

ant
n,

where an is equal to the number of 2-colored generalized Frobenius partitions, see, e.g.,
[65, A051136] and the literature quoted therein11.

• Show that

lim
k→∞

tk(k+1) Hilb
(
T L2k+1, t

−1
)

= 2
∏
n≥1

(1 + tn)
(
1 + t2n

)2
1− tn

= 2
∑
n≥0

bnt
n.

See [65, A201078] for more details concerning relations of this exercise with the Ramanujan
theta functions12.

10For the reader convenient, we recall, see, e.g., [31] the definition of algebra U≥q (ĝl(n)). Namely, this algebra
is an unital associative algebra over Q(q±1) generated by the elements {k±1

i , Ei}i=0,...,n−1, subject to the set of
relations

(R1) kikj = kjki, kik
−1
i = k−1

i = 1, ∀ i, j,
(R2) kiEj = qδi,j−δi,j+1Ejki,

(R3) (Serre relations)

E2
iEi+1 −

(
q + q−1)EiEi+1Ei + Ei+1E

2
i = 0, E2

i+1Ei −
(
q + q−1)Ei+1EiEi+1 + EiE

2
i+1 = 0,

where all indices are understood modulo n, e.g., en = e0.

It is clearly seen that after rewriting the Serre relations (R3) in terms of the elements {ei := kiEi}0≤i≤n−1, one
comes to the relations (ii) which have been listed in (c).

11The second equality in the above formula is due to G. Andrews [1]. The second formula for the generating
function of the numbers {an}n≥0 displayed in [65, A051136], either contains misprints or counts something else.

12See, e.g., http://en.wikipedia.org/wiki/Ramanujan_theta_function.

http://en.wikipedia.org/wiki/Ramanujan_theta_function
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We denote by T H(β)
n the quotient of the local plactic algebra LPn by the two-sided ideal

generated by the elements
{
u2
i − βui, i = 1, . . . , n− 1

}
.

Definition 2.9. The modified plactic algebra MPn is an associative algebra over Z generated
by {u1, . . . , un−1} subject to the set of relations (PL1) and that

ujujui = ujuiui, and uiujui = ujuiuj , if 1 ≤ i < j ≤ n− 1.

Definition 2.10. The nilplactic algebra NPn is an associative algebra over Q generated by
{u1, . . . , un−1}, subject to set of relations

u2
i = 0, uiui+1ui = ui+1uiui+1,

the set of relations (PL1), and that uiujui = ujuiuj , if |i− j| ≥ 2.

Proposition 2.11 ([50]). Each nilplactic class not containing zero, contains one and only one
tableau word.

Proposition 2.12. The nilplactic algebra NPn has finite dimension, its Hilbert polynomial
Hilb(NPn, t) has degree

(
n
2

)
, and dimQ(NPn)(n2)

= 1.

Example 2.13.

Hilb(NP3, t) = (1, 2, 2, 1), Hilb(NP4, t) = (1, 3, 6, 6, 5, 3, 1),

Hilb(NP5, t) = (1, 4, 12, 19, 26, 26, 22, 15, 9, 4, 1), dimQ(NP5) = 139,

Hilb(NP6, t) = (1, 5, 20, 44, 84, 119, 147, 152, 140, 224, 81, 52, 29, 14, 5, 1),

dimQ(NP6) = 1008.

Definition 2.14. The idplactic algebra IPn := IP(β)
n is an associative algebra over Q[β] gene-

rated by elements {u1, . . . , un−1} subject to the set of relations

u2
i = βui, uiujui = ujuiuj , i < j, (2.1)

and the set of relations (PL1).

In other words,the idplactic algebra IP(β)
n is the quotient of the modified plactic algebraMPn

by the two-sided ideal generated by the elements
{
u2
i − βui, 1 ≤ i ≤ n

}
.

Proposition 2.15. Each idplactic class not containing zero, contains a unique tableau word
associated with a row strict semistandard Young tableau13.

For each word w denote by rl(w) the length of a unique tableau word of minimal length which
is idplactic equivalent to w.

Example 2.16. Consider words in the alphabet {a < b < c < d}. Then

rl(dbadc) = 4 = rl(cadbd), rl(dbadbc) = 5 = rl(cbadbd).

Indeed,

dbadc ∼ dbdac ∼ dbdca ∼ ddbca ∼ dbac,
dbadbc ∼ dbabdc ∼ dabadc ∼ adbdac ∼ abdbca ∼ abbdca ∼ dbabc.

13Recall that a row strict semistandard Young tableau, say T , is a tableau such that the numbers in each row
and each column of T are strictly increasing. For example,

1 2 3 5 6
2 3 6 8
4 5 7
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Note that according to our definition, tableau words w = 31, w = 13 and w = 313 belong to
different idplactic classes.

Proposition 2.17. The idplactic algebra IP(β)
n has finite dimension, and its Hilbert polynomial

has degree
(
n
2

)
.

Example 2.18.

Hilb(IP3, t) = (1, 2, 2, 1), Hilb(IP4, t) = (1, 3, 6, 7, 5, 3, 1), dim(IP4) = 26,

Hilb(IP5, t) = (1, 4, 12, 22, 30, 32, 24, 15, 9, 4, 1), dim(IP5) = 154,

Hilb(IP6, t) = (1, 5, 20, 50, 100, 156, 188, 193, 173, 126, 84, 52, 29, 14, 5, 1),

dim(IP6) = 1197, dim(IP7) = 9401.

Note that for a given n some words corresponding to strict semistandard Young tableaux of
size between 5 and

(
n−1

2

)
are idplactic equivalent to zero. For example,

1 2 4
3 4

∼ 31424 ∼ 31242 ∼ 13242 ∼ 13422 ∼ 0,

1 2 3
2 4
4

∼ 421423 ∼ 421243 ∼ 412143 ∼ 142413 ∼ 124213 ∼ 122431 ∼ 0.

It seems an interesting problem to count the number of all row strict semistandard Young
tableaux contained in the staircase (n, n − 1, . . . , 2, 1) and bounded by n, as well as count the
number the number of such tableaux which are idplactic equivalent to zero. For n = 2 these
numbers are (6, 6), for n = 3 these numbers are (26, 26), for n = 4 these numbers are (160, 154)
and for n = 5 they are (1427, 1197).

Definition 2.19. The idplactic Temperly–Lieb algebra PT L(β)
n is define to be the quotient of

the idplactic algebra IP(β)
n by the two-sided ideal generated by the elements

{uiujui, ∀ i 6= j}.

For example,

Hilb
(
PT L(0)

4 , t
)

= (1, 3, 6, 4, 1)t, Hilb
(
PT L(0)

5 , t
)

= (1, 4, 12, 16, 14, 4, 2)t,

Hilb
(
PT L(0)

6 , t
)

= (1, 5, 20, 40, 60, 46, 32, 10, 4, 1)t,

Hilb
(
PT L(0)

7 , t
)

= (1, 6, 30, 80, 170, 216, 238, 152, 96, 44, 14, 4, 2)t.

One can show that

degt Hilb
(
PT L(0)

n , t
)

=

[
n2

4

]
,

and

Coefftmax Hilb(PT Ln, t) =

{
1, if n is even,

2, if n is odd.

Definition 2.20. The nilCoxeter algebra NCn is defined to be the quotient of the nilplactic
algebra NPn by the two-sided ideal generated by elements {uiuj − ujui, |i− j| ≥ 2}.
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Clearly the nilCoxeter algebra NCn is a quotient of the modified plactic algebra MPn by
the two-sided ideal generated by the elements {uiuj − ujui, |i− j| ≥ 2}.

Definition 2.21. The idCoxeter algebra IC(β)
n is defined to be the quotient of the idplactic

algebra IP(β)
n by the two-sided ideal generated by the elements {uiuj − ujui, |i− j| ≥ 2}.

It is well-known, see, e.g., [40], that the algebra NCn and IC(β)
n has dimension n!, and the

elements {uw := ui1 · · ·ui`}, where w = si1 · · · si` is any reduced decomposition of w ∈ Sn, form

a basis in the nilCoxeter and idCoxeter algebras NCn and IC(β)
n .

Remark 2.22. There is a common generalization of the algebras defined above which is due to
S. Fomin and C. Greene [15]. Namely, define generalized plactic algebra P̃n to be an associative
algebra generated by elements u1, . . . , un−1, subject to the relations (PL2) and relations

ujui(ui + uj) = (ui + uj)ujui, i < j. (2.2)

The relation (2.2) can be written also in the form

uj(uiuj − ujui) = (uiuj − ujui)ui, i < j.

Theorem 2.23 ([15]). For each pair of numbers 1 ≤ i < j ≤ n define

Ai,j(x) =
i∏

k=j

(1 + xuk).

Then the elements Ai,j(x) and Ai,j(y) commute in the generalized plactic algebra P̃n.

Corollary 2.24. Let 1 ≤ i < j ≤ n be a pair of numbers. Noncommutative elementary
polynomials eija :=

∑
j≥i1≥···≥ik≥i

ui1 · · ·uia, i ≤ a ≤ j, generate a commutative subalgebra Ci,j of

rank j − i+ 1 in the plactic algebra Pn.
Moreover, the algebra C1,n is a maximal commutative subalgebra of Pn.

To establish Theorem 2.23, we are going to prove more general result. To start with, let us
define generic plactic algebra Pn.

Definition 2.25. The generic plactic algebra Pn is an associative algebra over Z generated by
{e1, . . . , en−1} subject to the set of relations

ej(ei, ej) = (ei, ej)ei, if i < j, (2.3)

(ej , (ei, ek)) = 0, if i < j < k, (2.4)

(ej , ek)(ei, ek) = 0, if i < j < k. (2.5)

Hereinafter we shell use the notation (a, b) := [a, b] := ab− ba.

Clearly seen that relations (2.3)–(2.5) are consequence of the plactic relations (PL1)
and (PL2), but not vice versa.

Theorem 2.26. Define

An(x) =

1∏
k=j

(1 + xek).

Then the elements An(x) and An(y) commute in the generic plactic algebra Pn. Moreover
the elements An(x) and An(y) commute if and only if the generators {e1, . . . , en−1} satisfy the
relations (2.3)–(2.5).
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Proof. For n = 2, 3 the statement of Theorem 2.26 is obvious. Now assume that the state-
ment of Theorem 2.26 is true in the algebra Pn. We have to prove that the commutator
[An+1(x), An+1(y)] is equal to zero. First of all, An+1(x) = (1 + xen)An(x). Therefore

[An+1(x), An+1(y)] = (1 + xen)[An(x), 1 + yen]An(y)− [An(y), 1 + xen]An(x).

Using the standard identity [ab, c] = a[b, c] + [a, c]b, one finds that

1

xy
[An(x), 1 + yen] =

n−1∑
i=

i+1∏
a=n−1

(1 + xea)(ei, en)
1∏

a=i−1

(1 + xea).

Using relations (2.3) we can move the commutator (ei, en) to the left, since i < a < n, till we
meet the term (1 + xen). Using relations (2.4) we see that (1 + xen)(ei, n) = (ei, n)(1 + xei).
Therefore we come to the following relation

1

xy
[An(x), 1 + yen]

=

1∑
i=n−1

(ei, en)

(1 + xei)

1∏
a=n−1
a6=i

(1 + xea)An(y)− (1 + yei)

1∏
a=n−1
a6=i

(1 + yea)An(x)

 .

Finally let us observe that according to the relation (2.5),

(ei, en)
(
(1 + xei)(1 + xen−1)− (1 + xen−1)(1 + xei)

)
= x2(ei, en)(ei, en−1) = 0.

Indeed,

(ei, en)(ei, en−1) = (ei, en)eien−1 − (ei, en)en−1ei = enen−1(ei, en)− en−1en(ei, en) = 0.

Therefore

1

xy
[An(x), 1 + yen] =

(
1∑

i=n−1

(ei, en)

)
[An(x), An(y)] = 0

according to the induction assumption.
Finally, if i < j, then (ei + ej , ejei) = 0 ⇐⇒ (2.3); if i < j < k, and the relations 2.3 hold,

then (ei + ej + ek, ejei + ekej + ekei) = 0 ⇐⇒ (2.4); if i < j < k, and relations (2.3) and (2.4)
hold, then (ei + ej + ek, ekejei) = 0 ⇐⇒ (2.5); the relations (ejei + ekej + ekei, ekejei) = 0 are
consequences of the above ones. �

Let T be a semistandard tableau and w(T ) be the column reading word corresponding to the
tableau T . Denote by R(T ) (resp. IR(T )) the set of words which are plactic (resp. idplactic)
equivalent to w(T ). Let a = (a1, . . . , an) ∈ R(T ), where n := |T | (resp. a = (a1, . . . , am) ∈
IR(T ), where m ≥ |T |).

Definition 2.27 (compatible sequences b). Given a word a ∈ R(T ) (resp. a ∈ IR(T )), denote
by C(a) (resp. IC(a)) the set of sequences of positive integers, called compatible sequences,
b := (b1 ≤ b2 ≤ · · · ≤ bm) such that

bi ≤ ai, and if ai ≤ ai+1, then bi < bi+1.

Finally, define the set C(T ) (resp. IC(T )) to be the union
⋃
C(a) (resp. the union

⋃
IC(a)),

where a runs over all words which are plactic (resp. idplactic) equivalent to the word w(T ).
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Example 2.28. Take T =
2 3
3

. The corresponding tableau word is w(T ) = 323. We have

R(T ) = {232, 323} and IR(T ) = R(T )
⋃
{2323, 3223, 3232, 3233, 3323, 32323, . . . }. Moreover,

C(T ) =

{
a : 232 323 323 323 323
b : 122 112 113 123 223

}
,

IC(T ) = C(T )
⋃{

a : 2323 3223 3232 3233 3323 32323
b : 1223 1123 1122 1123 1223 11223

}
.

Let P := Pn := {pi,j , i ≥ 1, j ≥ 1, 2 ≤ i + j ≤ n + 1} be the set of (mutually commuting)
variables.

Definition 2.29.

(1) Let T be a semistandard tableau, and n := |T |. Define the double key polynomial KT (P)
corresponding to the tableau T to be

KT (P) =
∑

b∈C(T )

n∏
i=1

pbi,ai−bi+1.

(2) Let T be a semistandard tableau, and n := |T |. Define the double key Grothendieck
polynomial GKT (P) corresponding to the tableau T to be

GKT (P) =
∑

b∈IC(T )

m∏
i=1

pbi,ai−bi+1.

In the case when pi,j = xi + yj , ∀ i, j, where X = {x1, . . . , xn} and Y = {y1, . . . , yn} denote
two sets of variables, we will write KT (X,Y ), GKT (X,Y ), . . . , instead of KT (P), GKT (P), . . ..

Definition 2.30. Let T be a semistandard tableau, denote by α(T ) = (α1, . . . , αn) the exponent

of the smallest monomial in the set
{
xb :=

m∏
i=1

xbii , b ∈ C(T )
}

with respect to the lexicographic

order.

We will call the composition α(T ) to be the bottom code of tableau T .

3 Divided difference operators

In this subsection we remind some basic properties of divided difference operators will be put
to use in subsequent sections. For more details, see [55].

Let f be a function of the variables x and y (and possibly other variables), and η 6= 0 be
a parameter. Define the divided difference operator ∂xy(η) as follows

∂xy(η)f(x, y) =
f(x, y)− f(η−1y, ηx)

x− η−1y
.

Equivalently, (x− η−1y)∂xy(η) = 1− sηxy, where the operator sηxy acts on the variables (x, y, . . .)
according to the rule: sηxy transforms the pair (x, y) to (η−1y, ηx), and fixes all other variables.

We set by definition, sηyx := sη
−1

xy .
The operator ∂xy(η) takes polynomials to polynomials and has degree −1. The case η = 1

corresponds to the Newton divided difference operator ∂xy := ∂xy(1).
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Lemma 3.1.

(0) sηxys
ηξ
xz = sξyzs

η
xy, sηxys

ηξ
xzs

ξ
yz = sξyzs

ηξ
xzs

η
xy,

(1) ∂yx(η) = −η∂xy(η−1), sηxy∂yz(ξ) = η−1∂xz(ηξ)s
η
xy,

(2) ∂xy(η)2 = 0,

(3) (three term relation) ∂xy(η)∂yz(ξ) = η−1∂xz(ηξ)∂xy(η) + ∂yz(ξ)∂xz(ηξ).

(4) (twisted Leibniz rule) ∂xy(η)(fg) = ∂xy(η)(f)g + sηxy(f)∂xy(η)(g),

(5) (crossing relations, cf. [18, formula (4.6)])

• x∂xy(η) = η−1∂xy(η)y + 1, y∂xy(η) = η∂xy(η)x− η,

• ∂xy(η)y∂yz(ξ) = ∂xz(ηξ)x∂xy(η) + ξ−1∂yz(ξ)z∂xz(ηξ),

(6) ∂xy∂xz∂yz∂xz = 0.

