Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 11 (2015), 061, 26 pages      arXiv:1503.07747
Contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet

Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials

Yves Grandati a and Christiane Quesne b
a) Equipe BioPhysStat, LCP A2MC, Université de Lorraine-Site de Metz, 1 bvd D.F. Arago, F-57070, Metz, France
b) Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

Received March 26, 2015, in final form July 15, 2015; Published online July 28, 2015

We construct rational extensions of the Darboux-Pöschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynomials, which, in the first case, depend on a continuous parameter. We also prove that these extended potentials possess an enlarged shape invariance property.

Key words: quantum mechanics; supersymmetry; orthogonal polynomials.

pdf (437 kb)   tex (31 kb)


  1. Abraham P.B., Moses H.E., Changes in potentials due to changes in the point spectrum: anharmonic oscillators with exact solutions, Phys. Rev. A 22 (1980), 1333-1340.
  2. Adler M., Moser J., On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), 1-30.
  3. Adler V.È., On a modification of Crum's method, Theoret. and Math. Phys. 101 (1994), 1381-1386.
  4. Bagchi B., Grandati Y., Quesne C., Rational extensions of the trigonometric Darboux-Pöschl-Teller potential based on para-Jacobi polynomials, J. Math. Phys. 56 (2015), 062103, 11 pages, arXiv:1411.7857.
  5. Baye D., Phase-equivalent potentials for arbitrary modifications of the bound spectrum, Phys. Rev. A 48 (1993), 2040-2047.
  6. Berezin F.A., Shubin M.A., The Schrödinger equation, Kluwer, Dordrecht, 1991.
  7. Bermudez D., Fernández C. D.J., Fernández-García N., Wronskian differential formula for confluent supersymmetric quantum mechanics, Phys. Lett. A 376 (2012), 692-696, arXiv:1109.0079.
  8. Burchnall J.L., Chaundy T.W., A set of differential equations which can be solved by polynomials, Proc. London Math. Soc. S2-30 (1930), 401-414.
  9. Calogero F., Yi G., Can the general solution of the second-order ODE characterizing Jacobi polynomials be polynomial?, J. Phys. A: Math. Theor. 45 (2012), 095206, 4 pages.
  10. Cariñena J.F., Ramos A., Integrability of the Riccati equation from a group-theoretical viewpoint, Internat. J. Modern Phys. A 14 (1999), 1935-1951, math-ph/9810005.
  11. Cariñena J.F., Ramos A., Fernández C. D.J., Group theoretical approach to the intertwined Hamiltonians, Ann. Physics 292 (2001), 42-66, math-ph/0311029.
  12. Contreras-Astorga A., Fernández C. D.J., Supersymmetric partners of the trigonometric Pöschl-Teller potentials, J. Phys. A: Math. Theor. 41 (2008), 475303, 18 pages, arXiv:0809.2760.
  13. Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
  14. Crum M.M., Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955), 121-127, physics/9908019.
  15. Darboux G., Sur une proposition relative aux équations linéaires, C. R. Acad. Sci. Paris 94 (1882), 1456-1459.
  16. Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. II, 2nd ed., Gauthier-Villars, Paris, 1915.
  17. Durán A.J., Pérez M., Admissibility condition for exceptional Laguerre polynomials, J. Math. Anal. Appl. 424 (2015), 1042-1053, arXiv:1409.4901.
  18. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, McGraw-Hill, New York, 1953.
  19. Fernández C. D.J., Salinas-Hernández E., The confluent algorithm in second-order supersymmetric quantum mechanics, J. Phys. A: Math. Gen. 36 (2003), 2537-2543, quant-ph/0303123.
  20. Fernández C. D.J., Salinas-Hernández E., Wronskian formula for confluent second-order supersymmetric quantum mechanics, Phys. Lett. A 338 (2005), 13-18, quant-ph/0502147.
  21. Fernández C. D.J., Salinas-Hernández E., Hyperconfluent third-order supersymmetric quantum mechanics, J. Phys. A: Math. Theor. 44 (2011), 365302, 11 pages, arXiv:1105.2333.
  22. Gómez-Ullate D., Grandati Y., Milson R., Extended Krein-Adler theorem for the translationally shape invariant potentials, J. Math. Phys. 55 (2014), 043510, 30 pages, arXiv:1309.3756.
