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Abstract. Adjusting conventional Chern–Simons theory to G2-manifolds, one describes
G2-instantons on bundles over a certain class of 7-dimensional flat tori which fiber non-
trivially over T 4, by a pullback argument. Moreover, if c2 6= 0, any (generic) deformation of
the G2-structure away from such a fibred structure causes all instantons to vanish. A brief
investigation in the general context of (conformally compatible) associative fibrations f :
Y 7 → X4 relates G2-instantons on pullback bundles f∗E → Y and self-dual connections on
the bundle E → X over the base, a fact which may be of independent interest.
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1 Introduction

This article fits in the context of gauge theory in higher dimensions, following the seminal
works of S. Donaldson & R. Thomas, G. Tian and others [4, 16]. The common thread to such
generalisations is the presence of a closed differential form on the base manifold Y , inducing
an analogous notion of anti-self-dual connections, or instantons, on bundles over Y . In the
case at hand, G2-manifolds are 7-dimensional Riemannian manifolds with holonomy in the Lie
group G2, which implies the existence of precisely such a structure. This allows one to make
sense of G2-instantons as the energy-minimising gauge classes of connections, solutions to the
corresponding Yang–Mills equation.

Heuristically, G2-instantons are somewhat analogous to flat connections in dimension 3.
Given a bundle over a compact 3-manifold, with space of connections A and gauge group G, the
Chern–Simons functional is a multi-valued real function on the quotient B = A/G, with integer
periods, whose critical points are precisely the flat connections [3, § 2.5]. Similar theories can
be formulated in higher dimensions in the presence of a suitable closed differential form [4, 15];
e.g. on a G2-manifold (Y, ϕ), the coassociative 4-form ∗ϕ allows for the definition of a functional
of Chern–Simons type1. Its ‘gradient’, the Chern–Simons 1-form, vanishes precisely at the G2-
instantons, hence it detects the solutions to the Yang–Mills equation. These gauge-theoretic
preliminaries are covered in Section 2.

On the other hand, one may understand G2-manifolds as a particular case of the rich theory
of calibrated geometries [6], for which the G2-structure ϕ is a calibration 3-form. Then a 3-
dimensional submanifold P is said to be associative if it is calibrated by ϕ, i.e., if ϕ|P =
dVol |P . The deformation theory of associative submanifolds is known to be obstructed [9], so
their occurrence in families, e.g. fibering over a 4-manifold, is nongeneric and somewhat exotic.
Nonetheless, we may consider theoretically, at first, the existence of instantons over associative

1In fact only the condition d∗ϕ = 0 is required, so the discussion extends to cases in which the G2-structure ϕ
is not necessarily torsion-free.
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fibrations f : Y 7 → X4. Given a bundle E → X, a connection A on its pullback E is locally of
the form

A
loc
= At(x) +

3∑
i=1

σi(x, t)dt
i,

where {At} is a family of connections on E parametrised by the associative fibers Px := f−1(x)
and σi ∈ Ω0(Y, f∗gE). In Section 3.1 I prove the following relation between G2-instantons and
families of self-dual connections over the base:

Theorem 1. Let f : Y → X define an associative fibration and E→ Y be the pullback from an
indecomposable vector bundle E → X.

(i) If a connection A on E is a G2-instanton, then {At} is a family of self-dual connections
on E, satisfying

∂At
∂ti

= dAtσi, i = 1, 2, 3.

(ii) If, moreover, the family At ≡ At0 is constant, then A = f∗At0 is a pullback.

NB: We denote henceforth by M4
+ the moduli space of SD connections on the base and

by M7
ϕ the moduli space of G2-instantons relative to G2-structure ϕ.