Let x1, . . . , xn be independent variables, and let Pn := Q[x1, . . . , xn]. For each i < j put
∂ij := ∂xixj (1) and ∂ji = −∂ij . From Lemma 3.1 we have

∂2
ij = 0, ∂ij∂jk + ∂ki∂ij + ∂jk∂ki = 0,

∂ijxj∂jk + ∂kixi∂ij + ∂jkxk∂ki, if i, j, k are distinct.

It is interesting to consider also an additive or affine analog ∂xy[k] of the divided difference
operators ∂xy(η), namely,

∂xy[k](f(x, y)) =
f(x, y)− f(y − k, x+ k)

x− y + k
.

One has ∂yx[k] = −∂xy[−k], and ∂xy[p]∂yz[q] = ∂xz[p+ q]∂xy[p] + ∂yz[q]∂xz[p+ q].
A short historical comments in order. As far as I know, the divided difference operator had

been invented by I. Newton in/around the year 1687, see, e.g., [40, Ref. [142]]. Since that time
the literature concerning divided differences, a plethora of its generalizations and applications in
different fields of mathematics and physics, grows exponentially and essentially is immense. To
the best of our knowledge, the first systematic use of the isobaric divided difference operators,
namely πi(f) = ∂i(xif), and πi := πi − 1, goes back to papers by M. Demazure concerning
the study of desingularization of Schubert varieties and computation of characters of certain
modules which is nowadays called Demazure modules, see, e.g., [11] and the literature quoted
therein; the first systematic use and applications of divided difference operators to the study
of cohomology rings of partial flag varieties G/P and description of Schubert classes inside the
former, goes back to a paper by I.N. Berstein, I.M. Gelfand and S.I. Gelfand [4]; it is A. Lascoux
and M.-P. Schützenberger who had discovered a polynomial representative of a Schubert class in
the cohomology ring of the type A complete flag varieties, and developed a rich and beautiful
combinatorial theory of these polynomials, see [45, 47, 48, 49, 50] for acquainting the reader
with basic ideas and results concerning the Lascoux–Schützenber Schubert polynomials.

4 Schubert, Grothendieck and key polynomials

Let w ∈ Sn be a permutation, X = (x1, . . . , xn) and Y = (y1, . . . , yn) be two sets of variables.
Denote by w0 ∈ Sn the longest permutation, and by δn = (n − 1, n − 2, . . . , 1) the staircase
partition. For each partition λ define

Rλ(X,Y ) :=
∏

(i,j)∈λ

(xi + yj). (4.1)
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For i = 1, . . . , n− 1, let si = (i, i+ 1) ∈ Sn denote the simple transposition that interchanges i
and i + 1 and fixes all other elements of the set {1, . . . , n}. If α = (α1, . . . , αi, αi+1, . . . , αn) is
a composition, we will write

siα = (α1, . . . , αi+1, αi, . . . , αn).

Definition 4.1 (cf. [40] and the literature quoted therein).

• For each permutation w ∈ Sn the double Schubert polynomial Sw(X,Y ) is defined to be

∂
(x)
w−1w0

(Rδn(X,Y )).

• Let α be a composition. The key polynomials K[α](X) are defined recursively as follows:
if α is a partition, then K[α](X) = xα; otherwise, if α and i are such that αi < αi+1, then

K[si(α)](X) = ∂i
(
xiK[α](X)

)
.

• The reduced key polynomials K̂[α](X) are defined recursively as follows: if α is a partition,
then K̂[α](X) = K[α](X) = xα; otherwise, if α and i are such that αi < αi+1, then

K̂[si(α)](X) = xi+1∂i
(
K̂[α](X)

)
.

• For each permutation w ∈ Sn the double β-Grothendieck polynomial Gβw(X,Y ) is defined
recursively as follows: if w = w0 is the longest element, then Gw0(X,Y ) = Rδn(X,Y ); if w
and i are such that wi > wi+1, i.e., l(wsi) = l(w)− 1, then

Gβwsi(X,Y ) = ∂
(x)
i

(
(1 + βxi+1)Gβw(X,Y )

)
.

• For each permutation w ∈ Sn the double dual β-Grothendieck polynomial Hβw(X,Y ) is
defined recursively as follows: if w = w0 is the longest element, then Hw0(X,Y ) =
Rδn(X,Y ); if w and i are such that wi > wi+1, i.e., l(wsi) = l(w)− 1, then

Hβwsi(X,Y ) = (1 + βxi)∂
(x)
i

(
Hβw(X,Y )

)
.

• The key β-Grothendieck polynomials KG[α](X;β) are defined recursively as follows14: if
α is a partition, then KG[α](X;β) = xα; otherwise, if α and i are such that αi < αi+1,
then

KG[si(α)](X;β) = ∂i
(
(xi + βxixi+1) KG[α](X;β)

)
.

14In the case β = −1 divided difference operators Di := ∂i(xi − xixi+1) [39, formula (6)] had been used by
A. Lascoux to describe the transition on Grothendieck polynomials, i.e., stable decomposition of any Grothendieck
polynomial corresponding to a permutation w ∈ Sn. into a sum of Grasmannian ones corresponding to a collection
of Grasmannin permutations vλ ∈ S∞, see [39] for details. The above mentioned operators Di had been used
in [39] to construct a basis Ωα|α ∈ Z≥0 that deforms the basis which is built up from the Demazure (known also
as key) polynomials. Therefore polynomials KG[α](X;β = −1) coincide with those introduced by A. Lascoux
in [39]. In [61] the authors give a conjectural construction for polynomials Ωα based on the use of extended
Kohnert moves, see, e.g., [56, Appendix by N. Bergeron] for definition of the Kohnert moves. We state conjecture
that

J(β)
α = KG[α](X;β),

where polynomials J
β)
α are defined in [61] using the K-theoretic versions of the Kohnert moves. For β = −1

this Conjecture has been stated by C. Ross and A. Yong in [61]. It seems an interesting problem to relate the
K-theoretic Kohnert moves with certain moves of first introduced in [16].
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• The reduced key β-Grothendieck polynomials K̂G[α](X;β) are defined recursively as fol-

lows: if α is a partition, then K̂G[α](X;β) = xα; otherwise, if α and i are such that
αi < αi+1, then

K̂G[si(α)](X;β) = (xi+1 + βxixi+1)∂i
(
K̂G[α](X;β)

)
.

For brevity, we will write KG[α](X) and K̂G[α](X) instead of KG[α](X;β) and K̂G[α](X;β).

Remark 4.2. We can also introduce polynomials Zw, which are defined recursively as follows:
if w = w0 is the longest element, then Zw0(X) = xδn ; if w and i are such that wi > wi+1, i.e.,
l(wsi) = l(w)− 1, then

Zwsi(X) = ∂i
(
(xi+1 + xixi+1)Zw(X)

)
.

However, one can show that

Zw(x1, . . . , xn) = (x1 · · ·xn)n−1Gw0ww0

(
x−1
n , . . . , x−1

1

)
.

Theorem 4.3. The polynomials Sw(X,Y ), K[α](X), K̂[α](X), Gw(X,Y ), Hw(X,Y ),

KG[α](X) and K̂G[α](X) have nonnegative integer coefficients.

The key step in a proof of Theorem 4.3 is an observation that for a given n the all algebras
involved in the definition of the polynomials listed in that theorem, happen to be a suitable
quotients of the reduced plactic algebra Pn, and can be extracted from the Cauchy kernel
associated with the algebra Pn (or that Pn,n).

We will use notation Sw(X), Gw(X), . . . , for polynomials Sw(X, 0), Gw(X, 0), . . . .

Definition 4.4. For each permutation w ∈ Sn the Di Francesco–Zinn-Justin polynomials
DZw(X) are defined recursively as follows: if w is the longest element in Sn, then DZw(X) =
Rδn(X, 0); otherwise, if w and i are such that wi > wi+1, i.e., l(wsi) = l(w)− 1, then

DZwsi(X) =
(
(1 + xi)∂

(x)
i + ∂

(x)
i (xi+1 + xixi+1)

)
DZw(X).

Conjecture 4.5.

(1) Polynomials DZw(X) have nonnegative integer coefficients.

(2) For each permutation w ∈ Sn the polynomial DZw(X) is a linear combination of key
polynomials K[α](X) with nonnegative integer coefficients.

As for defi nition of the double Di Francesco–Zinn-Justin polynomials DZw(X,Y ) they are
well defined, but may have negative coefficients.

Let β and α be two parameters, consider divided difference operator

Ti := T β,αi = −β + ((β + α)xi + 1 + βαxixi+1)∂i,i+1.

Definition 4.6. Let w ∈ Sn, define Hecke–Grothendieck polynomials KN β,α
w (Xn) to be

KN (β,α)
w (Xn) := T β,αw

(
xδn
)
,

where as before xδn := xn−1
1 xn−2

2 · · ·xn−1; if u ∈ Sn, then set

T β,αu := T β,αi1
· · ·T β,αi`

,

where w = si1 · · · si` is any reduced decomposition of a permutation taken.
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More generally, let β, α and γ be parameters, consider divided difference operators

Ti := T β,α,γi = −β + ((α+ β + γ)xi + γxi+1 + 1

+ (β + γ)(α+ γ)xixi+1)∂i,i+1, i = 1, . . . , n− 1.

For a permutation w ∈ Sn define polynomials

KN (β,α,γ)
w (Xn) := T β,α,γi1

· · ·T β,α,γi`

(
xδn
)
,

where w = si1 · · · si` is any reduced decomposition of w.

Remark 4.7. A few comments in order.

(a) The divided difference operators
{
Ti := T

(β,α,γ)
i , i = 1, . . . , n − 1

}
satisfy the following

relations

• (Hecke relations)

T 2
i = (α− β)Ti + αβ,

• (Coxeter relations)

TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi, if |i− j| ≥ 2.

Therefore the elements T β,α,γw are well defined for any w ∈ Sn.

• (Inversion)

(1 + xTi)
−1 =

1 + (α− β)x− xTi
(1− βx)(1 + αx)

.

(b) Polynomials KN (β,α,γ)
w constitute a common generalization of

• the β-Grothendieck polynomials, namely, G(β)
w = KN (β,α=0,γ=0)

w0w−1 ,

• the Di Francesco–Zinn-Justin polynomials, namely, DZw = KN (β=α=1,γ=0)
w ,

• the dual α-Grothendieck polynomials, namely, KN (β=0,α,γ=0)
w0w−1 = Hαw(X).

Proposition 4.8.

• (Duality) Let w ∈ Sn, ` = `(w) denotes its length, then (αβ 6= 0)

KN (β,α)
w (1) = (βα)`KN (α−1,β−1)

w−1 (1).

• (Stability) Let w ∈ Sn be a permutation and w = si1si2 · · · si` be any its reduced de-
composition. Assume that ia ≤ n − 3, ∀ 1 ≤ a ≤ `, and define permutation w̃ :=
si1+1si2+1 · · · si`+1 ∈ Sn. Then

KN (β,α)
w (1) = KN (β,α)

w̃ (1).

It is well-known that

• the number KN (β=1,α=1)
w0 (1) is equal to the degree of the variety of pairs commuting ma-

trices of size n× n [13, 28].
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• the bidegree of the affine homogeneous variety Vw, w ∈ Sn [12] is equal to

A(n2)−`(w)B(n2)+`(w)KN (β=α=A/B)
w (1),

see [9, 12, 28] for more details and applications.

Conjecture 4.9.

• Polynomials KN (β,α,γ)
w (X) have nonnegative integer coefficients

KN (β,α,γ)
w (X) ∈ N[β, α, γ][Xn].

• Polynomials KN (β,α,γ)
w (x1 = 1, ∀ i) have nonnegative integer coefficients

KN (β,α,γ)
w (xi = 1,∀i) ∈ N[β, α, γ].

• Double polynomials

KN (β=0,α,γ)
w (X,Y ) = T β=0,α,γ

w (x)
∏

i+j≤n+1
i≥1, j≥1

(xi + yj)

are well defined and have nonnegative integer coefficients15.

• Consider permutation w = [n, 1, 2, . . . , n − 1] ∈ Sn. Clearly w = sn−1sn−2 · · · s2s1. The

number KN (β=1,α=1,γ=0)
w (1) is equal to the number of Schröder paths of semilength (n−1)

in which the (2, 0)-steps come in 3 colors and with no peaks at level 1, see [65, A162326]
for further properties of these numbers.

It is well-known, see, e.g., [65, A126216], that the polynomial KN (β,α=0)
w (1) counts the number

of dissections of a convex (n+ 1)-gon according the number of diagonals involved, where as the

polynomial KN (β,α)
w (1) (up to a normalization) is equal to the bidegree of certain algebraic

varieties introduced and studied by A. Knutson [28].
A few comments in order.

(a) One can consider more general family of polynomials KN (a,b,c,d)
w (Xn) by the use of the

divided difference operators T a,b,c,di := −b+ ((b+ d)xi + cxi+1 + 1 + d(b+ c)xixi+1)∂xi,i+1

instead of that T β,α,γi . However the polynomials KN (a,b,c,d)
w (1) ∈ Z[a, b, c, d] may have

negative coefficients in general. Conjecturally, to ensure the positivity of polynomials

KN (a,b,c,d)
w (Xn), it is necessary take d := a+ c+ r. In this case we state conjecture

KN (a,b,c,a+c+r)
w (Xn) ∈ N[a, b, c, r].

We state more general Conjecture 1.1 in introduction. In the present paper we treat only

the case r = 0, since a combinatorial meaning of polynomials KN (a,b,c,a+c+r)
w (1) in the case

r 6= 0 is missed for the author.

(b) If γ 6= 0, the polynomials KN (β,α,γ)
w (Xn) ∈ Z[α, β, γ][Xn] may have negative coefficients

in general.

Theorem 4.10. Let T be a semistandard tableau and α(T ) be its bottom code, see Defini-
tion 2.27. Then

KT (X) = K[α(T )](X), KGT (X) = KG[α(T )](X).

15Note that the assumption β = 0 is necessary.
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Let α = (α1 ≤ α2 ≤ · · · ≤ αr) be a composition, define partition α+ = (αr ≥ · · · ≥ α1).

Proposition 4.11. If α = (α1 ≤ α2 ≤ · · · ≤ αr) is a composition and n ≥ r, then

K[α](Xn) = sα+(Xr).

For example, K[0, 1, 2, . . . , n−1] =
∏

1≤i<j≤n
(xi+xj). Note that K̂[0, 1, 2, . . . , n−1] =

n∏
i=2

xi−1
i .

Proposition 4.12. If α = (α1 ≤ α2 ≤ · · · ≤ αr) is a composition and n ≥ r, then

KG[α](Xn) = G[α+](Xr).

For example, KG[0, 1, 2, . . . , n− 1] =
∏

1≤i<j≤n
(xi + xj + xixj). Note that

K̂G[0, 1, 2, . . . , n− 1] =

n∏
i=2

xi−1
i

n−1∏
i=1

(1 + xi)
n−i.

Definition 4.13. Define degenerate affine 2D nil-Coxeter algebra ANC(2)
n to be an associative

algebra over Q generated by the set of elements {{ui,j}1≤i<j≤n, x1, . . . , xn} subject to the set of
relations

• xixj = xjxi for all i 6= j, xiuj,k = uj,kxi, if i 6= j, k,

• ui,juk,l = uk,lui,j , if i, j, k, l are pairwise distinct,

• (2D-Coxeter relations) ui,juj,kui,j = uj,kui,juj,k, if 1 ≤ i < j < k ≤ n,

• xiui,j = ui,jxj + 1, xjui,j = ui,jxi − 1.

Now for a set of parameters16 A := (a, b, c, h, e) define elements

Tij := a+ (bxi + cxj + h+ exixj)ui,j , i < j.

Throughout the present paper we set Ti := Ti,i+1.

Lemma 4.14.

(1) T 2
i,j = (2a+ b− c)Ti,j − a(a+ b− c), if a = 0, then T 2

ij = (b− c)Tij.
(2) 2D-Coxeter relations Ti,jTj,kTi,j = Tj,kTi,jTj,k are valid, if and only if the following relation

among parameters a, b, c, e, h holds17

(a+ b)(a− c) + he = 0. (4.2)

(3) Yang–Baxter relations Ti,jTi,kTj.k = Tj,kTi,kTi,j are valid if and only if b = c = e = 0, i.e.,
Tij = a+ duij.

(4) T 2
ij = 1 if and only if a = ±1, c = b± 2, he = (b± 1)2.

(5) Assume that parameters a, b, c, h, e satisfy the conditions (4.2) and that bc + 1 = he.
Then

TijxiTij = (he− bc)xj + (h+ (a+ b)(xi + xj) + exixj)Tij .

