
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 025, 24 pages

A Characterization of Invariant Connections

Maximilian HANUSCH

Department of Mathematics, University of Paderborn,
Warburger Straße 100, 33098 Paderborn, Germany

E-mail: mhanusch@math.upb.de

Received December 09, 2013, in final form March 10, 2014; Published online March 15, 2014

http://dx.doi.org/10.3842/SIGMA.2014.025

Abstract. Given a principal fibre bundle with structure group S and a fibre transitive
Lie group G of automorphisms thereon, Wang’s theorem identifies the invariant connections
with certain linear maps ψ : g → s. In the present paper we prove an extension of this
theorem that applies to the general situation where G acts non-transitively on the base
manifold. We consider several special cases of the general theorem including the result of
Harnad, Shnider and Vinet which applies to the situation where G admits only one orbit
type. Along the way we give applications to loop quantum gravity.
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1 Introduction

The set of connections on a principal fibre bundle (P, π,M, S) is closed under pullback by auto-
morphisms and it is natural to search for connections that do not change under this operation.
Especially, connections invariant under a Lie group (G,Φ) of automorphisms are of particu-
lar interest as they reflect the symmetry of the whole group and, for this reason, find their
applications in the symmetry reduction of (quantum) gauge field theories [1, 4, 5]. The first
classification theorem for such connections was given by Wang [8], cf. Case 5.7. This applies
to the case where the induced action1 ϕ acts transitively on the base manifold and states that
each point in the bundle gives rise to a bijection between the set of Φ-invariant connections and
certain linear maps ψ : g→ s. In [6] the authors generalize this to the situation where ϕ admits
only one orbit type. More precisely, they discuss a variation2 of the case where the bundle
admits a submanifold P0 with π(P0) intersecting each ϕ-orbit in a unique point, see Case 4.5
and Example 4.6. Here the Φ-invariant connections are in bijection with such smooth maps
ψ : g × P0 → s for which the restrictions ψ|g×Tp0P0 are linear for all p0 ∈ P0 and that fulfil
additional consistency conditions.

Now, in the general case we consider Φ-coverings of P . These are families {Pα}α∈I of immer-
sed submanifolds3 Pα of P such that each ϕ-orbit has non-empty intersection with

⋃
α∈I π(Pα)

and for which TpP = TpPα + deΦp(g) + TvpP holds whenever p ∈ Pα for some α ∈ I. Here
TvpP ⊆ TpP denotes the vertical tangent space at p ∈ P and e the identity of G. Observe that
the intersection properties of the sets π(Pα) with the ϕ- orbits in the base manifold need not to
be convenient in any sense. Here one might think of situations in which ϕ admits dense orbits,
or of the almost-fibre transitive case, cf. Case 5.4.

1Each Lie group of automorphisms of a bundle induces a smooth action on the base manifold.
2Amongst others, they assume the ϕ-stabilizer of π(p0) to be the same for all p0 ∈ P0.
3At the moment assume that Pα ⊆ P is a subset which, at the same time, is a manifold such that the inclusion

map ια : Pα → P is an immersion. Here we tacitly identify TpαPα with im[dpα ια]. Note that we do not require Pα
to be a topological submanifold of P . For details see Convention 3.1.
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If Θ: (G × S) × P → P is defined by ((g, s), p) 7→ Φ(g, p) · s−1, then the main result of the
present paper can be stated as follows:

Theorem. Let (P, π,M, S) be a principal fibre bundle and (G,Φ) a Lie group of automorphisms
thereon. Then each Φ-covering {Pα}α∈I admits a bijection between the Φ-invariant connections
on P and the families {ψα}α∈I of smooth maps ψα : g×TPα → s for which ψα|g×TpαPα is linear
for all pα ∈ Pα and that fulfil the following two (generalized Wang) conditions:

• g̃(pβ) + ~wpβ − s̃(pβ) = dLq ~wpα =⇒ ψβ(~g, ~wpβ )− ~s = ρ(q) ◦ ψα
(
~0g, ~wpα

)
,

• ψβ
(
Adq(~g),~0pβ

)
= ρ(q) ◦ ψα

(
~g,~0pα

)
.

Here q ∈ G× S, pα ∈ Pα, pβ ∈ Pβ with pβ = q · pα and ~wpα ∈ TpαPα, ~wpβ ∈ TpβPβ. Moreover,
g̃, s̃ denote the fundamental vector fields assigned to the elements ~g ∈ g and ~s ∈ s, respectively.

Using this theorem the calculation of invariant connections reduces to identifying a Φ-covering
that makes the above conditions as easy as possible. Here one has to find the balance between
quantity and complexity of these conditions. Of course, the more submanifolds there are, the
more conditions we have, so that usually it is convenient to use as few of them as possible.
For instance, in the situation where ϕ is transitive it suggests itself to choose a Φ-covering that
consists of one single point which, in turn, has to be chosen appropriately. Also if there is some
m ∈M contained in the closure of each ϕ-orbit, one single submanifold is sufficient, see Case 5.4
and Example 5.5. The same example shows that sometimes pointwise4 evaluation of the above
conditions proves non-existence of Φ-invariant connections.