Finally, over the remaining of Section 3, these ideas are applied to a concrete example of
certain T 3-fibrations over T 4, topologically equivalent to the 7-torus, which I will call G2-torus
fibrations [11]. Deforming the metric (i.e. the lattice) on T 4 induces a change on the fibration
map and hence on the G2-structure, and one can use Chern–Simons formalism to see how this
affects the moduli of G2-instantons:

Theorem 2. Let f : T→ T 4 be a G2-torus fibration, E→ T be the pullback of an indecomposable
vector bundle E → T 4 and ϕ denote the G2-structure of T; then

(i) every SD connection on E lifts to a G2-instanton on E, i.e.,

f∗M4
+ ⊂M7

ϕ;

(ii) if, moreover, c2(E) 6= 0, then any perturbation ϕ+φ away from the class of fibred structures
causes the moduli space of G2-instantons to vanish, i.e.,

M7
ϕ+φ = ∅.

The construction of G2-instantons is a recent and active research area. Indeed Theorem 2
yields nontrivial, albeit nongeneric, examples of G2-instanton moduli, whenever a complex vector
bundle E → T 4 admits SD connections. The interested reader will find other examples in works
of Walpuski, Clarke and the author [2, 11, 12, 13, 17]. In the high-energy physics community,
solutions to a very similar problem in the context of G2-structures with torsion have been found
eg. for cylinders over nearly-Kähler homogeneous spaces [5] and more generally for cones over
nontrivial manifolds admitting real Killing spinors [7].

Finally, a paper just published by Wang [18] makes significant progress towards a Donaldson
theory over higher-dimensional foliations, which seems to encompass our G2-torus fibration as
a special, codimension 4 tight foliation, whose leaf space is the smooth 4-manifold X. It is
inspiring to speculate whether an invariant of the corresponding foliated moduli space can be
explicitly computed for some suitable bundle E→ T, or indeed if that space coincides with our
definition of M7.
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2 Gauge theory over G2-manifolds

I will concisely recall the essentials of gauge theory on G2-manifolds, while referring the interested
reader to a more detailed exposition in [12].

Let Y be an oriented smooth 7-manifold; a G2-structure is a smooth 3-form ϕ ∈ Ω3(Y ) such
that, at every point p ∈ Y , one has ϕp = f∗p (ϕ0) for some frame fp : TpY → R7 and (adopting
the conventions of [14])

ϕ0 = e567 + ω1 ∧ e5 + ω2 ∧ e6 + ω3 ∧ e7 (1)

with

ω1 = e12 − e34, ω2 = e13 − e42 and ω3 = e14 − e23.

Moreover, ϕ determines a Riemannian metric g(ϕ) induced by the pointwise inner-product

〈u, v〉e1...7 :=
1

6
(uyϕ0) ∧ (vyϕ0) ∧ ϕ0, (2)

under which ∗ϕϕ is given pointwise by

∗ϕ0 = e1234 − ω1 ∧ e67 − ω2 ∧ e75 − ω3 ∧ e56. (3)

Such a pair (Y, ϕ) is a G2-manifold if dϕ = 0 and d ∗ϕ ϕ = 0.

2.1 The G2-instanton equation

The G2-structure allows for a 7-dimensional analogue of conventional Yang–Mills theory, yielding
a notion of (anti-)self-duality for 2-forms. Under the usual identification between 2-forms and
matrices, we have g2 ⊂ so(7) ' Λ2, so we denote Λ2

14 := g2 and Λ2
7 its orthogonal complement

in Λ2:

Λ2 = Λ2
7 ⊕ Λ2

14. (4)

It is easy to check that Λ2
7 = 〈e1yϕ0, . . . , e7yϕ0〉, hence the orthogonal projection onto Λ2

7 in (4)
is given by

L∗ϕ0 : Λ2 → Λ6,

η 7→ η ∧ ∗ϕ0

in the sense that [1, p. 541]

L∗ϕ0 |Λ2
7

: Λ2
7 →̃ Λ6 and L∗ϕ0 |Λ2

14
= 0.

Furthermore, since (4) splits Λ2 into irreducible representations of G2, a little inspection on
generators reveals that (Λ2)7

14
is respectively the −2

+1-eigenspace of the G2-equivariant linear map

Tϕ0 : Λ2 → Λ2,

η 7→ Tϕ0η := ∗(η ∧ ϕ0).