16By definition, a parameter is assumed to be belongs to the center of the algebra in question.
17The relation (4.1) between parameters a, b, c, e, h defines a rational four-dimensional hypersurface. Its open

chart {eh 6= 0} contains, for example, the following set (cf. [39]): {a = p1p4 − p2p3, b = p2p3, c = p1p4, e = p1p3,
h = p2p4}, where (p1, p2, p3, p4) are arbitrary parameters. However the points (−b, a + b + c, c, 1, (a + c)(b + c),
(a, b, c) ∈ N3} do not belong to this set.
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Some special cases

• (representation of affine modified Hecke algebra [69]) if A = (a,−a, c, h, 0), then TijxiTij
= acxj + hTij, i < j,

• if A = (−a, a+ b+ c, c, 1, (a+ c)(b+ c), then

TijxiTij = abxj + (1 + (b+ c)(xi + xj) + (a+ c)(b+ c)xixj)Tij .

(6) (Quantum Yang–Baxter relations, or baxterization of Hecke’s algebra generators.) Assume
that parameters a, b, c, h, e satisfy the conditions (4.2) and that β := 2a+b−c 6= 0. Then
(cf. [22, 42] and the literature quoted therein) the elements Rij(u, v) := 1 + λ−µ

βµ Tij satisfy
the twisted quantum Yang–Baxter relations

Rij(λi, µj)Rjk(λi, νk)Rij(µj , νk) = Rjk(µj , νk)Rij(λi, νk)Rjk(λi, µj), i < j < k,

where {λi, µi, νi}1≤i≤n are parameters.

Corollary 4.15. If (a+ b)(a− c) + he = 0, then for any permutation w ∈ Sn the element

Tw := Ti1 · · ·Til ∈ ANC
(2)
n ,

where w = si1 · · · sil is any reduced decomposition of w, is well-defined.

Example 4.16.

• Each of the set of elements

s
(h)
i = 1 + (xi+1 − xi + h)ui,i+1 and

t
(h)
i = −1 + (xi − xi+1 + h(1 + xi)(1 + xi+1))uij , i = 1, . . . , n− 1,

by itself generate the symmetric group Sn.

• If one adds the affine elements s
(h)
0 := πs

(h)
n−1π

−1 and t
(h)
0 := πt

(h)
n−1π

−1, then each of the set

of elements
{
s

(h)
j , j ∈ Z/nZ

}
and

{
t
(h)
j , j ∈ Z/nZ

}
by itself generate the affine symmetric

group Saff
n , see (4.3) for a definition of the transformation π.

• It seems an interesting problem to classify all rational, trigonometric and elliptic divided
difference operators satisfying the Coxeter relations. A general divided difference ope-
rator with polynomial coefficients had been constructed in [48], see also Lemma 4.14,
relation (4.1). One can construct a family of rational representations of the symmetric

group (as well as its affine extension) by “iterating” the transformations s
(h)
j , j ∈ Z/nZ.

For example, take parameters a and b, define secondary divided difference operator

∂[a,b]
xy := −1 + (b+ y − x)∂[a]

xy ,

where

∂[a]
xy :=

1− s(a)
xy

a− x+ y
, s(a)

xy := −1 + (a+ x− y)∂xy.

Observe that the set of operators
{
s

[a,b]
i := s

[a,b]
xi,xi+1 , i ∈ Z/nZ

}
gives rise to a rational repre-

sentation of the affine symmetric group Saff
n on the field of rational functions Z[a, b](Xn).

In the special case a := A, b := A/h, h := 1 − β/2 the operators s
[a,b]
i coincide with

operators Θi, i ∈ Z/nZ have been introduced in [29, equation (4.17)].
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Let A = (a, b, c, h, e) be a sequence of integers satisfying the conditions (4.1). Denote by ∂Ai
the divided difference operator

∂Ai = a+ (bxi + cxi+1 + h+ exixi+1)∂i, i = 1, . . . , n− 1.

It follows from Lemma 4.14 that the operators
{
∂Ai
}

1≤i≤n satisfy the Coxeter relations

∂Ai ∂
A
i+1∂

A
i = ∂Ai+1∂

A
i ∂

A
i+1, i = 1, . . . , n− 1.

Definition 4.17.

(1) Let w ∈ Sn be a permutation. Define the generalized Schubert polynomial corresponding
to permutation w as follows

SA
w(Xn) = ∂Aw−1w0

xδn , xδn := xn−1
1 xn−2

2 · · ·xn−1,

and w0 denotes the longest element in the symmetric group Sn.

(2) Let α be a composition with at most n parts, denote by wα ∈ Sn the permutation such
that wα(α) = α+. Let us recall that α+ denotes a unique partition corresponding to
composition α.

Lemma 4.18. Let w ∈ Sn be a permutation.

• If A = (0, 0, 0, 1, 0), then SA
w(Xn) is equal to the Schubert polynomial Sw(Xn).

• If A = (−β, β, 0, 1, 0), then SA
w(Xn) is equal to the β-Grothendieck polynomial G

(β)
w (Xn)

introduced in [16].

• If A = (0, β, 0, 1, 0) then SA
w(Xn) is equal to the dual β-Grothendieck polynomial H(β)

w (Xn),
studied in depth for β = −1 and in the basis {xi := exp(ξl)} in [37].

• If A = (−1, 2, 0, 1, 1), then SA
w(Xn) is equal to the Di Francesco–Zinn-Justin polynomials

introduced in [12].

• If A = (1,−1, 1, h, 0), then SA
w(Xn) is equal to the h-Schubert polynomials.

In all cases listed above the polynomials SA
w(Xn) have non-negative integer coefficients.

Define the generalized key or Demazure polynomial corresponding to a composition α as
follows

KA
α (Xn) = ∂Awαx

α+
.

• If A = (1, 0, 1, 0, 0), then KA
α (Xn) is equal to key (or Demazure) polynomial corresponding

to α.

• If A = (0, 0, 1, 0, 0), then KA
α (Xn) is equal to the reduced key polynomial.

• If A = (1,0,1,0,β), then KA
α (Xn) is equal to the key β-Grothendieck polynomial KG

(β)
α (Xn).

• If A = (0, 0, 1, 0, β), then KA
α (Xn) is equal to the reduced key β-Grothendieck polynomials.

In all cases listed above the polynomials SA
w(Xn) have non-negative integer coefficients.

• If A = (−1, q−1,−1, 0, 0) and λ is a partition, then (up to a scalar factor) polynomial
KA
λ (Xn) can be identify with a certain Whittaker function (of type A), see [7, Theorem A].

Note that operator TAi := −1 + (q−1xi − xi+1)∂i, 1 ≤ i ≤ n − 1, satisfy the Coxeter and
Hecke relations, namely (TAi )2 = (q−1 − 1)TAi + q−1. In [7] the operator TAi has been
denoted by Ti.
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• Let w ∈ Sn be a permutation and m = (i1, . . . , i`) be a reduced word for w, i.e., w =
si1 · · · si` and `(w) = `. Denote by Zm the Bott–Samelson nonsingular variety corre-
sponding to the reduced word m. It is well-known that the Bott–Samelson variety Zm is
birationally isomorphic to the Schubert variety Xw associated with permutation w, i.e., the
Bott–Samelson variety Zm is a desingularization of the Schubert variety Xw. Following [7]
define the Bott–Samelson polynomials Zm(x, λ, v) as follows

Zm(x, λ, v) =
(
1 + TAi1

)
· · ·
(
1 + TAi`

)
xλ,

where A = (−v,−1, 1, 0). Note that
(
1+TAi

)2
= (1+v)

(
1+TAi

)
, and the divided difference

operators 1 + TAi = 1 + v + (xi+1 − vxi)∂i do not satisfy the Coxeter relations.

• If A = (−β, β + α, 0, 1, βα), then SA
w(Xn) constitutes a common generalization of the

β-Grothendieck and the Di Francesco–Zinn-Justin polynomials.

• If A = (t,−1, t, 1, 0), then the divided difference operators

TAi := t+ (−xi + txi+1 + 1)∂i, 1 ≤ i ≤ n− 1,

their baxterizations and the raising operator

φ := (xn − 1)π,

where π denotes the q−1-shift operator, namely π(x1, . . . , xn) = (xn/q, x1, . . . , xn−1), can
be used to generate the interpolation Macdonald polynomials as well as the nonsymmetric
Macdonald polynomials, see [43] for details.

In similar fashion, relying on the operator φ, operators

T β,α,γ,hi := −β + ((α+ β + γ)xi + γxi+1 + h

+ h−1(α+ γ)(β + γ)xixi+1)∂i, 1 ≤ i ≤ n− 1,

and their baxterization, one (A.K.) can introduce polynomials Mβ,α,γ,q
δ (Xn), where δ is a com-

position. These polynomials are common generalizations of the interpolation Macdonald poly-
nomials Mδ(Xn; q, t) (the case β = −t, α = −1, γ = t), as well as the Schubert, β-Grothendieck
and its dual, Demazure and Di Francesco–Zinn-Justin polynomials, and conjecturally their affine
analogues/versions. Details will appear elsewhere.

Double aff ine nilCoxeter algebra. Let t, q, a, b, c, h, d be parameters.

Definition 4.19. Define double affine nil-Coxeter algebra DANCn to be (unital) associative
algebra over Q

(
q±1, t±1

)
with the set of generators

{
e1, . . . , en−1, x1, . . . , xn, π

±1
}

subject to
relations

• (nilCoxeter relations)

eiej = ejei, if |i− j| ≥ 2, e2
i = 0, ∀ i, eiejei = ejeiej , if |i− j| = 1;

• (crossing relations)

xiek = ekxi, if k 6= i, i+ 1, xiei − eixi+1 = 1, eixi − xi+1ei = 1;

• (affine crossing relations)

πxi = xi+1π, if i < n, πxn = q−1x1π,

πei = ei+1π, if i < n− 1, π2en−1 = qe1π
2.
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Now let us introduce elements e0 := πen−1π
−1 and

T0 := T a,b,c,h,d0 = πTn−1π
−1 = a+

(
bxn + q−1cx1 + h+ q−1dx1xn

)
e0.

It is easy to see that πe0 = qe1π,

πT a,b,c,h,d0 = T a,b,c,qh,q
−1d

1 e1π = T a,b,c,h,d1 +
(
(1− q)h+

(
1− q−1

)
dx1x2

)
e1.

Now let us assume that a = t, b = −t, d = e = 0, c = 1. Then,

Ti = t+ (xi+1 − txi)ei, i = 1, . . . , n− 1, T0 = t+
(
q−1x1 − txn

)
e0,

T 2
i = (t− 1)T + t, 0 ≤ i < n, TixiTi = txi+1, 1 ≤ i < n, T0xnT0 = tq−1x1,

T0T1T0 = T1T0T1, Tn−1T0Tn−1 = T0Tn−1T0, T0Ti = TiT0, if 2 ≤ i < n− 1.

The operators Ti := T t,−t,1,0,0i , 0 ≤ i ≤ n− 1 have been used in [43] to give an “elementary”
construction of nonsymmetric Macdonald polynomials. Indeed, one can realize the operator π
as follows:

π(f) = f(xn/q, x1, x2, . . . , xn−1), so that π−1(f) = (x2, . . . , xn, qx1), (4.3)

and introduce the raising operator [43] to be

φ(f(Xn)) = (xn − 1)π(f(Xn)).

It is easily seen that φTi = Ti+1φ, i = 0, . . . , n− 2, and φ2Tn−1 = T1φ
2. It has been established

in [43] how to use the operators φ, T1, . . . , Tn−1 to to give formulas for the interpolation Mac-

donald polynomials. Using operators φ, T
(a,b,c,h,d)
i , i = 1, . . . , n − 1 instead of φ, T1, . . . , Tn−1,

1 ≤ i ≤ n−1, one get a 4-parameter generalization of the interpolation Macdonald polynomials,
as well as the nonsymmetric Macdonald polynomials.

It follows from the nilCoxeter relations listed above, that the Dunkl–Cherednik elements,
cf. [8],

Yi :=

(
1∏

a=i−1

T−1
a

)
π

(
i+1∏

a=n−1

Ta

)
, i = 1, . . . , n,

where Ti = T t,−t,1,0,0i , generate a commutative subalgebra in the double affine nilCoxeter al-
gebra DANCn. Note that the algebra DANCn contains lot of other interesting commutative
subalgebras, see, e.g., [22].

It seems interesting to give an interpretation of polynomials generated by the set of opera-
tors T t,−t,1,h,ei , i = 0, . . . , n − 1 in a way similar to that given in [43]. We expect that these

polynomials provide an affine version of polynomials KN (−t,−1,1,1,0)
w (X), w ∈ Sn ⊂ Saff

n , see
Remark 4.7.

Note that for any affine permutation v ∈ Saff
n , the operator

T (a,b,c,h,d)
v = T

(a,b,c,h,d)
i1

· · ·T (a,b,c,h,d)
i`

,

where v = si1 · · · si` is any reduced decomposition of v, is well-defined up to the sign ±1. It
seems an interesting problem to investigate properties of polynomials Lv[α](Xn), where v ∈ Saff

n

and α ∈ Zn≥0, and find its algebro-geometric interpretations.
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5 Cauchy kernel

Let u1, u2, . . . , un−1 be a set of generators of the free algebra Fn−1, which are assumed also to
be commute with the all variables Pn := {pi,j , 2 ≤ i+ j ≤ n+ 1, i ≥ 1, j ≥ 1}.

Definition 5.1. The Cauchy kernel C(Pn, U) is defined to be as the ordered product

C(Pn, U) =
n−1∏
i=1


i∏

j=n−1

(1 + pi,j−i+1uj)

 . (5.1)

For example,

C(P4, U) = (1 + p1,3u3)(1 + p1,2u2)(1 + p1,1u1)(1 + p2,2u3)(1 + p2,1u2)(1 + p3,1u3).

In the case {pij = xi, ∀ j} we will write Cn(X,U) instead of C(Pn, U).

Lemma 5.2.

C(Pn, U) =
∑

(a,b)∈Sn

p∏
j=1

p{aj ,bj}w(a,b), (5.2)

where a = (a1, . . . , ap), b = (b1, . . . , bp), w(a,b) =
p∏
j=1

uaj+bj−1, and the sum in (5.2) runs over

the set

Sn :=
{

(a,b) ∈ Np × Np |a = (a1 ≤ a2 ≤ · · · ≤ ap),
ai + bi ≤ n, and if ai = ai+1 =⇒ bi > bi+1

}
.

We denote by S(0)
n the set {(a,b) ∈ Sn |w(a,b) is a tableau word}.

The number of terms in the r.h.s. of (5.1) is equal to 2(n2), and therefore is equal to the
number #|STY(δn,≤ n)| of semistandard Young tableaux of the staircase shape δn := (n − 1,
n− 2, . . . , 2, 1) filled by the numbers from the set {1, 2, . . . , n}. It is also easily seen that the all
terms appearing in the r.h.s. of (5.2) are different, and thus #|Sn| = #|STY(δn,≤ n)|.

We are interested in the decompositions of the Cauchy kernel C(Pn, U) in the algebras Pn,
NPn, IPn, NCn and ICn.

5.1 Plactic algebra Pn

Let λ be a partition and α be a composition of the same size. Denote by S̃TY(λ, α) the set of
semistandard Young tableaux T of the shape λ and content α which must satisfy the following
conditions: for each k = 1, 2, . . . , the all numbers k are located in the first k columns of the
tableau T . In other words, the all entries T (i, j) of a semistandard tableau T ∈ S̃TY(λ, α) have
to satisfy the following conditions: Ti,j ≥ j.

For a given (semi-standard) Young tableau T let us denote by Ri(T ) the set of numbers

placed in the i-th row of T , and denote by S̃TY0(λ, α) the subset of the set S̃TY(λ, α) involving
only tableaux T which satisfy the following constrains

R1(T ) ⊃ R2(T ) ⊃ R3(T ) ⊃ · · · .

To continue, let us denote by An (respectively by A(0)
n ) the union of the sets S̃TY(λ, α)

(resp. that of S̃TY0(λ, α)) for all partitions λ such that λi ≤ n − i for i = 1, 2, . . . , n − 1, and

all compositions α, l(α) ≤ n − 1. Finally, denote by An(λ) (resp. A(0)
n (λ)) the subset of An

(resp. A(0)
n (λ)) consisting of all tableaux of the shape λ.
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Lemma 5.3.

• |An(δn)| = 1, |An(δn−1)| = (n− 1)!, |An((n− 1))| = Cn−1 the (n− 1)-th Catalan number.
More generally,∣∣An((1k))∣∣ =

(
n− 1

k

)
, |An((k))| = n− k

n

(
n+ k − 1

k

)
= dimS(n−1,k)

n+k−1 ,

k = 1 . . . , n− 1, cf. [65, A009766]; here dimSλn stands for the dimension of the irreducible
representation of the symmetric group Sn corresponding to a partition λ ` n.

