Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 066, 17 pages      arXiv:1312.0362      https://doi.org/10.3842/SIGMA.2015.066

Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras

Alexey A. Magazev, Vitaly V. Mikheyev and Igor V. Shirokov
Omsk State Technical University, 11 Mira Ave., Omsk, 644050, Russia

Received December 05, 2013, in final form July 25, 2015; Published online August 06, 2015

Abstract
Methods of construction of the composition function, left- and right-invariant vector fields and differential 1-forms of a Lie group from the structure constants of the associated Lie algebra are proposed. It is shown that in the second canonical coordinates these problems are reduced to the matrix inversions and matrix exponentiations, and the composition function can be represented in quadratures. Moreover, it is proven that the transition function from the first canonical coordinates to the second canonical coordinates can be found by quadratures.

Key words: Lie group; Lie algebra; left- and right-invariant vector fields; composition function; canonical coordinates.

pdf (382 kb)   tex (24 kb)

References

  1. Alhassid Y., Engel J., Wu J., Algebraic approach to the scattering matrix, Phys. Rev. Lett. 53 (1984), 17-20.
  2. Baranovskii S.P., Shirokov I.V., Extensions of vector fields on Lie groups and homogeneous spaces, Theoret. and Math. Phys. 135 (2003), 510-519.
  3. Basarab-Horwath P., Lahno V., Zhdanov R., The structure of Lie algebras and the classification problem for partial differential equations, Acta Appl. Math. 69 (2001), 43-94, math-ph/0005013.
  4. Chevalley C., Theory of Lie groups, Vol. 1, Princeton University Press, Princeton, NJ, 1946.
  5. Cohn P.M., Lie groups, Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 46, Cambridge University Press, New York, 1957.
  6. Draisma J., Transitive Lie algebras of vector fields: an overview, Qual. Theory Dyn. Syst. 11 (2012), 39-60, arXiv:1107.2836.
  7. Fushchich V.I., Barannik L.F., Barannik A.F., Subgroup analysis of Galilean and Poincaré groups and reduction of nonlinear equations, Naukova Dumka, Kiev, 1991.
  8. Fushchych W.I., Zhdanov R.Z., Symmetries of nonlinear Dirac equations, Mathematical Ukraina Publisher, Kyiv, 1997, math-ph/0609052.
  9. Goncharovskii M.M., Shirokov I.V., An integrable class of differential equations with nonlocal nonlinearity on Lie groups, Theoret. and Math. Phys. 161 (2009), 332-345.
  10. González-López A., Kamran N., Olver P.J., Lie algebras of vector fields in the real plane, Proc. London Math. Soc. 64 (1992), 339-368.
  11. Gorbatsevich V.V., Onishchik A.L., Lie groups of transformations, in Lie Groups and Lie Algebras, Current Problems in Mathematics. Fundamental Directions, Vol. 20, VINITI, Moscow, 1988, 103-240.
  12. Hausner M., Schwartz J.T., Lie groups; Lie algebras, Gordon and Breach Science Publishers, New York - London - Paris, 1968.
  13. Heredero R.H., Olver P.J., Classification of invariant wave equations, J. Math. Phys. 37 (1996), 6414-6438.
  14. Kurnyavko O.L., Shirokov I.V., Construction of invariant wave equations of scalar particles on Riemannian manifolds with external gauge fields, Theoret. and Math. Phys. 156 (2008), 1169-1179.
  15. Lie S., Theorie der Transformationsgruppen, Vols. 1-3, Teubner, Leipzig, 1888, 1890, 1893.
  16. Lychagin V.V., Classification of the intransitive actions of Lie algebras, Soviet Math. (1989), no. 5, 25-38.
  17. Miller Jr. W., Lie theory and special functions, Mathematics in Science and Engineering, Vol. 43, Academic Press, New York - London, 1968.
  18. Mosolova M.V., A new formula for $\ln (e^{A}e^{B})$ in terms of the commutators of the elements $A$ and $B$, Math. Notes 23 (1978), 448-452.
  19. O'Cadiz Gustad C., Local structure of 2 dimensional solvable lie algebra actions on the plane, Lobachevskii J. Math. 33 (2012), 317-335.
  20. Petrov A.Z., New methods in the general theory of relativity, Nauka, Moscow, 1966.
  21. Pontryagin L.S., Continuous groups, Nauka, Moscow, 1973.
  22. Popovych R.O., Boyko V.M., Nesterenko M.O., Lutfullin M.W., Realizations of real low-dimensional Lie algebras, J. Phys. A: Math. Gen. 36 (2003), 7337-7360, math-ph/0301029.
  23. Shapovalov A.V., Shirokov I.V., Noncommutative integration of linear differential equations, Theoret. and Math. Phys. 104 (1995), 921-934.
  24. Shchepochkina I.M., How to realize a Lie algebra by vector fields, Theoret. and Math. Phys. 147 (2006), 450-469, math.RT/0509472.
  25. Shirokov I.V., Construction of Lie algebras of first-order differential operators, Russian Phys. J. 40 (1997), 525-530.
  26. Terzis P.A., Faithful representations of Lie algebras and homogeneous spaces, arXiv:1304.7894.

Previous article  Next article   Contents of Volume 11 (2015)