Consider now a vector bundle E → Y over a compact G2-manifold (Y, ϕ); the curvature
F := FA of some connection A decomposes according to the splitting (4):

FA = F7 ⊕ F14, Fi ∈ Ω2
i (EndE), i = 7, 14.
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The L2-norm of FA is the Yang–Mills functional :

YM(A) := ‖FA‖2 = ‖F7‖2 + ‖F14‖2. (5)

It is well-known that the values of YM(A) can be related to a certain characteristic class of
the bundle E, given (up to choice of orientation) by

κ(E) := −
∫
Y

tr
(
F 2
A

)
∧ ϕ.

Using the property dϕ = 0, a standard argument of Chern–Weil theory [10] shows that the
de Rham class [tr(F 2

A)∧ϕ] is independent of A, thus the integral is indeed a topological invariant.
The eigenspace decomposition of Tϕ implies (up to a sign)

κ(E) = −2‖F7‖2 + ‖F14‖2,

and combining with (5) we get

YM(A) = −1

2
κ(E) +

3

2
‖F14‖2 = κ(E) + 3‖F7‖2.

Hence YM(A) attains its absolute minimum at a connection whose curvature lies either in Λ2
7

or in Λ2
14. Moreover, since YM ≥ 0, the sign of κ(E) obstructs the existence of one type or the

other, so we fix κ(E) ≥ 0 and define G2-instantons as connections with F ∈ Λ2
14, i.e., such that

YM(A) = κ(E). These are precisely the solutions of the G2-instanton equation:

FA ∧ ∗ϕ = 0 (6a)

or, equivalently,

FA − ∗(FA ∧ ϕ) = 0. (6b)

If instead κ(E) ≤ 0, we may still reverse orientation and consider F ∈ Λ2
14, but then the above

eigenvalues and energy bounds must be adjusted accordingly, which amounts to a change of the
(−) sign in (6b).

2.2 Definition of the Chern–Simons functional ϑ

Gauge theory in higher dimensions can be formulated in terms of the geometric structure of
manifolds with exceptional holonomy [4]. In particular, instantons can be characterised as
critical points of a Chern–Simons functional, hence zeroes of its gradient 1-form [3]. The explicit
case of G2-manifolds, which we now describe, was first examined in the author’s thesis [11].

Let E → Y be a vector bundle; the space A is an affine space modelled on Ω1(gE) so, fixing
a reference connection A0 ∈ A,

A = A0 + Ω1(gE)

and, accordingly, vectors at A ∈ A are 1-forms a, b, . . . ∈ TAA ' Ω1(gE) and vector fields are
maps α, β, . . . : A → Ω1(gE). In this notation we define the Chern–Simons functional by

ϑ(A) := 1
2

∫
Y

tr

(
dA0a ∧ a+

2

3
a ∧ a ∧ a

)
∧ ∗ϕ,

fixing ϑ(A0) = 0. This function is obtained by integration of the Chern–Simons 1-form

ρ(β)A = ρA(βA) :=

∫
Y

tr(FA ∧ βA) ∧ ∗ϕ. (7)
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We find ϑ explicitly by integrating ρ over paths A(t) = A0 + ta, from A0 to any A = A0 + a:

ϑ(A)− ϑ(A0) =

∫ 1

0
ρA(t)(Ȧ(t))dt =

∫ 1

0

(∫
Y

tr
((
FA0 + tdA0a+ t2a ∧ a

)
∧ a
)
∧ ∗ϕ

)
dt

=
1

2

∫
Y

tr

(
dA0a ∧ a+

2

3
a ∧ a ∧ a

)
∧ ∗ϕ+K,

where K = K(A0, a) is a constant and vanishes if A0 is an instanton.
The co-closedness condition d ∗ ϕ = 0 implies that the 1-form (7) is closed, so the procedure

doesn’t depend on the path A(t). Indeed, given tangent vectors a, b ∈ Ω1(gE) at A, the leading
term in the expansion of ρ,

ρA+a(b)− ρA(b) =

∫
Y

tr(dAa ∧ b) ∧ ∗ϕ+O
(
|b|2
)
,

is symmetric by Stokes’ theorem:∫
Y

tr(dAa ∧ b− a ∧ dAb) ∧ ∗ϕ =

∫
Y
d(tr(b ∧ a) ∧ ∗ϕ) = 0.