• Let k ≥ ` ≥ 2, n ≥ k + 2, then

|An((k, `))| = (n− k)(n− `+ 1)(k − `+ 1)(n2 − n− `(k + 1))

`!(k + 1)k(n+ k)

(
n+ k

k − 1

) `−2∏
i=1

(n+ i),

k = 1, . . . , n. The case k = ` has been studied in [20] where one can find a combinatorial
interpretation of the numbers |An((k, k))| for all positive integers n; see also [65, A005701,
A033276] for more details concerning the cases k = 2 and k = 3. Note that in the case
k = ` one has n2−n−k(k+1) = (n+k)(n−k−1), and the above formula can be rewritten
as follows (k ≥ 2)

|An((k, k))| = (n− k − 1)(n− k)(n− k − 1)

(k + 1)k2(k − 1)

(
n+ k − 2

k − 2

) (
n+ k − 1

k − 1

)
.

• Boundary case: the number |AN ((nk))| for N = n+ k,18

∣∣Ak+n

((
nk
))∣∣ =

∣∣Ak+n

((
(n+ 1)k

))
| = det |Catn+i+j−1 |1≤i,j≤k =

∏
1≤i≤j≤n

i+ j + 2k

i+ j
.

• More generally (A.K.),∣∣AN((nk))| = ∏
1≤i≤k, 1≤j≤n
j−i≤n−k

N − i− j + 1

i+ j − 1

∏
1≤i≤k, 1≤j≤n
j−i>n−k

N + i+ j − 1

i+ j − 1
.

Moreover, the number |AN ((nk))| also is equal to the number of k-tuples of noncrossing
Dyck paths staring from the point (0, 0) and ending at the point (N,N − n− k).19

• There exists a bijection ρn : An −→ ASM(n) such that the image Im
(
A(0)
n

)
contains the

set of n× n permutation matrices.

• The number of row strict (as well as column strict) diagrams λ ⊂ δn+1 is equal to 2n.

Recall that a row-strict diagram20 λ is on such that λi − λi+1 ≥ 1, ∀ i; δn := (n − 1,
n− 2, . . . , 2, 1).

18So far as we know, the third equality has been proved for the first time in [10]. The both sides of the third
identity have a big variety of combinatorial interpretations such as the number of k-tuples of noncrossing Dyck
paths; that of k-tringulations of a convex (n+ k+ 1)-gon; that of semistandard Young tableaux with entries from
the set {1, . . . , n} having only columns of an even length and bounded by height 2k [10]; that of pipe dreams

(or compatible sequences) associated with the Richardson permutation 1k × w
(n)
0 ∈ Sn+k, etc., see, e.g., [65,

A078920] and the literature quoted therein. It seems an interesting task to read off an alternating sign matrix of
size (n+ k)× (n+ k) from a given k-triangulation of a convex n+ k + 1)-gon.

19So far as we know, for the case k = 2 an equivalent formula for the number of pairs of noncrossing Dyck paths
connecting the points (0, 0) and (N,N − n− 2), has been obtained for the first time in [20].

20Known also as a strict partition.
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Example 5.4. Take n = 5 so that ASM(5) = 429 and Cat(5) = 42. One has∣∣A(0)
5

∣∣ =
∑

λ⊂δ4:=(4,3,2,1)
λi−λi+1≥1 ∀ i

∣∣A(0)
5 (λ)

∣∣ =
∣∣A(0)

5 (∅)
∣∣+
∣∣A(0)

5 ((1))
∣∣+
∣∣A(0)

5 ((2))
∣∣+
∣∣A(0)

5 ((3))
∣∣

+
∣∣A(0)

5 ((2, 1))
∣∣+
∣∣A(0)

5 ((4))
∣∣+
∣∣A(0)

5 ((3, 1))
∣∣+
∣∣A(0)

5 ((3, 2))
∣∣+
∣∣A(0)

5 ((4, 1))
∣∣

+
∣∣A(0)

5 ((4, 2))
∣∣+
∣∣A(0)

5 ((3, 2, 1))
∣∣+
∣∣A(0)

5 ((4, 3))
∣∣+
∣∣A(0)

5 ((4, 2, 1))
∣∣

+
∣∣A(0)

5 ((4, 3, 1))
∣∣+
∣∣A(0)

5 ((4, 3, 2))
∣∣+
∣∣A(0)

5 ((4, 3, 2, 1))
∣∣

= 1 + 4 + 9 + 14 + 6 + 14 + 16 + 4 + 21 + 14 + 4 + 1 + 9 + 2 + 1 + 1 = 121

(sum of 16 terms),

4∑
k=0

|A5((k))| = 1 + 4 + 9 + 14 + 14 = 42.

We expect that the image ρn
(⋃n−1

k=0 An((k))
)

coincides with the set of n × n permutation
matrices corresponding to either 321-avoiding (or 132-avoiding) permutations.

Now we are going to define a statistic n(T ) on the set An.

Definition 5.5. Let λ be a partition, α be a composition of the same size. For each tableau
T ∈ S̃TY(λ, α) ⊂ An(λ) define

n(T ) = αn = #|{(i, j) ∈ λ|T (i, j) = n}|.

Clearly, n(T ) ≤ λ1.

Define polynomials

Aλ(t) :=
∑

T∈An(λ)

tλ1−n(T ).

It is instructive to display the numbers {An(λ), λ ⊂ δn} as a vector of the length equals to
the n-th Catalan number. For example,

A4(∅,(1), (2), (1, 1), (3), (2, 1), (1, 1, 1), (3, 1), (2, 2), (2, 1, 1), (3, 2), (3, 1, 1), (2, 2, 1), (3, 2, 1))

= (1, 3, 5, 3, 5, 6, 1, 6, 3, 2, 3, 2, 1, 1).

It is easy to see that the above data, as well as the corresponding data for n = 5, coincide
with the list of refined totally symmetric self-complementary plane partitions that fit in the box
2n× 2n× 2n (TSSCPP(n) for short) listed for n = 1, 2, 3, 4, 5 in [12, Appendix D].

In fact we have

Theorem 5.6. The sequence {An(λ), λ ⊂ δn} coincides with the set of refined TSSCPP(n)
numbers as defined in [12]. More precisely,

• |An(λ)| = det
∣∣( n−i
λ′j−j+i

)∣∣
1≤i,j≤`(λ)

,

• we have

Aλ(t) := det

∣∣∣∣∣
(

n− i− 1

λ′j − j + i− 1

)
+ t

(
n− i− 1

λ′j − j + i

)∣∣∣∣∣
1≤i,j≤`(λ)

,
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• let λ be a partition, |λ| = n, consider the column multi-Schur polynomial and t-deformation
thereof

s∗λ(Xn) := det |e
λ
′
j−j+i

(Xn−i)|1≤i,j≤`(λ), cf. [56, Chapter III], [70], and

s∗λ(Xn; t) := det |e
λ
′
j−j+i−1

(Xn−i−1) + te
λ
′
j−j+i

(Xn−i−1)|1≤i,j≤`(λ),

then, assuming that λ ⊂ δn, the polynomial s∗λ(Xn) have nonnegative (integer) coefficients,

• polynomial Aλ(t) is equal to a t-analog of refined TSSCPP(n) numbers Pn(λ′n−1 + 1, . . . ,
λ′n−i+i, . . . , λ

′
1 +n−1|t) introduced by means of recurrence relations in [12, relation (3.5)],

• one has

s∗((nk))(Xn+k) = Mn,k(Xn+k)S1k×w(n)
0

(
x−1

1 , . . . , x−1
k+n

)
,

where S
1k×w(n)

0

(Xn+k) denotes the Schubert polynomial corresponding to the permutation

1k × w(n)
0 = [1, 2, . . . , k, n+ k, n+ k − 1, . . . , k + 1],

and Mn,k(Xn+k) =
k∏
a=1

x−1
a

n+k∏
a=1

x
min(n+k−a+1,n)
a .

In particular,
∑
λ⊂δn

Aλ(t) =
∑

1≤j≤n−1
An,jt

j−1, where An,j stands for the number of alternating

sign matrices (ASMn for short) of size n× n with a 1 on top of the j-th column.

Corollary 5.7 ([38, 44]). The number of different tableau subwords in the word

w0 :=
n−1∏
j=1

{
j∏

a=n−1

a

}

is equal to the number of alternating sign matrices of size n× n, i.e.,

|An| = |TSSCPP(n)| = |ASMn |.

It is well-known [6] that

An,j =

(
n+ j − 2

j − 1

)
(2n− j − 1)!

(n− j)!

n−2∏
i=0

(3i+ 1)!

(n+ i)!
,

and the total number An of ASM of size n× n is equal to

An ≡ An+1,1 =
n∑
j=1

An,j =
n−1∏
i=0

(3i+ 1)!

(n+ i)!
.

Let as before STY(δn ≤ n) := ST n denotes the set of all semistandard Young tableaux of
the staircase shape δn = (n − 1, n − 2, . . . , 2, 1) filled by the numbers from the set {1, . . . , n}.
Denote by ST (0)

n the subset of “anti-diagonally” increasing tableaux, i.e.,

ST (0)
n = {T ∈ STY(δn,≤ n) |Ti,j ≥ Ti−1,j+1 for all 2 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2}.

One (A.K.) can construct bijections

ιn : Sn ∼ ST n, ζn : An ∼ ST (0)
n

such that Im(ιn) = Im(ζn).
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Proposition 5.8.∑
λ=(λ1,...,λn)

ρn≥λ

Kρn,λ

(
n

m0(λ), m1(λ), . . . , mn(λ)

)
= 2(n2),

∑
λ=(λ1,...,λn)

ρn≥λ

(
n

m0(λ), m1(λ), . . . , mn(λ)

)
= Fn,

where Fn denotes the number of forests of trees on n labeled nodes; Kρn,λ denotes the Kostka
number, i.e., the number of semistandard Young tableaux of the shape ρn := (n − 1, n − 2,
. . . , 1) and content/weight λ; for any partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) we set
mi(λ) = {j |λj = i}.

Let α be a composition, we denote by α+ the partition obtained from α by reordering of its
parts. For example, if α = (0, 2, 0, 3, 1, 0) then α+ = (3, 2, 1). Note that `(α) = 6, but `(α+) = 3.

Now let α be a composition such that ρn ≥ α+, `(α) ≤ n, that is αj = 0, if j > `(α), |α| =
(
n
2

)
and ∑

k≤j
(ρn)k ≥

∑
k≤j

(α+)k, ∀ j.

There is a unique semistandard Young tableau Tn(α) of shape ρn and content α which corre-
sponds to the maximal configuration of type (ρn;α) and has all quantum numbers (riggings)
equal to zero. It follows from Proposition 5.8 that #{α | `(α) ≤ n, ρn ≥ α+} = Fn. There-
fore there is a natural embedding of the set of forests on n labeled nodes to the set of semi-
standard Young tableaux of shape ρn filled by the numbers from the set [1, . . . , n]. We de-
note by FT n ⊂ STY(ρn,≤ n) the subset {Tn(α) | ρn ≥ α+, `(α) ≤ n}. Note that the set
Kn := {α | `(α) = n, (α)+ = ρn} contains n! compositions, and under the rigged configuration
bijection the elements of the set Kn correspond to the key tableaux [50] of shape ρn. See also [2]
for connections of the Lascoux–Schützenberger keys and ASM.

Let us say a few words about the Kostka numbers Kρn,α. First of all, it’s clear that if
α = (α1, α2, . . . ) is a composition such that α1 = n − 1, then Kρn,α = Kρn−1,α[1], where we set
α[1] := (α2, . . .).

Now assume that n = 2k + 1 is an odd integer, and consider partitions νn := (kn) and
µn := ((k + 1)k, kk). Then

Kρn,νn = Coeff(x1x2···xn)k

 ∏
1≤i<j≤n

(xi + xj)

 ,

(
2k

k

)
Kρn,µn = Kρn,νn .

It is well-known that the number Kρn,νn is equal to number of labeled regular tournaments with
n := 2k + 1 nodes, see, e.g., [65, A007079].

In the case when n = 2k is an even number, one can show that

Kρn,νn = Kρn−1,νn−1 , Kρn,µn = Kρn+1,µn+1 .

Note that the rigged configuration bijection gives rise to an embedding of the set of labeled
regular tournaments with n := 2k + 1 nodes

to the set STY(ρn,≤ n), if n is an odd integer, and

to the set STY(ρn−1,≤ n− 1), if n is even integer.
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Theorem 5.9.

(1) In the plactic algebra Pn the Cauchy kernel has the following decomposition

Cn(P, U) =
∑
T∈An

KT (P)uw(T ).

(2) Let T ∈ An, and α(T ) be its bottom code. Then

KT (P)−
∏

(i,j)∈T

p{i,T (i,j)−j+1} ≥ 0,

and equality holds if and only if the bottom code α(T ) is a partition.

Note that the number of different shapes among the tableaux in the set An is equal to the
Catalan number Cn := 1

n+1

(
2n
n

)
.

Problem 5.10. Construct a bijection between the set An and the set of alternating sign matrices
ASMn.

Example 5.11. For n = 4 one has

C4(X,U) = K[0] +K[1]u1 +K[01]u2 +K[001]u3 +K[11](u12 + u22) +K[2](u21 + u31)

+K[101]u13 +K[02]u32 +K[011](u23 + u33) +K[3]u321 +K[12](u312 + u322)

+K[21]u212 +K[111](u123 + u133 + u233 + u223 + u333) +K[021]u323

+K[201](u313 + u213) +K[31]u3212 +K[301]u3213

+K[22](u3132 + u2132 + u3232) +K[121](u3123 + u3233 + u3223)

+K[211](u2123 + u2133 + u3133) +K[32]u32132 +K[311](u32123 + u32133)

+K[221](u21323 + u31323 + u32323) +K[321]u321323.

Let w ∈ Sn be a permutation with the Lehmer code α(w).

Definition 5.12. Define the plactic polynomial PLw(U) to be

PLw(U) =

{ ∑
T∈An, α(T )=α(w)

uw(T )

}
.

Comments 5.13. It is easily seen from a definition of the Cauchy kernel that

Cn(X,U) =
∑
α⊂δn

K[α](X)PLw0w
−1
α

(U),

where wα denotes a unique permutation in Sn with the Lehmer code equals α; K[α](X) denotes
the key polynomial corresponding to composition α ⊂ δn. The polynomials PLw0w

−1
α

can be
treated as a plactic version of noncommutative Schur and Schubert polynomials introduced and
studied in [15, 27, 40, 50, 52].

Now let X = {x1, . . . , xn} be a set of mutually commuting variables, and

I
(n)
0 :=

{
n− 1, n− 2, . . . , 2, 1︸ ︷︷ ︸

n−1

, . . . , n− 1, , n− 2, . . . , k + 1, k︸ ︷︷ ︸
n−k

, . . . , n− 1, n− 2︸ ︷︷ ︸
2

, n− 1
}
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be lexicographically maximal reduced expression for the longest element w0 ∈ Sn. Let I be

a tableau subword of the set I0 := I
(n)
0 . One can show (A.K.) that under the specialization

ui =

{
xi, if i ∈ I0\I,
1, if i ∈ I

the polynomial PLw0w
−1
α

(U) turns into the Schubert polynomial Swα(X). In a similar fashion,
consider the decomposition

Cn(X,U) =
∑
α⊂δn

KG[α](X;−β)PLw0w
−1
α

(U ;β).

One can show (A.K.) that under the same specialization as has been listed above, the polynomial

PLw0w
−1
α

(U ;β) turns into the β-Grothendieck polynomial Gβwα(X).

Definition 5.14. Define algebra PCn to be the quotient of the plactic algebra Pn by the two-
sided ideal Jn by the set of monomials

{ui1ui2 · · ·uin}, 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ n, #{a|ia = j} ≤ j, ∀ j = 1, . . . , n.

Theorem 5.15.

• The algebra PCn has dimension equals to ASM(n),

• Hilb(PCn, q) =
∑

λ∈δn−1

|An(λ)|q|λ|,

• Hilb((PCn+1)ab, q) =
n∑
k=0

n−k+1
n+1

(
n+k
n

)
qk, cf. [65, A009766].

Definition 5.16. Denote by PC]n the quotient of the algebra PCn by the two-sided ideal gene-
rated by the elements {uiuj − ujui, |i− j| ≥ 2}.

Proposition 5.17. Dimension dimPC]n of the algebra PC]n is equal to the number of Dyck paths
whose ascent lengths are exactly {1, 2, . . . , n+ 1}.

See [65, A107876, A107877] where the first few of these numbers are displayed.

Example 5.18.

Hilb
(
PC]5, t

)
= (1, 4, 12, 27, 48, 56, 54, 38, 20, 7, 1)t, dimPC]5 = 268,

Hilb
(
PC]6, t

)
= (1, 5, 18, 50, 116, 221, 321, 398, 414, 368, 275, 175, 89, 35, 9, 1)t,

dimPC]6 = 2496, dimPC]7 = 28612.