In any case, one can use the inverse function theorem to construct a Φ-covering {Pα}α∈I of P
such that the submanifolds Pα have minimal dimension in a certain sense, see see Lemma 3.4 and
Corollary 5.1. This reproduces the description of connections by means of local 1-forms on M
provided that G acts trivially or, more generally, via gauge transformations on P , see Case 5.2.

Finally, since orbit structures can depend very sensitively on the action or the group, one
cannot expect to have a general concept for finding the Φ-covering optimal for calculations.
Indeed, sometimes these calculations become easier if one uses coverings that seem less optimal
at a first sight5.

The present paper is organized as follows: In Section 2 we fix the notations. In Section 3
we introduce the notion of a Φ-covering, the central object of this paper. In Section 4 we
prove the main theorem and deduce a slightly more general version of the result from [6]. In
Section 5 we show how to construct Φ-coverings to be used in special situations. In particular,
we consider the (almost-)fibre transitive case, trivial principal fibre bundles and Lie groups of
gauge transformations. Along the way we give applications to loop quantum gravity.

2 Preliminaries

We start with fixing the notations.

2.1 Notations

Manifolds are always assumed to be smooth. If M , N are manifolds and f : M → N is a smooth
map, then df : TM → TN denotes the differential map between their tangent manifolds. The
map f is said to be an immersion iff for each x ∈ M the restriction dxf := df |TxM : TxM →
Tf(x)N is injective.

4Here pointwise means to consider such elements q ∈ G × S that are contained in the Θ-stabilizer of some
fixed pα ∈ Pα for α ∈ I.

5See, e.g., calculations in Appendix B.2.
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Let V be a finite dimensional vector space. A V -valued 1-form ω on the manifold N is
a smooth map ω : TN → V whose restriction ωy := ω|TyN is linear for all y ∈ N . The pullback
of ω by f is the V -valued 1-form f∗ω : TM → V , ~vx → ωf(x)(dxf(~vx)).

Let G be a Lie group and g its Lie algebra. For g ∈ G we define the corresponding conjugation
map by αg : G → G, h 7→ ghg−1. Its differential deαg : g → g at the unit element e ∈ G is
denoted by Adg in the following.

Let Ψ be a (left) action of the Lie group G on the manifold M . If g ∈ G, then Ψg : M →M
denotes the map Ψg : x 7→ Ψ(g, x). We often write Lg instead of Ψg as well as g · x or gx
instead of Ψg(x) if it is clear, which action is meant. If x ∈ M , let Ψx : G → M , g 7→ Ψ(g, x).
Then for ~g ∈ g and x ∈ M the map g̃(x) := d

dt

∣∣
t=0

Ψx(exp(t~g )) is called the fundamental vector

field w.r.t. ~g. The Lie subgroup Gx :=
{
g ∈ G

∣∣ g · x = x
}

is called the stabilizer of x ∈ M
(w.r.t. Ψ) and its Lie algebra gx equals ker[dxΨ], see e.g. [3]. The orbit of x under G is the
set Gx := im[Ψx], and Ψ is said to be transitive iff Gx = M for one and then each x ∈ M .
Analogous conventions also hold for right actions.

2.2 Invariant connections

Let π : P → M be a smooth (surjective) map between manifolds P and M , and denote by
Fx := π−1(x) ⊆ P the fibre over x ∈ M in P . Assume that (S,R) is a Lie group that acts
from the right on P . If there is an open covering {Uα}α∈I of M and a family {φα}α∈I of
diffeomorphisms φα : π−1(Uα)→ Uα × S with6

φα(p · s) =
(
π(p), [pr2 ◦ φα](p) · s

)
∀ p ∈ π−1(Uα), ∀ s ∈ S, (2.1)

then (P, π,M, S) is called principal fibre bundle with total space P , projection map π, base
manifold M and structure group S. It follows from (2.1) that

• Rs(Fx) ⊆ Fx for all x ∈M and all s ∈ S,

• if x ∈M and p, p′ ∈ Fx, then p′ = p · s for a unique element s ∈ S.

The subspace TvpP := ker[dpπ] ⊆ TpP is called vertical tangent space at p ∈ P and

s̃(p) := d
dt

∣∣
t=0

p · exp(t~s) ∈ TvpP ∀ p ∈ P,

denotes the fundamental vector field of ~s w.r.t. the right action of S on P . The map s 3 ~s →
s̃(p) ∈ TvpP is a vector space isomorphism for all p ∈ P .

Complementary to that, a connection ω is an s-valued 1-form on P with

• R∗sω = Ads−1 ◦ ω for all s ∈ S,

• ωp(s̃(p)) = ~s for all ~s ∈ s.

The subspace ThpP := ker[ωp] ⊆ TpP is called the horizontal tangent space at p (w.r.t. ω). We
have dRs(ThpP ) = Thp·sP for all s ∈ S and one can show that TpP = TvpP ⊕ ThpP for all
p ∈ P .