We conclude that

ρA+a(b)− ρA(b) = ρA+b(a)− ρA(a) +O
(
|b|2
)

and, comparing reciprocal Lie derivatives on parallel vector fields α ≡ a, β ≡ b near a point A,
we have:

dρ(α, β)A = (Lbρ)A(a)− (Laρ)A(b) = lim
h→0

1

h

{
ρA+hb(a)− ρA(a))− (ρA+ha(b)− ρA(b))

}
= lim

h→0

1

h2

{
(ρA+hb(ha)− ρA(ha))− (ρA+ha(hb)− ρA(hb))

}︸ ︷︷ ︸
O
(
|h|3
) = 0.

Since A is contractible, by the Poincaré lemma ρ is the derivative of some function ϑ. Again by
Stokes, ρ vanishes along G-orbits im(dA) ' TA{G.A}. Thus ρ descends to the quotient B and so
does ϑ, locally.

2.3 Periodicity of ϑ

Consider the gauge action of g ∈ G and some path {A(t)}t∈[0,1] ⊂ A connecting an instanton A
to g.A. The natural projection p1 : Y × [0, 1]→ Y induces a bundle

Eg
p̃1−→ E

↓ ↓
Y × [0, 1]

p1−→ Y

and, using g to identify the fibres (Eg)0
g
' (Eg)1, one may think of Eg as a bundle over

Y × S1. Moreover, in some local trivialisation, the path A(t) = Ai(t)dx
i gives a connection

A = A0dt+ Aidx
i on Eg:

(A0)(t,p) = 0, (Ai)(t,p) = Ai(t)p.

The corresponding curvature 2-form is FA = (FA)i0dx
i ∧ dt+ (FA)jkdx

j ∧ dxk, where

(FA)i0 = Ȧi(t), (FA)jk = (FA)jk.
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The periods of ϑ are then of the form

ϑ(g.A)− ϑ(A) =

∫ 1

0
ρA(t)(Ȧ(t))dt =

∫
Y×[0,1]

tr(FA(t) ∧ Ȧi(t)dxi) ∧ dt ∧ ∗ϕ

=

∫
Y×S1

trFA ∧ FA ∧ ∗ϕ =
1

8π2

〈
c2(Eg) ` [∗ϕ], Y × S1

〉
.

The Künneth formula for Y × S1 gives

H4
(
Y × S1,R

)
= H4(Y,R)⊕H3(Y,R)⊗H1

(
S1,R

)︸ ︷︷ ︸
Z

and obviously H4(Y ) ` [∗ϕ] = 0 so, denoting by c′2(Eg) the component lying in H3(Y ) and by
Sg := [ 1

8π2 c
′
2(Eg)]

PD its normalised Poincaré dual, we are left with

ϑ(g.A)− ϑ(A) = 〈[∗ϕ], Sg〉.

Consequently, the periods of ϑ lie in the set{∫
Sg

∗ϕ
∣∣∣∣Sg ∈ H4(Y,R)

}
.

That may seem odd at first, because ∗ϕ is not, in general, an integral class and so the set of
periods is dense. However, as long as our interest remains in the study of the moduli spaceM =
Crit(ρ) of G2-instantons, there is not much to worry, for the gradient ρ = dϑ is unambiguously
defined on B.