Example 5.19.

Hilb(PC3, q) = (1, 2, 3, 1)q, Hilb(PC4, q) = (1, 3, 8, 12, 11, 6, 1)q,

Hilb(PC5, q) = (1, 4, 15, 35, 69, 91, 98, 70, 35, 10, 1)q,

Hilb(PC6, q) = (1, 5, 24, 74, 204, 435, 783, 1144, 1379, 1346, 1037, 628, 275, 85, 15, 1)q,

Hilb(PC7, q) = (1, 6, 35, 133, 461, 1281, 3196, 6686, 12472, 19804, 27811, 33271, 34685,

30527, 22864, 14124, 7126, 2828, 840, 175, 21, 1)q.
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Problem 5.20. Denote by An the algebra generated by the curvature of 2-forms of the tautolo-
gical Hermitian linear bundles ξi, 1 ≤ i ≤ n, over the flag variety F ln [64]. It is well-known [60]
that the Hilbert polynomial of the algebra An is equal to

Hilb(An, t) =
∑
F∈Fn

tinv(F ) =
∑
F∈Fn

tmaj(F ),

where the sum runs over the set Fn of forests F on the n labeled vertices, and inv(F ) (resp.
maj(F )) denotes the inversion index (resp. the major index) of a forest F .21

Clearly that

dim(An)(n2)
= dim(PCn)(n2)

= dim(H?(F ln,Q))(n2)
= 1.

For example,

Hilb(PC6, t) = (1, 5, 24, 74, 204, 435, 783, 1144, 1379, 1346, 1037, 628, 275, 85, 15, 1)t,

Hilb(A6, t) = (1, 5, 15, 35, 70, 126, 204, 300, 405, 490, 511, 424, 245, 85, 15, 1)t,

Hilb(H?(F ln,Q), t) = (1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1)t.

We expect that dim(PCn)(n2)−1 =
(
n
2

)
and dim(PCn)(n2)−2 = 3n+5

4

(
n+2

3

)
= s(n + 2, 2), where

s(n, k) denotes the Stirling number of the first kind, see, e.g., [65, A000914].

Problem 5.21.

(1) Is it true that Hilb(PCn, t) − Hilb(An, t) ∈ N[t]? If so, as we expect, does there exist
an embedding of sets ι : F(n) ↪→ An such that inv(F ) = n(ι(F )) for all F ∈ Fn? See
Section 5.1, Definition 5.5, for definitions of the set An and statistics n(T ), T ∈ An.

(2) Define a “natural” bijection κ : STY(δn,≤ n)←→ 2δn such that the set κ(MT(n)) admits
a “nice” combinatorial description.

Here MT(n) denotes the set of (increasing) monotone triangles, namely, a subset of the
set STY(δn,≤ n) consisting of tableaux {T = (ti,j) | i + j ≤ n + 1, i ≥ 1, j ≥ 1} such that
ti,j ≥ ti−1,j+1, 2 ≤ i ≤ n, 1 ≤ j < n, cf. [66]; δn = (n − 1, n − 2, . . . , 2, 1); STY(δn,≤ n)
denotes the set of semistandard Young tableaux of shape δn with entries bounded by n; 2δn

stands for the set of all subsets of boxes of the staircase diagram δn. It is well-known that

#| STY(δn,≤ n)| = 2δn = 2(n2).

Comments 5.22. One can ask a natural question: when do noncommutative elementary poly-
nomials e1(A), . . . , en(A) form a q-commuting family, i.e., ei(A)ej(A) = qej(A)ei(A), 1 ≤ i <
j ≤ n?

Clearly in the case of two variables one needs to necessitate the following relations

eiejei + ejejei = qejeiei + qejeiej , i < j.

21For the readers convenience we recall definitions of statistics inv(F ) and maj(F ). Given a forest F on n
labeled vertices, one can construct a tree T by adding a new vertex (root) connected with the maximal vertices
in the connected components of F .

The inversion index inv(F ) is equal to the number of pairs (i, j) such that 1 ≤ i < j ≤ n, and the vertex labeled
by j lies on the shortest path in T from the vertex labeled by i to the root.

The major index maj(F ) is equal to
∑

x∈Des(F )

h(x); here for any vertex x ∈ F , h(x) is the size of the subtree

rooted at x; the descent set Des(F ) of F consists of the vertices x ∈ F which have the labeling strictly greater
than the labeling of its child.
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Having in mind to construct a q-deformation of the plactic algebra Pn such that the wanted
q-commutativity conditions are fulfilled, one would be forced to add the following relations

qejeiej = ejejei and qejeiei = eieiejei, i < j.

It is easily seen that these two relations are compatible iff q2 = 1. Indeed,

ejejeiej = qejeiejei = q2ejejeiei =⇒ q2 = 1.

In the case q = 1 one comes to the Knuth relations (PL1) and (PL2). In the case q = −1 one
comes to the “odd” analogue of the Knuth relations, or “odd” plactic relations (OPLn), i.e.,
(OPLn) :

ujuiuk = −ujukui, if i < j ≤ k ≤ n, and

uiukuj = −ukuiuj , if i ≤ j < k ≤ n.

Proposition 5.23 (A.K.). Assume that the elements {u1, . . . , un−1} satisfy the odd plactic rela-
tions (OPLn). Then the noncommutative elementary polynomials e1(U), . . . , en(U) are mutually
anticommute.

More generally, let Qn := {qij}1≤i<j≤n−1 be a set of parameters. Define generalized plactic
algebra QPn to be (unital) associative algebra over the ring Z[{q±1

ij }1≤i<j≤n−1] generated by
elements u1, . . . , un−1 subject to the set of relations

qikujuiuk = ujukui, if i < j ≤ k, and

qikuiukuj = ukuiuj , if i ≤ j < k. (5.3)

Proposition 5.24. Assume that qij := qj, ∀ 1 ≤ i < j be a set of invertible parameters. Then
the reduced generalized plactic algebra QPCn is a free Z[q±1

2 , . . . , q±1
n−1]-module of rank equals to

the number of alternating sign matrices ASM(n). Moreover,

Hilb(QPCn, t) = Hilb(PCn, t),Hilb(QPn, t) = Hilb(Pn, t).

Recall that reduced generalized plactic algebra QPCn is the quotient of the generalized plactic
algebra by the two-sided ideal Jn introduced in Definition 5.14.

Example 5.25.

(A) Super plactic monoid [36, 54]. Assume that the set of generators U := {u1, . . . , un−1}
is divided on two non-crossing subsets, say Y and Z, Y ∪ Z = U, Y ∩ Z = ∅. To each
element u ∈ U let us assign the weight wt(u) as follows: wt(u) = 0 if u ∈ Y , and
wt(u) = 1 if u ∈ Z. Finally, define parameters of the generalized plactic algebra QPn to
be qij = (−1)wt(ui)wt(uj). As a result we led to conclude that the generalized plactic algebra
QPn in question coincides with the super plactic algebra PS(V ) introduced in [54]. We
will denote this algebra by SPk,l, where k = |Y |, l = |Z|. We refer the reader to papers [54]
and [36] for more details about connection of the super plactic algebra and super Young
tableaux, and super analogue of the Robinson–Schensted–Knuth correspondence. We are
planning to report on some properties of the Cauchy kernel in the (reduced) super plactic
algebra elsewhere.

(B) q-analogue of the plactic algebra. Now let q 6= 0,±1 be a parameter, and assume that
qij = q, ∀ 1 ≤ i < j ≤ n − 1. This case has been treated recently in [53]. We expect
that the generalized Knuth relations (5.3) are related with quantum version of the tropi-
cal/geometric RSK-correspondence (work in progress), and, as expected, with a q-weighted
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version of the Robinson–Schensted algorithm, presented in [58]. Another interesting prob-
lem is to understand a meaning of Q-plactic polynomials coming from the decomposition
of the (plactic) Cauchy kernels Cn and Fn in the reduced generalized plactic algebra QPCn
(work in progress).

(C) Quantum pseudoplactic algebra PPL
(q)
n [34]. By definition, the quantum pseudoplactic

algebra PPLn (q) is an associative algebra, generated, say over Q, by the set of elements
{e1, . . . , en−1} subject to the set of defining relations

(a) (1 + q)eiejei − qe2
i ej − eje2

i = 0, (1 + q)ejeiej − e2
jej − qeie2

j = 0, i < j,

(b) (ej , (ei, ek)) := ejeiek − ejekei − eiekej + ekeiej = 0, i < j < k.

Note that if q = 1, then the relations (a) can be written in the form (ei, (ei, ej)) = 0 and

(e2, (ej , (ei, ej)) = 0 correspondingly. Therefore, PPL
(q=1)
3 is the universal enveloping algebra

over Q of the Lie algebra sl+3 . The quotient of the algebra PPLq=1
n by the two-sided ideal

generated by the elements (ei, (ej , ek)), i, j, k are distinct, is isomorphic to the algebra from
Remark 2.3.

Define noncommutative q-elementary polynomials Λk(q;Xn), cf. [34], as follows

Λk(X; q) :=
∑

n≥i1>i2>···>ik≥1

(xi1 , (xi2 , (. . . , (xik−1
, xik)q) · · · )q)q. (5.4)

Proposition 5.26 ([34]). The noncommutative q-elementary polynomials {Λk(En−1;q)}1≤k≤n−1}
are pairwise commute in the algebra PPL

(q)
n .

5.2 Nilplactic algebra NPn

Let λ be a partition and α be a composition of the same size. Denote by ŜTY(λ, α) the set
of columns and rows strict Young tableaux T of the shape λ and content α such that the
corresponding tableau word w(T ) is reduced, i.e., l(w(T )) = |T |.

Denote by Bn the union of the sets ŜTY(λ, α) for all partitions λ such that λi ≤ n − i for
i = 1, 2, . . . , n− 1, and all compositions α, α ⊂ δn.

For example, |Bn| = 1, 2, 6, 25, 139, 1008, . . . , for n = 1, 2, 3, 4, 5, 6, . . . .

Theorem 5.27.

(1) In the nilplactic algebra NPn the Cauchy kernel has the following decomposition

Cn(P, U) =
∑
T∈Bn

KT (P)uw(T ).

(2) Let T ∈ Bn be a tableau, and assume that its bottom code is a partition. Then

KT (P) =
∏

(i,j)∈T

p{i,T (i,j)−j+1}.

Example 5.28. For n = 4 one has

C4(X,U) = K[0] +K[1]u1 +K[01]u2 +K[001]u3 +K[11]u12 +K[2](u21 + u31)

+K[101]u13 +K[02]u32 +K[011]u23 +K[3]u321 +K[12]u312 +K[21]u212

+K[111]u123 +K[021]u323 +K[201]u213 +K[31]u3212 +K[301]u3213

+K[22]u2132 +K[121]u3123 +K[211]u2123 +K[32]u32132 +K[311]u32123

+K[221]u21323 +K[321]u321323.
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5.3 Idplactic algebra IPn

Let λ be a partition and α be a composition of the same size. Denote by STY(λ, α) the
set of columns and rows strict Young tableaux T of the shape λ and content α such that
l(w(T )) = rl(w(T )), i.e., the tableau word22 w(T ) is a unique tableau word of minimal length
in the idplactic class of w(T ), cf. Example 2.16.

Denote by Dn the union of the sets STY(λ, α) for all partitions λ such that λi ≤ n − i for
i = 1, 2, . . . , n− 1, and all compositions α, l(α) ≤ n− 1.

For example, #|Dn| = 1, 2, 6, 26, 154, 1197, . . . , for n = 1, 2, 3, 4, 5, 6, . . . .

Theorem 5.29.

(2) In the idplactic algebra IPn the Cauchy kernel has the following decomposition

Cn(X,Y, U) =
∑
T∈Dn

KGT (X,Y )uw(T ).

(2) Let T ∈ Dn be a tableau, and assume that its bottom code is a partition. Then

KGT (X,Y ) = KT (X,Y ) =
∏

(i,j)∈T

(xi + yT (i,j)−j+1).

Example 5.30. For n = 4 one has

C4(X,U) = KG[0] + KG[1]u1 + KG[01]u2 + KG[001]u3 + KG[11]u12 + KG[2](u21 + u31)

+ KG[101]u13 + KG[02]u32 + KG[011]u23 + KG[3]u321 + KG[12]u312

+ KG[21]u212 + KG[111]u123 + KG[021]u323 + KG[201](u313 + u213)

+K[31]u3212 + KG[301]u3213 + KG[22]u2132 + KG[121]u3123

+ KG[211]u2123 + KG[32]u32132 + KG[311]u32123 + KG[221]u21323

+ KG[321]u321323.

Theorem 5.31. For each composition α the key Grothendieck polynomial KG[α](X) is a linear
combination of key polynomials K[β](X) with nonnegative integer coefficients.

5.4 NilCoxeter algebra NCn
Theorem 5.32. In the nilCoxeter algebra NCn the Cauchy kernel has the following decompo-
sition

Cn(X,Y, U) =
∑
w∈Sn

Sw(X,Y )uw.

Let w ∈ Sn be a permutation, denote by R(w) the set of all its reduced decompositions.
Since the nilCoxeter algebra NCn is the quotient of the nilplactic algebra NPn, the set R(w) is
the union of nilplactic classes of some tableau words w(Ti): R(w) =

⋃
C(Ti). Moreover, R(w)

consists of only one nilplactic class if and only if w is a vexillary permutation. In general case
we see that the set of compatible sequences CR(w) for permutation w is the union of sets C(Ti).

Corollary 5.33. Let w ∈ Sn be a permutation of length l, then

(1) Sw(X,Y ) =
∑

b∈CR(w)

xb1 · · ·xbl.

(2) Double Schubert polynomial Sw(X,Y ) is a linear combination of double key polynomials
KT (X,Y ), T ∈ Bn, w = w(T ), with nonnegative integer coefficients.

22See page 11 for the definition of tableau word.
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5.5 IdCoxeter algebras IC±n
Theorem 5.34. In the IdCoxeter algebra IC+

n with β = 1, the Cauchy kernel has the following
decomposition

Cn(X,Y, U) =
∑
w∈Sn

Gw(X,Y )uw.

Theorem 5.35. In the IdCoxeter algebra IC−n with β = −1, one has the following decomposition

n−1∏
i=1


i∏

j=n−1

((1 + xi)(1 + yj−i+1) + (xi + yj−i+1)uj)

 =
∑
w∈Sn

Hw(X,Y )uw.

A few remarks in order.

(a) The (dual) Cauchy identity (5.4) is still valid in the idplactic algebra with constrain u2
i =

−βui, i = 1, . . . , n− 1.

(b) The left hand side of the identity (5.4) can be written in the following form

∏
1≤i,j≤n
i+j≤n

(xi + yj)
n−1∏
i=1


i∏

j=n−1

1

1− (xi + yj−i+1 + βxiyj−i+1)uj

 .

Indeed, (1 + βx+ xui)(1− xui) = 1 + βx, since u2
i = −βui.

Let w ∈ Sn be a permutation, denote by IR(w) the set of all decompositions in the idCoxeter
algebra ICn of the element uw as the product of the generators ui, 1 ≤ i ≤ n − 1, of the
algebra ICn. Since the idCoxeter algebra ICn is the quotient of the idplactic algebra IPn, the
set IR(w) is the union of idplactic classes of some tableau words w(Ti): IR(w) =

⋃
IR(Ti).

Moreover, the set of compatible sequences IC(w) for permutation w is the union of sets IC(Ti).

Corollary 5.36. Let w ∈ Sn be a permutation of length l, then

(1) Gw(X,Y ) =
∑

b∈IC(w)

l∏
i=1

(xbi + yai−bi+1).

(2) Double Grothendieck polynomial Gw(X,Y ) is a linear combination of double key Grothen-
dieck polynomials KGT (X,Y ), T ∈ Bn, w = w(T ), with nonnegative integer coefficients.

6 F-kernel and symmetric plane partitions

Let us fix natural number n and k, and a partition λ ⊂ (nk). Clearly the number of such
partitions is equal to

(
n+k
n

)
; note that in the case n = k the number

(
2n
n

)
is equal to the Catalan

number of type Bn.
Denote by Bn,k(λ) the set of semistandard Young tableaux of shape λ ⊂ (nk) filled by the

numbers from the set {1, 2, . . . , n}. For a tableau T ∈ Bn,k set as before,

n(T ) := Card{(i, j) ∈ λ | T (i, j) = n},

and define polynomial

Bn,k(λ)(q) :=
∑

T∈Bn,k(λ)

qλ1−n(T ). (6.1)

Denote by Bn,k :=
⋃
λ⊂(nk) Bn,k(λ).
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Lemma 6.1 ([19, 33]). The number of elements in the set Bn,k is equal to

#|Bn,k| =
∏

1≤i≤j≤k

i+ j + n− 1

i+ j − 1
=

∏
0≤2a≤k−1

(
n+2k−2a−1

n

)(
n+2a
n

) .