  23. Gómez-Ullate D., Kamran N., Milson R., An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl. 359 (2009), 352-367, arXiv:0807.3939.
  24. Grandati Y., Solvable rational extensions of the isotonic oscillator, Ann. Physics 326 (2011), 2074-2090, arXiv:1101.0055.
  25. Grandati Y., Multistep DBT and regular rational extensions of the isotonic oscillator, Ann. Physics 327 (2012), 2411-2431, arXiv:1108.4503.
  26. Grandati Y., New rational extensions of solvable potentials with finite bound state spectrum, Phys. Lett. A 376 (2012), 2866-2872, arXiv:1203.4149.
  27. Grandati Y., A short proof of the Gaillard-Matveev theorem based on shape invariance arguments, Phys. Lett. A 378 (2014), 1755-1759, arXiv:1211.2392.
  28. Grandati Y., Bérard A., Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials, Ann. Physics 325 (2010), 1235-1259, arXiv:0910.4810.
  29. Grandati Y., Bérard A., Comments on the generalized SUSY QM partnership for Darboux-Pöschl-Teller potential and exceptional Jacobi polynomials, J. Engrg. Math. 82 (2013), 161-171.
  30. Hartman P., Ordinary differential equations, John Wiley & Sons, Inc., New York - London - Sydney, 1964.
  31. Keung W.-Y., Sukhatme U.P., Wang Q.M., Imbo T.D., Families of strictly isospectral potentials, J. Phys. A: Math. Gen. 22 (1989), L987-L992.
  32. Krein M.G., On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials, Dokl. Akad. Nauk SSSR 113 (1957), 970-973.
  33. Luban M., Pursey D.L., New Schrödinger equations for old: inequivalence of the Darboux and Abraham-Moses constructions, Phys. Rev. D 33 (1986), 431-436.
  34. Matveev V.B., Generalized Wronskian formula for solutions of the KdV equations: first applications, Phys. Lett. A 166 (1992), 205-208.
  35. Matveev V.B., Positons: slowly decreasing analogues of solitons, Theoret. and Math. Phys. 131 (2002), 483-497.
  36. Messiah A., Mécanique quantique, Vol. 1, Dunod, Paris, 1959.
  37. Mielnik B., Nieto L.M., Rosas-Ortiz O., The finite difference algorithm for higher order supersymmetry, Phys. Lett. A 269 (2000), 70-78, quant-ph/0004024.
  38. Nieto M.M., Relationship between supersymmetry and the inverse method in quantum mechanics, Phys. Lett. B 145 (1984), 208-210.
  39. Odake S., Sasaki R., Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B 679 (2009), 414-417, arXiv:0906.0142.
  40. Pursey D.L., New families of isospectral Hamiltonians, Phys. Rev. D 33 (1986), 1048-1055.
  41. Quesne C., Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A: Math. Theor. 41 (2008), 392001, 6 pages, arXiv:0807.4087.
  42. Quesne C., Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics, SIGMA 5 (2009), 084, 24 pages, arXiv:0906.2331.
  43. Quesne C., Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials, Modern Phys. Lett. A 26 (2011), 1843-1852, arXiv:1106.1990.
  44. Quesne C., Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen-Morse II and Eckart potentials, SIGMA 8 (2012), 080, 19 pages, arXiv:1208.6165.
  45. Quesne C., Revisiting (quasi-)exactly solvable rational extensions of the Morse potential, Internat. J. Modern Phys. A 27 (2012), 1250073, 18 pages, arXiv:1203.1811.
  46. Samsonov B.F., On the equivalence of the integral and the differential exact solution generation methods for the one-dimensional Schrödinger equation, J. Phys. A: Math. Gen. 28 (1995), 6989-6998.
  47. Samsonov B.F., New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations, Phys. Lett. A 263 (1999), 274-280, quant-ph/9904009.
  48. Schulze-Halberg A., Wronskian representation for confluent supersymmetric transformation chains of arbitrary order, Eur. Phys. J. Plus 128 (2013), 69, 17 pages.
  49. Sparenberg J.-M., Baye D., Supersymmetric transformations of real potentials on the line, J. Phys. A: Math. Gen. 28 (1995), 5079-5095.
  50. Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
  51. Vein R., Dale P., Determinants and their applications in mathematical physics, Applied Mathematical Sciences, Vol. 134, Springer-Verlag, New York, 1999.

Previous article  Next article   Contents of Volume 11 (2015)