3 Instantons over G2-torus fibrations

Instances of G2-manifolds fibred by associative submanifolds in the literature are relatively
scarce, not least because their deformation theory is zero-index elliptic [9] and therefore any
new examples will be somewhat exotic. A few trivial cases include the products T 7 = T 4 × T 3

and K3 × T 3 and also CY 3 × S1 given a family of curves in the Calabi–Yau [8, § 10.8]. The
example I will propose is unique in the sense that the total space is not a Riemannian product.

3.1 Instantons over associative fibrations

We consider pullback bundles over smooth associative fibrations, and relate G2-instantons to
their gauge theory over the base; in particular we do not address the possibility of singular
fibres.

Definition 1. A G2-manifold (Y 7, ϕ) is called an associative fibration over a compact oriented
Riemannian four-manifold (X4, η) if it is the total space of a Riemannian submersion f : Y → X
such that each fibre Px := f−1(x) ⊂ Y is a smooth associative submanifold.

Since each fibre Px is 3-dimensional and orientable, its tangent bundle is differentiably trivial
and we may choose global coordinates t = (t1, t2, t3) induced respectively by a global coframe
{e5, e6, e7} := {dt1, dt2, dt3}. Thus near each y ∈ Px we may complete the triplet into a local
orthogonal coframe {e1, . . . , e7} of T ∗Y such that ϕy has the form (1), and the point y is
unambiguously described by (x, t(y)).

Lemma 1. Let f : Y → X define an associative fibration and E → Y be the pullback from
a vector bundle E → X; then a connection A on E is self-dual if, and only if, f∗A is a G2-
instanton on E.
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Proof. Let F := (Ff∗A)y be the curvature 2-form at y ∈ Px; then

∗ϕ(F ∧ ϕ)
loc
= ∗ϕ

[
F ∧

(
ϕ|Px + ω1 ∧ e5 + ω2 ∧ e6 + ω3 ∧ e7

)]
=∗ηF+ ∗ϕ

[
O(F−) ∧ f∗dVolη

]
,

where O(F−) := (F34 − F12)e5 + (F42 − F13)e6 + (F23 − F14)e7 vanishes precisely when A is
self-dual, i.e., when F = ∗ηF satisfies the G2-instanton equation (6b). �

We are now in position to prove Theorem 1. Let us examine the general form of a G2-instanton
on E. An arbitrary connection A on E is locally of the form

A(y)
loc
= At(x) +

3∑
i=1

σi(x, t)dt
i,

where {At}t∈t(Px) is a family of connections on E and σi ∈ Ω0(Y, f∗gE). The curvature of A is

FA = FAt +
3∑
i=1

(
dAtσi −

∂At
∂ti

)
∧ dti + Fσ

with

Fσ :=

3∑
i,j=1

(
∂σi
∂tj
− ∂σj
∂ti

+
1

2
[σi, σj ]

)
dti ∧ dtj .

Replacing FA into the G2-instanton equation (6a) and using the expression (3) of ∗ϕ in the
natural frame {e1, . . . , e7}, we have(

FAt +

3∑
i=1

(dAtσi −
∂At
∂ti

) ∧ e4+i + Fσ

)
∧
(
e1234 − ω1 ∧ e67 − ω2 ∧ e75 − ω3 ∧ e56

)
= 0.

Using the following elementary properties

FAt ∧ e1234 = 0, FAt ∧ ω1 ∧ e67 = [(FAt)34 − (FAt)12]
(
∗e5
)
,

FAt ∧ ω2 ∧ e75 = [(FAt)42 − (FAt)13]
(
∗e6
)
, FAt ∧ ω3 ∧ e56 = [(FAt)23 − (FAt)14]

(
∗e7
)
,

Fσ ∧ e4+i ∧ e4+j = 0, Fσ ∧ e1234 = (Fσ)23

(
∗e5
)

+ (Fσ)31

(
∗e6
)

+ (Fσ)12

(
∗e7
)
,

and the fact that each dAtσi and ∂At

∂ti
are locally 1-forms on the base, hence their wedge product

with e1234 = dVolη vanishes, the equation simplifies to

3∑
i=1

(
dAtσi −

∂At
∂ti

)
∧ ωi = 0 and F−At

−Q(Fσ) = 0,

where Q is the linear map on 2-forms defined by

Q
(
dti ∧ dtj

)
= Q

(
e4+i ∧ e4+j

)
:=

3∑
k=1

εijkωk.