See also [65, A073165] for other combinatorial interpretations of the numbers #|Bn,k|. For
example, the number #|Bn,k| is equal to the number of symmetric plane partitions that fit
inside the box n × k × k. Note that Bn,k = T (n + k, k), where the triangle of positive integers
{T (n+ k, k)} can be found in [65, A102539].

Proposition 6.2. One has

• #|Bn,n| := SPP(n+ 1) = TSPP(n+ 1)×ASM(n),

#|Bn,n+1| = TSPP(n+ 1)×ASM(n+ 1),

where TSPP(n) denotes the number of totally symmetric plane partitions f it inside the n×n×n-
box, see, e.g., [65, A005157], whereas ASM(n) = TSSCPP(2n) denotes the of n× n alternating
sign matrices, and TSSCPP(2n) denotes the number of totally symmetric self-complimentary
plane partitions fit inside the 2n× 2n× 2n-box.

• #|Bn+2,n| = #|Bn,n+1|.

Note that in the case n = k the number Bn := Bn,n is equal to the number of symmetric plane
portions fitting inside the n× n× n-box, see [65, A049505]. Let us point out that in general it
may happen that the number #|Bn,n+2| is not divisible by any ASM(m), m ≥ 3. For example,
B3,5 = 4224 = 25×3×11. On the other hand, it’s possible that the number #|Bn,n+2| is divisible
by ASM(n+ 1), but does not divisible by ASM(n+ 2). For example, B4,6 = 306735 = 715×429,
but 306735 - 7436 = ASM(6).

Exercise 6.3.

(a) Show that Bn+4,n is divisible by

TSPP(n+ 2), if n ≡ 1 (mod 2), n ≥ 3,

ASM(n+ 2), if n ≡ 2 (mod 8),

ASM(n+ 1) and ASM(n+ 2), if n ≡ 4 (mod 8), n 6= 4; B8,4 = ASM(5)2,

ASM(n+ 1) and ASM(n+ 2), if n ≡ 6 (mod 8),

ASM(n+ 1), if n ≡ 0 (mod 8), n ≥ 1.

(b) Show that Bn,n+4 is divisible by{
ASM(n+ 1), if n ≡ 0 (mod 2),

TSPP(n+ 1), if n ≡ 1 (mod 2).

In all cases listed in Exercise 6.3, it is an open problem to give combinatorial interpretations
of the corresponding ratios.

Problem 6.4. Let a is equal to either 0 or 1. Construct bijection between the set SPP(n, n+ a,
n+ a) of symmetric plane partitions fitting inside the box n× n+ a× n+ a and the set of pairs
(P,M) where P is the totally symmetric plane partitions fitting inside the box n× n× n and M
is an alternating sign matrix of size n+ a× n+ a.
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Example 6.5. Take n = 3. One has #|B3| = 112 = 16× 7. The number of partitions λ ⊂ (33)
is equal to 20, namely, the following partitions{

∅, (1), (2), (1, 1), (3), (2, 1),
(
13
)
, (3, 1), (2, 2),

(
2, 12

)
, (3, 2),

(
3, 12

)
,
(
22, 1

)
,
(
32
)
,

(3, 2, 1),
(
23
)
,
(
32, 1

)
,
(
3, 22

)
,
(
32, 2

)
,
(
33
)}
,

and

B3(q) :=
∑
λ⊂(33)

#|B3(λ)|q|λ| = (1, 3, 9, 19, 24, 24, 19, 9, 3, 1)

= (1 + q)3(1 + q2)
(
1 + 5q2 + q4

)
.

Note, however, that∑
λ⊂(44)

#|B4(λ)|q|λ| = (1, 4, 16, 44, 116, 204, 336, 420, 490, 420, 336, 204, 116, 44, 16, 4, 1)

is an irreducible polynomial, but its value at q = 1 is equal to 2772 = 66× 42.

Let p = (pi,j)1≤i≤n,1≤j≤k be a n× k matrix of variables.

Definition 6.6. Define the kernel Fn,k(p, U) as follows

Fn,k(p, U) =
k−1∏
i=1

1∏
j=n−1

(1 + p
i,j−i+1

(n)uj),

where for a fixed n ∈ N and an integer a ∈ Z, we set

a = a(n) :=

{
a, if a ≥ 1,

n+ a− 1, if a ≤ 0.

For example,

F3(p, U) = (1 + p1,2u2)(1 + p1,1u1)(1 + p2,1u2)(1 + p2,2u1).

In the plactic algebra FP3,3 one has

F3,3(p, U) = 1 + (p1,1 + p2,2)u1 + (p1,2 + p2,1)u2 + p1,1p2,1u11 + p1,1p2,1u12

+ (p1,2p1,1 + p1,2p2,2 + p2,1p2,2)u21 + p1,2p2,1u22

+ (p1,1p1,2p2,2 + p1,2p2,2p2,1)u212 + (p1,1p1,2p2,2 + p1,1p2,2p2,1)u211

+ p1,1p1,2p2,1p2,2u2121.

Definition 6.7. Define algebra PFn,k to be the quotient of the plactic algebra Pn by the
two-sided ideal In generated by the set of monomials

{ui1ui2 · · ·uik}, 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n− 1.

Theorem 6.8.

Hilb(PFn,k, q) = Bn−1,k−1(q),

In particular,
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• The algebra PFn,n has dimension equals to the number of symmetric plane partitions
SPP(n− 1),

Hilb(PFn,k, q) = q
kn
2 so( k

2
)n

(
q±1, . . . , q±1︸ ︷︷ ︸

k

, 1
)
,

where so( k
2

)n

(
q±1, . . . , q±1︸ ︷︷ ︸

k

, 1
)

denotes the specialization x2j = q, x2j−1 = q−1, 1 ≤ j ≤ k,

of the character soλ
(
x1, x

−1
1 . . . , xk, x

−1
k , 1

)
of the odd orthogonal Lie algebra so(2k + 1)

corresponding to the highest weight λ =
(
k
2 , . . . ,

k
2︸ ︷︷ ︸

n

)
.

• degq Hilb(PFn,k, q) = (n− 1)(k − 1), and dim(PFn,k)(n−1)(k−1) = 1.

• The Hilbert polynomial Hilb(PFn,k, q) is symmetric and unimodal polynomial in the va-
riable q.

• Hilb((PFn,k)ab, q) =
k−1∑
j=0

(
n+j−2
n−2

)
qj, dim (PFn,k)ab =

(
n+k−2
k−1

)
.

The key step in proofs of Lemma 6.1 and Theorem 6.8 is based on the following identity∑
λ⊂(nk)

sλ(x1, . . . , xk) = (x1 · · ·xk)n/2so( k
2

)n

(
x1, x

−1
1 , . . . , xk, x

−1
k , 1

)
,

see, e.g., [56, Chapter I, Section 5, Example 19], [33] and the literature quoted therein.

Problem 6.9. Let Γ := Γn,m
k,` = (nk,m`), n ≥ m be a “fat hook”. Find generalizations of

the identity (6.1) and those listed in [23, p. 71], to the case of fat hooks, namely to find “nice”
expressions for the following sums∑

λ⊂Γ

sλ(Xk+`),
∑
λ⊂Γ

sλ(Xk+`)sλ(Yk+`).

Find “bosonic” type formulas for these sum at the limit n −→∞, ` −→∞, m, k are fixed.

Example 6.10.

Hilb(PF2,3, q) = (1, 3, 9, 9, 9, 3, 1)q, dim(PF2,4) = 35 = 5× 7,

dim(PF2,5) = 126 = 3× 42, dimPF2,n =

(
2n+ 1

n

)
= (2n+ 1) Catn

(see, e.g., [65, A001700]),

Hilb(PF3,4, q) = (1, 4, 16, 44, 81, 120, 140, 120, 81, 44, 16, 4, 1)q,

dim(PF3,4) = 672 = 16× 42,

Hilb(PF5, q) = (1, 4, 16, 44, 116, 204, 336, 420, 490, 420, 336, 204, 116, 44, 16, 4, 1)q,

dim(PF5,5) = 2772 = 66× 42.

Proposition 6.11.

Hilb(PF2,n, q) =
2n∑
k=0

(
n[
k
2

])( n[
k+1

2

])qk; recall dim(PF2,n) =

(
2n+ 1

n

)
.

Therefore, Hilb(PF2,n, q) is equal to the generating function for the number of symmetric Dyck
paths of semilength 2n− 1 according to the number of peaks, see [65, A088855],

dim(PF3,n) = 2n Catn+1, if n ≥ 1.
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For example,

dim(PF3,6) = 27456 = 64× 429,

Hilb(PF3,6, q) = (1, 6, 36, 146, 435, 1056, 2066, 3276, 4326, 4760, 4326, 3276, 2066, 1056,

435, 146, 36, 6, 1).

Several interesting interpretations of these numbers are given in [65, A003645].

Theorem 6.12.

• Symmetric plane partitions and Catalan numbers:

#|B4,n| =
1

2
Catn+1×Catn+2 .

• Symmetric plane partitions and alternating sign matrices:

#|Bn+3,n| =
1

2
TSPP(n+ 1)×ASM(n+ 1) =

1

2
#|Bn+1,n+1|.

• Plane partitions and alternating sign matrices invariant under a half-turn:

#|PP(n)| = ASM(n)×ASMHT(2n),

where PP (n) denotes the number of plane partitions fitting inside an n × n × n box, see,
e.g., [6, 35, 56], [65, A008793] and the literature quoted theirin; ASMHT(2n) denotes
the number of alternating sign 2n × 2n-matrices invariant under a half-turn, see, e.g.,
[6, 35, 59, 66], [65, A005138].

• Plactic decomposition of the Fn-kernel:

Fn,m(p, U) =
∑
T

uTUT ({pij}), (6.2)

where summation runs over the set of semistandard Young tableaux T of shape λ ⊂ (n)m

filled by the numbers from the set {1, . . . ,m}.

• UT ({pij = 1, ∀ i, j}) = dimV
gl(m)

λ′
, where λ denotes the shape of a tableau T , and λ

′

denotes the conjugate/transpose of a partition λ.

Exercise 6.13. It is well-known [20] that that the number Catn+1 Catn+2 counts the num-

ber S
(4)
n+1 of standard Young tableaux having 2n+1 boxes and at most four rows. Give a bijective

proof of the equality #|B4,n| = 1
2S

(4)
n+1.

A Appendix

A.1 Some explicit formulas for n = 4 and compositions α
such that αi ≤ n− i for i = 1, 2, . . .

(1) Schubert and (−β)-Grothendieck polynomials G−[α] := G−β[α] for n = 4:

S1234 = S[0] = 1 = G−[0], S2134 = S[1] = x1 = G−[1],

S1324 = S[01] = x1 + x2 = G−[01] + βG−[11],

S1243 = S[001] = x1 + x2 + x3 = G−[001] + βG−[011] + β2G−[111],
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S3124 = S[2] = x2
1 = G−[2], S2314 = S[11] = x1x2 = G−[11],

S2143 = S[101] = x2
1 + x1x2 + x1x3 = G−[101] + βG−[201] + β2G−[111],

S1342 = S[011] = x1x2 + x1x3 + x2x3 = G−[011] + 2βG−[111],

S1423 = S[02] = x2
1 + x1x2 + x2

2 = G−[02] + βG−[12] + β2G−[22],

S4123 = S[3] = x3
1 = G−[3], S3214 = S[21] = x2

1x2 = G−[21],

S2341 = S[111] = x1x2x3 = G−[111],

S2413 = S[12] = x2
1x2 + x1x

2
2 = G−[12] + βG−[22],

S1432 = S[021] = x2
1x2 + x2

1x3 + x1x
2
2 + x2

2x3 + x1x2x3

= G−[021] + 2βG−[121] + βG−[22] + β2G−[221],

S3142 = S[201] = x2
1x2 + x2

1x3 = G−[201] + βG−[211],

S4213 = S[31] = x3
1x2 = G−[31], S3412 = S[22] = x2

1x
2
2 = G−[22],

S4132 = S[301] = x3
1x2 + x3

1x3 = G−[301] + βG−[311],

S3241 = S[211] = x2
1x2x3 = G−[211],

S2431 = S[121] = x2
1x2x3 + x1x

2
2x3 = G−[121] + βG−[221],

S4312 = S[32] = x3
1x

2
2 = G−[32], S4231 = S[311] = x3

1x2x3 = G−[311],

S3421 = S[221] = x2
1x

2
2x3 = G−[211], S4321 = S[321] = x3

1x
2
2x3 = G−[321].

Theorem A.1 (cf. [47, Section 5.5]). Each Schubert polynomial is a linear combination of
(−β)-Grothendieck polynomials with nonnegative coefficients from the ring N[β].

(2) Key and reduced key polynomials:

K[0] = 1 = K̂[0], K[1] = x1 = K̂[1], K[01] = x1 + x2, K̂[01] = x2,

K[001] = x1 + x2 + x3, K̂[001] = x3, K[2] = x2
1 = K̂[2],

K[11] = x1x2 = K̂[11], K[101] = x1x2 + x1x3, K̂[101] = x1x3,

K[02] = x2
1 + x1x2 + x2

2, K̂[02] = x1x2 + x2
2, K[011] = x1x2 + x1x3 + x2x3,

K̂[011] = x2x3, K[3] = x3
1 = K̂[3], K[21] = x2

1x2 = K̂[21],

K[111] = x1x2x3 = K̂[111], K[12] = x2
1x2 + x1x

2
2, K̂[12] = x1x

2
2,

K[021] = x2
1x2 + x2

1x3 + x1x
2
2 + x2

2x3 + x1x2x3, K̂[021] = x1x2x3 + x2
2x3,

K[201] = x2
1x2 + x2

1x3, K̂[201] = x2
1x3, K[31] = x3

1x2 = K̂[31],

K[22] = x2
1x

2
2 = K̂[22], K[211] = x2

1x2x3 = K̂[211], K[301] = x3
1x2 + x3

1x3,

K̂[301] = x3
1x3, K[121] = x2

1x2x3 + x1x
2
2x3, K̂[121] = x1x

2
2x3,

K[32] = x3
1x

2
2 = K̂[32], K[311] = x3

1x2x3 = K̂[311], K[221] = x2
1x

2
2x3 = K̂[221],

K[321] = x3
1x

2
2x3 = K̂[321].

Note that if n = 4, then S[α] = K[α] for all α ⊂ δ4, except α = (101) in which S[101] =
K[2] +K[101].

(3) Grothendieck and dual Grothendieck polynomials for β = 1:

G1234 = G[0] = 1 = S[0], H[0] = (1 + x1)3(1 + x2)2(1 + x3),

G2134 = G[1] = x1 = S[1], H[1] = (1 + x1)2(1 + x2)2(1 + x3)G[1],

G1324 = G[01] = x1 + x2 + x1x2 = S[01] + S[11],
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H[01] = (1 + x1)2(1 + x2)(1 + x3)G[01],

G1243 = G[001] = x1 + x2 + x3 + x1x2 + x1x3 + x2x3 + x1x2x3

= S[001] + S[011] + S[111],

H[001] = (1 + x1)2(1 + x2)G[001],

G3124 = G[2] = x2
1 = S[2], H[2] = (1 + x1)(1 + x2)2(1 + x3)G[2],

G2314 = G[11] = x1x2 = S[11], H[11] = (1 + x1)2(1 + x2)(1 + x3)G[11],

G2143 = G[101] = x2
1 + x1x2 + x1x3 + x2

1x2 + x2
1x3 + x1x2x3 + x2

1x2x3

= S[101] + S[201] + S[111] + S[211],

H[101] = (1 + x1)(1 + x2)G[101],

G1342 = G[011] = x1x2 + x1x3 + x2x3 + 2x1x2x3 = S[011] + 2S[111],

H[011] = (1 + x1)2(1 + x2)(x1x2 + x1x3 + x2x3 + x1x2x3),

G1423 = G[02] = x2
1 + x1x2 + x2

2 + x2
1x2 + x1x

2
2 = S[02] + S[12],

H[02] = (1 + x1)(1 + x3)(x2
1 + x1x2 + x2

2 + 2x2
1x2 + 2x1x

2
2 + x2

1x
2
2),

G4123 = G[3] = x3
1 = S[3], H[3] = (1 + x1)2(1 + x3)G[3],

G3214 = G[21] = x2
1x2 = S[21], H[21] = (1 + x1)(1 + x2)(1 + x3)G[21],

G2341 = G[111] = x1x2x3 = S[111], H[111] = (1 + x1)2(1 + x2)G[111],

G2413 = G[12] = x2
1x2 + x1x

2
2 + x2

1x
2
2 = S[12] + S[22],

H[12] = (1 + x1)(1 + x3)G[12],

G1432 = G[021] = x2
1x2 + x2

1x3 + x1x
2
2 + x2

2x3 + x1x2x3 + 2x1x2x3(x1 + x2)

+ x2
1x

2
2 + x2

1x
2
2x3 = S[021] + 2S[121] + S[22] + S[211],

H[021] = (1 + x1)G[021],

G3142 = G[201] = x2
1x2 + x2

1x3 + x2
1x2x3 = S[201] + S[211],

H[201] = (1 + x1)(1 + x2)G[201],

G4213 = G[31] = x3
1x2 = S[31], H[31] = (1 + x2)(1 + x3)G[31],

G3412 = G[22] = x2
1x

2
2 = S[22], H[22] = (1 + x1)(1 + x3)G[22],

G4132 = G[301] = x3
1x2 + x3

1x3 + x3
1x2x3 = S[301] + S[311],

H[301] = (1 + x2)G[301],

G3241 = G[211] = x2
1x2x3 = S[211], H[211] = (1 + x2)G[211],

G2431 = G[121] = x2
1x2x3 + x1x

2
2x3 + x2

1x
2
2x3 = S[121] + S[221],

H[121] = (1 + x1)(1 + x2)G[121],

G4312 = G[32] = x3
1x

2
2 = S[32], H[32] = (1 + x3)G[32],

G4231 = G[311] = x3
1x2x3 = S[311], H[311] = (1 + x2)G[311],

G3421 = G[221] = x2
1x

2
2x3 = S[221], H[221] = (1 + x1)G[221],

G4321 = G[321] = x3
1x

2
2x3 = S[321] = H[321].