On the other hand, if A = At +
∑
σi is a G2-instanton, then it minimises the Yang–Mills

functional (5). This implies

∑∥∥∥∥dAtσi −
∂At
∂ti

∥∥∥∥2

+ ‖Fσ‖2 = 0,
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since otherwise the pullback component At alone would violate the minimum energy:

YM(At) = ‖FAt‖2 < ‖FA‖2 = YM(A).

In particular Fσ ≡ 0 and so every At must be SD. Finally, if the family At ≡ At0 is constant,
then dAt0

σi = 0 implies σ ≡ 0, since by assumption E is indecomposable and therefore does not
admit nontrivial parallel sections. This concludes the proof of Theorem 1.

Remark 1. IfM4
+ is discrete, then by continuity the family {At} is contained in a gauge orbit;

if the family is constant, then A is a pullback.

3.2 G2-torus fibrations

A 7-torus T 7 = R7/Λ naturally inherits the G2-structure ϕ from R7. Recall from Section 2.2
that a connection A on some bundle over T 7 is a G2-instanton if and only if it is a zero of the
Chern–Simons 1-form (7):

ρA(b) =

∫
T 7

tr(FA ∧ b) ∧ ∗ϕ. (8)

One asks what is the behaviour of the moduli space of G2-instantons under perturbations
ϕ→ ϕ+ φ of the G2-structure. More precisely, given suitable assumptions, one asks whether
(ϕ + φ)-instantons exist at all once we deform the lattice. As a working example, we consider
the following class of flat T 3-fibred 7-tori:

Definition 2. A G2-torus fibration structure is a triplet (η, L, α) in which:

• η is a metric on R4;

• L is a lattice on the subspace Λ2
+(R4, η) of η-self-dual 2-forms;

• α : R4 → Λ2
+(R4, η) is a linear map.

Given the above data, set V
.
= R4 ⊕ Λ2

+ and form the torus T = V/L̃, with the lattice

L̃
.
=
{

(µ, ν + αµ) |µ ∈ Z4, ν ∈ L
}
⊂ V.

Then T inherits from V the G2-structure ϕ which makes the generators of L̃ orthonormal with
respect to the induced inner-product (2). It is straightforward to check that T is an associative
fibration as in Definition 1: denoting by e5, e6, e7 the (ν+αµ)-orthonormal basis of the fibre Λ2

+,

the flat G2-structure (1) simplifies to ϕ|Λ2
+

= e567 = dVolϕ |Λ2
+

; moreover the lattice L̃ on every

tangent subspace normal to the fibre is just the lattice µ from the base, so the corresponding
metrics are the same. Although T fibres over the 4-torus R4/µ, the induced metric g(ϕ) is not,
in general, a Riemannian product.

Suppose the moduli space M4
+ of self-dual connections on E → T 4 is nonempty; then we

have trivial solutions to the G2-instanton equation on the pullback E→ T simply by liftingM4
+

as in Lemma 1, which proves the first part of Theorem 2:

Corollary 1. If A is a self-dual connection on E → T 4, then its pullback f∗A by the fibration
map f : T→ T 4 is a G2-instanton on E.

For future reference, I denote the set of such ϕ-instantons obtained by lifts from M4
+ by

M̃4
+ := f∗M4

+ ⊂ B7. (9)

We know from 4-dimensional gauge theory that SD connections on a complex vector bundle
E → T 4 correspond to stable holomorphic structures on E, thus in such cases we have examples
of G2-instantons on bundles over T.
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3.3 Deformations of T

Working on a bundle E→ T with compact structure group over a fixed G2-torus fibration, let us
ponder in generality about the behaviour of instantons under a deformation of the G2-structure:

ϕ→ ϕ+ φ, ∗ϕϕ→ ∗ϕϕ+ ξφ, ξφ := ∗ϕ+φ(ϕ+ φ)− ∗ϕϕ ∈ Ω4(T).

An arbitrary deformation φ does not in general preserve the fibred structure of T:

Proposition 1. A deformation ξφ ∈ Λ4(T) of the coassociative 4-form ∗ϕϕ has four orthogonal
components, with the following significance:

Λ4
(
R4 ⊕ Λ2

+

)
= Λ4

(
R4
)︸ ︷︷ ︸

(I)

⊕ Λ3
(
R4
)
⊗ Λ1

(
Λ2

+

)︸ ︷︷ ︸
(II)

⊕ Λ2
(
R4
)
⊗ Λ2

(
Λ2

+

)︸ ︷︷ ︸
(III)

⊕ Λ1
(
R4
)
⊗ Λ3

(
Λ2

+

)︸ ︷︷ ︸
(IV)

,

(I) corresponds to a rescaling of the metric η on R4;

(II) redefines the map α;

(III) splits as Hom(Λ2
+,Λ

2
+) ⊕ Hom(Λ2

−,Λ
2
+), where the first factor modifies the lattice L and

the second one affects the conformal class of η;

(IV) parametrises deformations transverse to the fibred structures.

Proof. Let us examine the four cases.
(I) If ξφ ∈ Λ4(R4) ' R, then it must be a multiple of ∗ϕ|R4 = e1234 = dVolη.
(II) Since Λ3(R4) ⊗ Λ1(Λ2

+) ' R4 ⊗ (Λ2
+)∗ ' Hom(R4,Λ2

+), such deformations are precisely
linear maps R4 → Λ2

+.
(III) Clearly Λ2(R4) = Λ2

+ ⊕ Λ2
− and Λ2(Λ2

+) ' (Λ2
+)∗, so the product decomposes as(

Λ2
+ ⊗

(
Λ2

+

)∗)⊕ (Λ2
− ⊗

(
Λ2

+

)∗) ' Hom
(
Λ2

+,Λ
2
+

)
⊕Hom

(
Λ2
−,Λ

2
+

)
.

Now, on one hand, acting with an endomorphism on Λ2
+ is equivalent to redefining the triplet

{e5, e6, e7}, hence the lattice L ⊂ Λ2
+. On the other hand, since the orthogonal split Λ2 =

Λ2
− ⊕Λ2

+ is conformally invariant, a map Λ2
− → Λ2

+ redefines the orthogonal complement of Λ2
−

and hence the conformal class.
(IV) Since Λ3(Λ2

+) ' R, this component is just Λ1(R4), which is irreducible in the sense
that T has no distinguished subspaces in R4. Then either every 7-torus is a G2-fibration, which
is obviously false, or these are precisely the deformations away from said structures. �

We will now describe what happens to the zeroes of (8) under the corresponding perturbation
of the Chern–Simons 1-form:

ρ→ ρφ := ρ+ rφ, (rφ)A(b) =

∫
T

tr(FA ∧ b) ∧ ξφ.

Clearly a ϕ-instanton A is also a (ϕ + φ)-instanton if and only if (rφ)A ≡ 0. There is little
reason, however, to expect such a coincidence; as we will see, the topology of the bundle may
constrain the existence of instantons under certain – indeed most – deformations.

Denoting henceforth byA the space of connections over the 7-manifold T, let us briefly digress
into the translation action of some vector v ∈ T on some A ∈ A. The first order variation is
given by the bundle-valued 1-form

(βv)A := vyFA,

which we interpret as a vector in TAA. Notice first that in the direction βv the value of the
Chern–Simons 1-form is independent of the base-point:
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Lemma 2. The function ρ(βv) : A → R is constant.