Clearly that any β-Grothendieck polynomial is a linear combination of Schubert polynomials
with coefficients from the ring N[β].

(4) Key and reduced key Grothendieck polynomials:

KG[0] = 1 = K̂G[0], KG[1] = x1 = K̂G[1], KG[01] = x1 + x2 + x1x2,

K̂G[01] = x2 + x1x2, KG[001] = x1 + x2 + x3 + x1x2 + x1x3 + x2x3 + x1x2x3,
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K̂G[001] = x3 + x1x3 + x2x3 + x1x2x3, KG[2] = x2
1 = K̂G[2],

KG[11] = x1x2 = K̂G[11], KG[101] = x1x2 + x1x3 + x1x2x3,

K̂G[101] = x1x3 + x1x2x3, KG[02] = x2
1 + x1x2 + x2

2 + x2
1x2 + x1x

2
2,

K̂G[02] = x1x2 + x2
2 + x2

1x2 + x1x
2
2,

KG[011] = x1x2 + x1x3 + x2x3 + 2x1x2x3, K̂G[011] = x2x3 + x1x2x3,

KG[3] = x3
1 = K̂G[3], KG[21] = x2

1x2 = K̂G[21], KG[111] = x1x2x3 = K̂G[111],

KG[12] = x2
1x2 + x1x

2
2 + x2

1x
2
2, K̂G[12] = x1x

2
2 + x2

1x
2
2,

KG[201] = x2
1x2 + x2

1x3 + x2
1x2x3, K̂G[201] = x2

1x3 + x2
1x2x3,

KG[021] = x2
1x2 + x2

1x3 + x1x
2
2 + x1x2x3 + x2

2x3 + 2x2
1x2x3 + 2x1x

2
2x3 + x2

1x
2
2 + x2

1x
2
2x3,

K̂G[021] = x1x2x3 + x2
2x3 + x2

1x2x3 + 2x1x
2
2x3 + x2

1x
2
2x3,

KG[31] = x3
1x2 = K̂G[31], KG[22] = x2

1x
2
2 = K̂G[22],

KG[211] = x2
1x2x3 = K̂G[211], KG[301] = x3

1x2 + x3
1x3 + x3

1x2x3,

K̂G[301] = x3
1x3 + x3

1x2x3, KG[121] = x2
1x2x3 + x1x

2
2x3 + x2

1x
2
2x3,

K̂G[121] = x1x
2
2x3 + x2

1x
2
2x3, KG[32] = x3

1x
2
2 = K̂G[32],

KG[311] = x3
1x2x3 = K̂G[311], KG[221] = x2

1x
2
2x3 = K̂G[221],

KG[321] = x3
1x

2
2x3 = K̂G[321].

(5) 42 (deformed) double key polynomials for n = 4:

Kid = 1, K1 = p1,1, K2 = p1,2 + p2,1, K3 = p1,3 + p2,2 + p3,1,

K12 = p1,1p2,1, K21 = p1,2p1,1, K23 = p1,2p2,2 + p1,2p3,1 + p2,1p3,1,

K32 = p1,3p1,2 + p1,3p2,1 + p2,2p2,1, K13 = p1,1p2,2 + p1,1p3,1, K31 = p1,3p1,1,

K22 = p1,2p2,1, K33 = p1,3p2,2 + p1,3p3,1 + p2,2p3,1, K123 = p1,1p2,1p3,1,

K133 = p1,1p2,2p3,1, K212 = p1,2p1,1p2,1, K213 = p1,2p1.1p2,2 + p1,2p1,1p3,1,

K223 = p1,2p2,1p3,1, K233 = p1,2p2,2p3,1, K321 = p1,3p1,2p1,1,

K312 = p1,3p1,1p2,1 + q−1
13 p1,1p2,2p2,1, K313 = p1,3p1,1p2,2 + p1,3p1,1p3,1,

K322 = p1,3p1,2p2,1 + q−1
23 p1,2p2,2p2,1,

K323 = p1,3p1,2p2,2 + p1,3p1,2p3,1 + p1,3p2,1p3,1 + p2,2p2,1p3,1 + q23p1,3p2,2p2,1

K333 = p1,3p2,2p3,1, K2123 = p1,2p1,1p2,1p3,1, K2132 = p1,2p1,1p2,2p2,1,

K2133 = p1,2p1,1p2,2p3,1, K3123 = p1,3p1,1p2,1p3,1 + q−1
13 p1,1p2,2p2,1p3,1,

K3132 = p1,3p1,1p2,2p2,1, K3133 = p1,3p1,2p2,2p3,1, K3212 = p1,3p1,2p1,1p2,1,

K3213 = p1,3p1,2p1,1p2,2 + p1,3p1,2p1,1p3,1, K3223 = p1,3p1,2p2,1p3,1 + q−1
23 p1,2p2,2p2,1p3,1,

K3232 = p1,3p1,2p2,2p2,1, K3233 = p1,3p1,2p2,2p3,1 + q23p1,3p2,2p2,1p3,1,

K21323 = p1,2p1,1p2,2p2,1p3,1, K31323 = p1,3p1,1p2,2p2,1p3,1,

K32123 = p1,3p1,2p1,1p2,1p3,1, K32132 = p1,3p1,2p1,1p2,2p2,1,

K32133 = p1,3p1,2p1,1p2,2p3,1, K32323 = p1,3p1,2p2,2p2,1p3,1,

K321323 = p1,3p1,2p1,1p2,2p2,1p3,1.

Theorem A.2 (cf. [41, the case β = −1]). Each double β-Grothendieck polynomials is a linear
combination of double key polynomials with the coefficients from the ring N[β].
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Let us remind that the total number of double key polynomials is equal to the number of
alternating sign matrices. We expect that the interrelations between double key polynomials
which follow from the structure of the plactic algebra PCn, see Section 5.1, can be identified with
the graph corresponding to the MacNeile completion of the poset associated with the Bruhat
order on the symmetric group Sn, see Section A.2 for a definition of the MacNeile completion.
It is an interesting problem to describe interrelation graph associated with the (rectangular) key
polynomials corresponding to the Cauchy kernel for the algebra PFn,m.

(6) 26 double key Grothendieck polynomials for n = 4:

GKid = 1, GK1 = p1,1 = K1 GK2 = p1,2 + p2,1 + p1,2p2,1 = K2 +K22,

GK3 = p1,3 + p1,2 + p3,1 + p1,3p2,2 + p1,3p3,1 + p2,2p3,1 + p1,3p2,2p3,1 = K3 +K33 +K333,

GK12 = p1,1p2,1 = K12, GK21 = p2,1p1,1 = K21,

GK13 = p1,1p2,2 + p1,1p3,1 + p1,1p2,2p3,1 = K13 +K133, GK31 = p3,1p1,1 = K31,

GK23 = p1,1p2,2 + p1,2p3,1 + p2,1p3,1 + p1,2p2,1p3,1 + p1,2p2,2p3,1 = K23 +K223 +K233,

GK32 = p1,3p1,2 + p1,3p2,1 + p2,2p2,1 + p1,3p1,2p2,1 + p1,2p2,1p2,2 = K32 +K322,

GK123 = p1,1p2,1p3,1 = K123, GK212 = p1,2p1,1p2,1 = K212,

GK213 = p1,2p1,1p2,2 + p2,1p1,1p3,1 + p1,2p1,1p2,2p3,1 = K213 +K2133,

GK312 = p1,3p1,1p2,1 + p1,1p2,2p2,1 + p1,2p1,1p2,2p2,1 = K312 +K2132,

GK313 = p1,3p1,1p2,2 + p1,3p1,1p3,1 + p1,3p1,1p2,2p3,1 = K313 +K3133,

GK321 = p1,1p1,2p1,3 = K123,

GK323 = p1,3p1,2p2,2 + p1,3p1,2p3,1 + p1,3p2,1p3,1 + p2,2p2,1p3,1 + p1,3p2,2p2,1

+ p1,3p1,2p2,1p2,2 + p1,2p2,1p2,2p3,1 + p1,3p1,2p2,2p3,1 + p1,3p1,2p2,1p3,1

+ p1,2p2,2p2,1p3,1 + p1,3p1,2p2,2p2,1p3,1 = K323 +K3232 +K3233 +K3223 +K32323,

GK2123 = p1,2p1,1p2,1p3,1 = K2123, GK2132 = p1,2p1,1p2,2p2,1 = K2132,

GK3123 = p1,3p1,1p2,1p3,1p1,1p2,2p2,1p3,1 + p1,3p1,1p2,2p2,1p3,1 = K3123 +K31323,

GK3212 = p1,3p1,2p1,1p2,1 = K3212,

GK3213 = p1,3p1,2p1,1p2,2 + p1,3p1,2p1,1p3,1 + p1,3p1,2p1,1p2,2p3,1 = K3213 +K32133,

GK21323 = p1,2p1.1p2,2p2,1p3,1 = K21323, GK32123 = p1,3p1,2p1,1p2,1p31 = K32123,

GK32132 = p1,3p1,2p1,1p2,2p2,1 = K32132, GK321323 = p3,1p2,1p1,1p2,2p2,1p3,1 = K321323.

(7) 14 double local key polynomials for n = 4:

LKid = 1, LK1 = K1, LK2 = K2, LK3 = K3, LK12 = K12,

LK21 = K21 +K212, LK13 = K13 +K31 +K313, LK23 = K23,

LK32 = K32 +K323, LK123 = K123, LK213 = K213 +K2123,

LK312 = K312 +K3123, LK321 = K321 +K3212 +K3213 +K32123 +K32132 +K321323,

LK2132 = K2132 +K21323.

(8) 35 (2, 3)-key polynomials:

Uid = 1, U1 = p11 + p23, U2 = p12 + p21, U3 = p13 + p22, U11 = p11p23,

U12 = p11p21, U13 = p11p22, U21 = p12p11 + p12p23 + p21p23, U23 = p12p22,

U22 = p12p21, U31 = p13p11 + p13p23 + p22p23, U32 = p13p12 + p13p21 + p22p21,

U33 = p13p22, U211 = p12p11p23 + p11p21p23, U212 = p12p11p21 + p12p21p23,

U213 = p12p11p22 + p12p22p23, U311 = p13p11p23 + p11p22p23,
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U312 = p13p11p21 + p11p22p21, U313 = p13p11p22 + p13p22p23,

U321 = p13p12p11 + p13p12p23 + p13p21p23 + p22p21p23, U322 = p13p12p21 + p12p22p21,

U323 = p13p12p22 + p13p22p21, U2121 = p12p11p21p23, U2131 = p12p11p22p23,

U2132 = p12p11p22p23, U3132 = p13p11p22p23, U3131 = p13p11p22p23,

U3232 = p13p21p22p23, U3211 = p13p12p11p23 + p13p11p21p23 + p11p22p21p23,

U3212 = p13p12p11p22 + p13p12p21p23 + p12p21p22p23,

U3213 = p13p12p11p21 + p13p22p21p23 + p12p22p21p23,

U32121 = p12p11p22p21p23 + p13p12p11p21p23,

U32131 = p13p12p11p22p23 + p13p11p22p21p23,

U32132 = p13p12p11p22p21 + p13p12p22p21p23, U321321 = p13p12p11p22p21p23.

(9) Polynomials KNw := KN (β,α)
w (1) for n = 4:

KN id = 1, KN 1 = KN 2 = KN 3 = β + 1 + αβ,

KN 12 = 1 + 2α+ α2 + 3αβ + 3α2β + αβ2 + 2α2β2, (13),

KN 21 = 2 + 3α+ α2 + β + 3αβ + 2α2β + α2β2, (13),

KN 13 = 1 + 2α+ α2 + 2αβ + 2α2β + α2β2 = (1 + α+ αβ)2, (9),

KN 23 = KN 12, KN 32 = KN 21,

KN 132 = 2 + 5α+ 4α2 + α3 + β + 7αβ + 10α2β + 4α3β + 2αβ2 + 7α2β2 + 5α3β2 + α2β3

+ 2α3β3 = (1 + α+ αβ)
(
2 + 3α+ α2 + β + 4αβ + 3α2β + αβ2 + 2α2β2

)
, (51),

KN 121 = 1 + 3α+ 3α2 + α3 + 4αβ + 7α2β + 3α3β + αβ2 + 4α2β2 + 3α3β2 + α3β3, (31),

KN 321 = 5 + 10α+ 6α2 + α3 + 5β + 14αβ + 12α2β + 3α3β + β2 + 4αβ2 + 6α2β2

+ 3α3β2 + α3β3, (71),

KN 232 = KN 121,

KN 123 = 1 + 3α+ 3α2 + α3 + 6αβ + 12α2β + 6α3β + 4αβ2 + 14α2β2 + 10α3β2 + αβ3

+ 5α2β3 + 5α3β3 = β3α3KN (β−1,α−1)
321 (1), (71),

KN 213 = (αβ)3KN (α−1,β−1)
132 ,

KN 3121 = 3 + 10α+ 12α2 + 6α3 + α4 + 2β + 16αβ + 29α2β + 19α3β + 4α4β + 7αβ2

+ 21α2β2 + 20α3β2 + 6α4β2 + αβ3 + 4α2β3 + 7α3β3 + 4α4β3 + α4β4, (173),

KN 2321 = (αβ)4KN (α−1,β−1)
3121 ,

KN 1213 = 1 + 4α+ 6α2 + 4α3 + α4 + 7αβ + 20α2β + 19α3β + 6α4β + 4αβ2

+ 21α2β2 + 29α3β2 + 12α4β2 + αβ3 + 7α2β3 + 16α3β3 + 10α4β3

+ 2α3β4 + 3α4β4, (173),

KN 1232 = (αβ)4KN (α−1,β−1)
1213 ,

KN 2132 = 3 + 9α+ 10α2 + 5α3 + α4 + 3β + 16αβ + 28α2β + 20α3β + 5α4β + β2

+ 7αβ2 + 24α2β2 + 28α3β2 + 10α4β2 + 7α2β3 + 16α3β3 + 9α4β3 + α2β4

+ 3α3β4 + 3α4β4, (209),

KN 21321 = 3 + 12α+ 19α2 + 15α3 + 6α4 + α5 + 3β + 21αβ + 49α2β + 52α3β

+ 26α4β + 5α5β + β2 + 9αβ2 + 39α2β2 + 64α3β2 + 43α4β2 + 10α5β2

+ 10α2β3 + 32α3β3 + 32α4β3 + 10α5β3 + α2β4 + 5α3β4 + 9α4β4
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+ 5α5β4 + α5β5, (483),

KN 12312 = 1 + 5α+ 10α2 + 10α3 + 5α4 + α5 + 9αβ + 32α2β + 43α3β + 26α4β

+ 6α5β + 5αβ2 + 32α2β2 + 64α3β2 + 52α4β2 + 15α5β2 + αβ3

+ 10α2β3 + 39α3β3 + 49α4β3 + 19α5β3 + 9α3β4 + 21α4β4 + 12α5β4 + α3β5

+ 3α4β5 + 3α5β5, (483),

KN 12321 = 2 + 9α+ 16α2 + 14α3 + 6α4 + α5 + β + 18αβ + 54α2β + 64α3β + 33α4β

+ 6α5β + 14αβ2 + 65α2β2 + 101α3β2 + 64α4β2 + 14α5β2 + 6αβ3 + 33α2β3

+ 65α3β3 + 54α4β3 + 16α5β3 + αβ4 + 6α2β4 + 14α3β4 + 18α4β4 + 9α5β4

+ α4β5 + 2α5β5, (707),

KN 121321 = 1 + 6α+ 15α2 + 20α3 + 15α4 + 6α5 + α6 + 10αβ + 45α2β + 81α3β + 73α4β

+ 33α5β + 6α6β + 5αβ2 + 44α2β2 + 116α3β2 + 135α4β2 + 73α5β2 + 15α6β2

+ αβ3 + 15α2β3 + 69α3β3 + 116α4β3 + 81α5β3 + 20α6β3 + α2β4 + 15α3β4

+ 44α4β4 + 45α5β4 + 15α6β4 + α3β5 + 5α4β5 + 10α5β5 + 6α6β5 + α6β6

= β6α6KN (α−1,β−1)
121321 (1), (1145).

(10) Polynomials KN (β,α,γ)
w := KN (β,α,γ)

w (1) for n = 3:

KN (β,α,γ)
id = 1,

KN (β,α,γ)
1 = KN (β,α,γ)

2 = 1 + (β + γ)(1 + α+ γ), (7),

KN (β,α,γ)
12 = 1 + 2α+ α2 + 3αβ + 3α2β + αβ2 + 2α2β2 + 5γ + 8αγ + 3α2γ + 4βγ

+ 11αβγ + 4α2βγ + β2γ + 4αβ2γ + 9γ2 + 10αγ2 + 2α2γ2 + 8βγ2 + 8αβγ2

+ 2β2γ2 + 7γ3 + 4αγ3 + 4βγ3 + 2γ4, (109),

KN (β,α,γ)
21 = 2 + 3α+ α2 + β + 3αβ + 2α2β + α2β2 + 7γ + 8αγ + 2α2γ + 4βγ + 7αβγ

+ 2α2βγ + 2αβ2γ + 9γ2 + 7αγ2 + α2γ2 + 5βγ2 + 4αβγ2 + β2γ2 + 5γ3

+ 2αγ3 + 2βγ3 + γ4, (82),

KN (β,α,γ)
121 = 1 + 3α+ 3α2 + α3 + 4αβ + 7α2β + 3α3β + αβ2 + 4α2β2 + 3α3β2 + α3β3

+ 6γ + 15αγ + 12α2γ + 3α3γ + 3βγ + 20αβγ + 22α2βγ + 6α3βγ + 7αβ2γ

+ 12α2β2γ + 3α3β2γ + 3α2β3γ + 15γ2 + 30αγ2 + 18α2γ2 + 3α3γ2 + 12βγ2

+ 37αβγ2 + 24α2βγ2 + 3α3βγ2 + 3β2γ2 + 15αβ2γ2 + 9α2β2γ2 + 3αβ3γ2

+ 20γ3 + 30αγ3 + 12α2γ3 + α3γ3 + 18βγ3 + 30αβγ3 + 9α2βγ3 + 6β2γ3

+ 9αβ2γ3 + β3γ3 + 15γ4 + 15αγ4 + 3α2γ4 + 12βγ4 + 9αβγ4 + 3β2γ4 + 6γ5

+ 3αγ5 + 3βγ5 + γ6, (521).

(11) Few more examples:

KN (β,α,γ=0)
4321 (1) = 14 + 35α+ 30α2 + 10α3 + α4 + 21β + 65αβ + 70α2β + 30α3β + 4α4β

+ 9β2 + 35αβ2 + 50α2β2 + 30α3β2 + 6α4β2 + β3 + 5αβ3 + 10α2β3

+ 10α3β3 + 4α4β3 + α4β4,

KN (β=1,α=1,γ)
4321 (1) = (441, 1984, 3754, 3882, 2385, 885, 192, 22, 1)γ ,

KN (β=1,α=1,γ)
54321 = (1 + γ)(2955, 13297, 25678, 27822, 18553, 7852, 2094, 336, 29, 1)γ .
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Note that polynomial Ln(γ) := KN (β=1,α=1,γ)
n,n−1,...,2,1 (1) has degree 2n and Ln(γ = −1) = 0.

h3KN (β=1,α=1,γ,h)
321 = (1, 3, 7, 9, 7, 1)h + γ(6, 18, 32, 32, 18, 6)h + γ2(15, 42, 58, 42, 15)h

+ γ3(20, 48, 48, 20)h + γ4(15, 27, 15)h + γ5(6, 6)h + γ6h6,

KN (a=1,b=1,c,r)
121 (1) = 31 + 112c+ 168c2 + 124c3 + 44c4 + 6c5

+
(
60 + 176c+ 195c2 + 93c3 + 16c4

)
r +

(
38 + 85c+ 61c2 + 14c3

)
r2

+
(
8 + 12c+ 4c2

)
r3.

Problem A.3. Let n ≥ k ≥ 0 be integers, consider permutation wn,k := [k, k − 1, . . . , 1,
n, n−1, n−2, . . . , k+1] ∈ Sn. Give combinatorial interpretations of polynomials Ln,k(α, β, γ) :=

KN (α,β,γ)
wm,k (1).

Conjecture A.4. Set d := γ − 1.

• For any permutation w ∈ Sn, KN (β,α=1,γ=d−1)
w (1) is a polynomial in β and d with non-

negative coefficients.

• The polynomial Ln(d) has non-negative coefficients, and polynomial Ln(d) + dn is sym-
metric and unimodal.

• Ln,1(α = 1, β, d) ∈ dN[β, d].

• Ln,1(α, β = 0, d) ∈ dn−1(α + d)N[α, d], Ln,1(α = 1, β = 0, d = 1) = 2 Schn+1, Ln,1(α = 0,
β = 0, d = 2) = 2n Schn+1 (see [65, A156017] for a combinatorial interpretation of these
numbers), where Schn denotes the n-th Schröder number, see, e.g., [65, A001003].

• Ln,1(α = 0, β = t − 1, γ) ∈ N[t, γ], Ln,1(α = 0, β = −1, γ = 1) is equal to the number of
Dyck (n+1)-paths ([65, A000108]) in which each up step (U) not at ground level is colored
red (R) or blue (B), [65, A064062].

Note that the number 2 Schn known also as large Schröder number, see, e.g., [65, A006318].
For example,

L3,1(α = 1, β, d) = d
(
β2 + 5βd+ 4β2d+ 5d2 + 14βd2 + 6β2d2 + β3d2 + 10d3 + 12βd3

+ 3β2d3 + 6d4 + 3βd4 + d5
)
,

L7,1(1, 1, d) = d(1, 27, 260, 1245, 3375, 5495, 5494, 3375, 1245, 260, 27, 1)d,

L7,1(α, β = 0, d) = d6(α+ d)(1 + α+ d)
(
1 + 14α+ 36α2 + 14α3 + α4 + 14d+ 72αd

+ 42α2d+ 4α3d+ 36d2 + 42αd2 + 6α2d2 + 14d3 + 4αd3 + d4
)
,

L7,1(α = 0, β = t− 1, γ = 1) = (14589, 39446, 39607, 18068, 3627, 246, 1)t.

We expect a similar conjecture for polynomials Ln,k(α = 1, β = 1, γ), k ≥ 1.

A.2 MacMeille completion of a partially ordered set

Let23 (Σ,≤) be a partially ordered set (poset for short) and X ⊆ Σ. Define

• The set of upper bounds for X, namely,

Xup := {z ∈ Σ |x ≤ z, ∀x ∈ X}.
23For the reader convenience we review a definition and basic facts concerning the MacNeille completion of

a poset, see for example, notes by E. Turunen, available at http://math.tut.fi/~eturunen/AppliedLogics007/
Mac1.pdf.

http://math.tut.fi/~eturunen/AppliedLogics007/Mac1.pdf
http://math.tut.fi/~eturunen/AppliedLogics007/Mac1.pdf
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• The set of lower bounds for X, namely,

X lo := {z ∈ Σ | z ≤ x ∀x ∈ X}.

• A poset (MN (Σ),≤), namely,

MN (Σ) := {MN (X)|X ⊆ Σ},

where MN (X) :=
(
Xup

)lo
. Clearly, X ⊆MN (X) and MN (MN (X)) =MN (X).

• A map κ : Σ −→MN (Σ), namely, κ(X) =MN (X), X ⊆ Σ.

Proposition A.5.

• The map κ is an embedding, that is for X,Y ⊆ Σ,

X ≤ Y if and only if κ(X) ⊆ κ(Y ),

• Poset (MN (Σ),≤) is a lattice, called the MacNeille completion of poset (Σ,≤).

Proposition A.6. Let (Σ,≤) be a poset24. Then there is a poset (L,≤) and a map κ : Σ −→ L
such that

(1) κ is an embedding,

(2) (L,≤) is a complete lattice25,

(3) for each element a ∈ L one has

(a) MN ({x ∈ Σ |κ(x) ≤ a}) = {x ∈ Σ |κ(x) ≤ a},
(b) a =

∨
{κ(x) |x ∈ Σ, κ(x) ≤ a}.

Moreover, the pair (κ, (L,≤)) is defined uniquely up to an order preserving isomorphism.

Therefore, the lattice (L,≤), is an order-isomorphic to the MacNeille completionMN (Σ) of
a poset Σ.

Problem A.7. Let Σ be a (finite) graded poset26, denote by

rΣ(t) :=
∑
a∈Σ

tr(a),

the rank generating function of a poset Σ. Here r(a) denotes the rank/degree of an element
a ∈ Σ. Describe polynomial rMN (Σ)(t).

In the present paper we are interesting in properties of the MacNeille completion of the Bruhat
poset Bn = B(Sn) corresponding to the symmetric group Sn. Below we briefly describe a const-
ruction of the MacNeille completion Ln(Sn) :=MN n(Bn) following [44] and [68, p. 552, d].

Let w = (w1w2 . . . wn) ∈ Sn, associate with w a semistandard Young tableaux T (w) of the
staircase shape δn = (n − 1, n − 2, . . . , 2, 1) filled by integer numbers from the set [1, n] :=
{1, 2, . . . , n} as follows: the i-th row of of T (w), denoted by Ri(w), consists of the numbers
w1, . . . , wn−i+1 in increasing order. Clearly the tableaux T (w) = [Ti,j(w)]1≤i<j≤n−1 obtained in
such a manner, satisfies the so-called monotonic and flag conditions, namely,

24See https://en.wikipedia.org/wiki/Graded_poset.
25That is every subset of L has a meet and join, see, e.g., [67, p. 249].
26See, e.g., [67, p. 244], or https://en.wikipedia.org/wiki/Graded_poset.

https://en.wikipedia.org/wiki/Graded_poset
https://en.wikipedia.org/wiki/Graded_poset
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(1) (monotonic conditions) T1,i ≥ T2,i−1 ≥ · · · ≥ Ti,1, i = 1, . . . , n− 1,

(2) (flag conditions) R1(w) ⊃ R2(w) ⊃ · · · ⊃ Rn−1(w).

Denote by L(Sn) the subset of the set of all Young tableaux T ∈ STY(δn ≤ n) consisting of
that T which satisfies the monotonicity conditions (1). The set L(Sn) has the natural poset struc-

ture denoted by “≥”, and defined as follows: if T (1) = [t
(1)
ij ]1≤i<j≤n−1 and T (2) = [t

(2)
ij ]1≤i<j≤n−1

belong to the set L(Sn), then by definition

T (1) ≥ T (2) if and only if t
(1)
ij ≥ t

(2)
ij for all 1 ≤ i < j ≤ n− 1.

It is clearly seen that the set L(Sn) is closed under the following operations

•
(
meet T (1)T (2)

) ∧ (
T (1), T (2)

)
:= T (1)

∧
T (2) =

[
min

(
t
(1)
i,j , t

(2)
i,j

)]
,

•
(
join T (1)T (2)

) ∨ (
(T (1), T (2)

)
:= T (1)

∨
T (2) =

[
max

(
t
(1)
i,j , t

(2)
i,j

)]
.

Theorem A.8 ([44]). The poset L(Sn) is a complete distributive lattice with number of vertices
equals to the number ASM(n) that is the number of alternating sigh matrices of size n × n.
Moreover, the lattice L(Sn) is order isomorphic to the MacNeille completion of the Bruhat
poset Bn.

Indeed it is not difficult to prove that the set of all monotonic triangles obtained by applying
repeatedly operation

∨
(= meet) to the set {T (w), w ∈ Sn} of triangles corresponding to all

elements of the symmetric group Sn, coincides with the set of all monotonic triangles L(Sn). The
natural map κ : Sn −→ L(Sn) is obviously embedding, and all other conditions of Proposition A.6
are satisfied. Therefore L(Sn) = MN (Bn. The fact that the lattice L(Sn is a distributive one
follows from the well-known identities

max(x,min(y, z)) = min
(

max(x, y),max(x, z)
)
, x, y, z ∈

(
R≥0

)3
.

In the lattice L(Sn this identity can be written in the following forms

T (1)
∨(

T (2)
∧
T (3)

)
=
(
T (1)

∧
T (2)

)∨(
T (1)

∧
T (3)

)
,

T (1)
∧(

T (2)
∨
T (3)

)
=
(
T (1)

∨
T (2)

)∧(
T (1)

∨
T (3)

)
.

Finally the fact that the cardinality of the lattice L(Sn) is equal to the number ASM(n) had
been proved by A. Lascoux and M.-P. Schützenberger [44].

If T = [tij ] ∈ L(Sn), define rank of T , denoted by r(T ), as follows:

r(T ) =
∑

1≤i<j≤n−1

tij −
(
n

3

)
.

It had been proved by C. Ehresmann [14] that v ≤ w with respect to the Bruhat order in the
symmetric group Sn if and only if Ti,j(v) ≤ Ti,j(w) for all 1 ≤ i < j ≤ n− 1.

It follows from an improved tableau criterion for Bruhat order on the symmetric group [5]
that27 the length `(w) of a permutation w ∈ Sn can be computed as follows

`(w) = r(T (w))−
∑

(i,j)∈I(w)

(j − i− 1),

27It has been proved in [5, Corollary 5], that the Ehresmann criterion stated above is equivalent to either

the criterion T
(1)
i,j ≤ T

(2)
i,j for all j such that wj > wj+1 and 1 ≤ i ≤ j, or that T

(1)
i,j ≤ T

(2)
i,j for all j ∈

{1, 2, . . . , n− 1}\{k | vk > vk+1} and 1 ≤ i ≤ j.
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where I(w) := {(i, j) | 1 ≤ i < j ≤ n, wi > wj} denotes the set of inversions of permutation w;
a detailed proof can be found in [30].

For example, consider permutation w = [4, 6, 2, 7, 5, 1, 3]. Then the code c(w) of w is equal
to c(w) = (3, 4, 1, 3, 2), and w has the length `(w) = 13. The corresponding Young tableau or
monotonic triangle displayed below

T (w) =



1 2 4 5 6 7
2 4 5 6 7
2 4 6 7
2 4 6
4 6
4

 .

Wherefore, r(T (w)) = |T (w)| −
(

7
3

)
= 94 − 56 = 38. On the other hand, the inversion set

I(w) = {(1, 3), (1, 6), (1, 7), (2, 3), (2, 5), (2, 6), (2, 7), (3, 6), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7)}, hence∑
(i,j)∈I(w)

(j − i− 1) = 10 + 9 + 2 + 3 + 1 = 25 and `(w) = 38− 25 = 13, as it should be.

It is easily seen that the polynomial rMNn(t) is symmetric and deg(rMNn(t)) =
(
n+1

3

)
, For

example,

r(MN 3) = (1, 2, 1, 2, 1), r(MN 4) = (1, 3, 3, 5, 6,6, 6, 5, 3, 3, 1),

r(MN 5) = (1, 4, 6, 10, 16, 20, 27, 34, 37, 40,39, 40, 37, 34, 27, 20, 16, 10, 6, 4, 1),

r(S3 ⊂MN 3) = (1, 2, 0, 2, 1), r(S4 ⊂MN 4) = (1, 3, 1, 4, 2,2, 2, 4, 1, 3, 1)),

r(S5 ⊂MN 5) = (1, 4, 3, 6, 7, 6, 4, 10, 6, 10,6, 10, 6, 10, 4, 6, 7, 6, 3, 4, 1).

Conjecture A.9. The number Coeff [(n+1
3 )/2] rMNn(t) is a divisor of the number ASM(n).
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[15] Fomin S., Greene C., Noncommutative Schur functions and their applications, Discrete Math. 193 (1998),
179–200.

[16] Fomin S., Kirillov A.N., Yang–Baxter equation, symmetric functions and Grothendieck polynomials,
hep-th/9306005.

[17] Fomin S., Kirillov A.N., Grothendieck polynomials and the Yang–Baxter equation, in Formal Power Series
and Algebraic Combinatorics, DIMACS, Piscataway, NJ, 1994, 183–189.

[18] Fomin S., Kirillov A.N., Quadratic algebras, Dunkl elements, and Schubert calculus, in Advances in Geo-
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