Proof. The computation is straightforward:

ρ(βv)A+ha =

∫
T

trFA+ha ∧ vyFA+ha ∧ ∗ϕ = −1

2

∫
T

trFA+ha ∧ FA+ha ∧ (vy ∗ ϕ)

= −1

2

∫
T
(trFA ∧ FA + dχ) ∧ (vy ∗ ϕ) = −1

2

∫
T

trFA ∧ FA ∧ (vy ∗ ϕ) = ρ(βv)A,

where dχ is the exact differential given by Chern–Weil theory and we use Stokes’ theorem and
Cartan’s identity d(vy ∗ ϕ) = Lv(∗ϕ) = 0, since ϕ is constant on the flat torus. �

Similarly, evaluating rφ on βv gives

rφ(βv)A =

∫
T

tr(FA ∧ (βv)A) ∧ ξφ = −1
2

∫
T

tr(FA ∧ FA) ∧ (vyξφ) = 〈c2(E), Sφ(v)〉,

where Sφ(v)
.
= −1

2 [vyξφ]PD, and this depends only on the topology of E, not on the point A.

Remark 2. Hence we may interpret φ as defining a linear functional

Nφ : R7 → R,
v 7→ 〈c2(E), Sφ(v)〉,

such that Nφ 6= 0 implies no ϕ-instanton is still a (ϕ+ φ)-instanton. This is, however, a rather
weak obstruction, since the map φ 7→ Nφ has kernel of dimension at least 28 and thus, in
principle, leaves plenty of possibilities for instantons of perturbed G2-structures.

Now consider specifically a translation vector on the base v ∈ T 4. Notice that for deforma-
tions φ of types (I), (II) or (III) the contraction of ξφ with such v gives Sφ(v) = 0, so φ only
effectively contributes to the function ρ(βv) when ξφ ∈ Λ1(R4), which means the perturbed torus
is no longer a fibred structure (Proposition 1). Moreover, either the bundle E is flat and βv
vanishes identically, or c2(E) 6= 0 and the following holds:

Lemma 3. If c2(E) 6= 0 and φ is of type (IV), then there exists v ∈ T 4 such that rφ(βv) is
a non-zero constant.

Proof. Denoting T 3 the typical fibre of f (and setting Vol(T 3) = 1), we may assume

ξφ = −2ε ∧ dVolT 3

for some 0 6= ε ∈ Λ1(T 4). One can always choose v ∈ T 4 such that ε(v) 6= 0, and consider
(βv)A = vyFA. Then

rφ(βv)A = −2

∫
T

tr(FA ∧ vyFA) ∧ ε ∧ dVolT 3 = −2

∫
T 4

tr(FA ∧ vyFA) ∧ ε = ε(v) · c2(E),

which is nonzero by assumption. �

So far we know from Corollary 1 that the set M4
+ of self-dual connections (modulo gauge)

over T 4 lifts to instantons (cf. (9)) of the original G2-structure ϕ (i.e. to zeroes of ρ). However,
for bundles with non-trivial c2, this generic case degenerates precisely under deformations of
type (IV):

Proposition 2. Let E → (T, ϕ) be the pullback of a stable SU(n)-bundle E over T 4 with
c2(E) 6= 0; then E admits no (ϕ + φ)-instantons, for any perturbation φ away from a fibred
structure (i.e. of type (IV) in Proposition 1).
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Proof. Fix a lifted ϕ-instanton A ∈ M̃4
+; for any A + ha ∈ A, Lemma 2 gives ρA+ha(βv) ≡

ρA(βv) = 0. Taking v ∈ T 4 as in Lemma 3 we have

ρφ(βv)A+ha = rφ(βv)A+ha + ρ(βv)A+ha = ε(v) · c2(E)︸ ︷︷ ︸
6=0

+ ρ(βv)A︸ ︷︷ ︸
0

,

hence A+ ha is not a (ϕ+ φ)-instanton. �

Combining Corollary 1 and Proposition 2 we obtain Theorem 2.
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