A diffeomorphism κ : P → P is said to be an automorphism iff κ(p · s) = κ(p) · s for all p ∈ P
and all s ∈ S. It is straightforward to see that an s-valued 1-form ω on P is a connection iff
this is true for the pullback κ∗ω. A Lie group of automorphisms (G,Φ) of P is a Lie group G
together with a left action Φ of G on P such that the map Φg is an automorphism for each
g ∈ G. This is equivalent to say that Φ(g, p · s) = Φ(g, p) · s for all p ∈ P , g ∈ G and all s ∈ S.
In this situation we often write gps instead of (g · p) · s = g · (p · s). Each such a left action Φ
gives rise to two further actions:

6Here pr2 denotes the projection onto the second factor.
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• The induced action ϕ is defined by

ϕ : G×M →M,

(g,m) 7→ (π ◦ Φ)(g, pm),
(2.2)

where pm ∈ π−1(m) is arbitrary. Φ is called fibre transitive iff ϕ is transitive.

• We equip Q = G× S with the canonical Lie group structure and define [8]

Θ: Q× P → P,

((g, s), p) 7→ Φ
(
g, p · s−1

)
.

(2.3)

A connection ω is called Φ-invariant iff Φ∗gω = ω for all g ∈ G. This is equivalent to require that
for each p ∈ P and g ∈ G the differential dpLg induces an isomorphism between the horizontal
tangent spaces ThpP and ThgpP .7

We conclude this subsection with the following straightforward facts, see also [8]:

• Consider the representation ρ : Q→ Aut(s), (g, s) 7→ Ads. Then it is immediate that each
Φ-invariant connection ω is of type ρ, i.e., ω is an s-valued 1-form on P with L∗qω = ρ(q)◦ω
for all q ∈ Q.

• An s-valued 1-form ω on P with ω(s̃(p)) = ~s for all ~s ∈ s is a Φ-invariant connection iff it
is of type ρ.

• Let Qp denote the stabilizer of p ∈ P w.r.t. Θ and Gπ(p) the stabilizer of π(p) w.r.t. ϕ.
Then Gπ(p) = {g ∈ G | Lg : Fp → Fp} and we obtain a smooth homomorphism (Lie group
homomorphism) φp : Gπ(p) → S by requiring that Φ(j, p) = p ·φp(j) for all j ∈ Gπ(p). If qp
and gπ(p) denote the Lie algebras of Qp and Gπ(p), respectively, then

Qp = {(j, φp(j)) | j ∈ Gπ(p)} and qp =
{(
~j, deφp

(
~j
)) ∣∣~j ∈ gπ(p)

}
. (2.4)

3 Φ-coverings

We start this section with some facts and conventions concerning submanifolds. Then we give
the definition of a Φ-covering and discuss some its properties.

Convention 3.1. Let M be a manifold.

1. A pair (N, τN ) consisting of a manifold N and an injective immersion τ : N →M is called
submanifold of M .

2. If (N, τN ) is a submanifold of M , we tacitly identify N and TN with their images τN (N) ⊆
M and dτN (TN) ⊆ TM , respectively. In particular, this means that:

• If M ′ is a manifold and κ : M → M ′ is a smooth map, then for x ∈ N and ~v ∈ TN
we write κ(x) and dκ(~v) instead of κ(τN (x)) and dκ(dτ(~v)), respectively.

• If Ψ: G×M →M is a left action of the Lie group G and (H, τH) a submanifold of G,
then the restriction of Ψ to H ×N is defined by

Ψ|H×N (h, x) := Ψ(τH(h), τN (x)) ∀ (h, x) ∈ H ×N.

• If ω : TM → V is a V -valued 1-form on M , then

(Ψ∗ω)|TG×TN (~m,~v) := (Ψ∗ω)(~m,dτ(~v)) ∀ (~m,~v) ∈ TG× TN.

• We will not explicitly refer to the maps τN and τH in the following.

7In literature sometimes the latter condition is used to define Φ-invariance of connections.



A Characterization of Invariant Connections 5

3. Open subsets U ⊆ M are equipped with the canonical manifold structure making the
inclusion map an embedding.

4. If L is a submanifold of N and N is a submanifold of M , we consider L as a submanifold
of M in the canonical way.

Definition 3.2. A submanifold N ⊆ M is called Ψ-patch iff for each x ∈ N there is an open
neighbourhood N ′ ⊆ N of x and a submanifold H of G through e such that the restriction
Ψ|H×N ′ is a diffeomorphism to an open subset U ⊆M .

Remark 3.3.

1. It follows from the inverse function theorem and8

d(e,x)Ψ(g× TxN) = deΨx(g) + dxΨe(TxN) = deΨx(g) + TxN ∀x ∈ N

that N is a Ψ-patch iff for each x ∈ N we have TxM = deΨx(g) + TxN .9

2. Open subsets U ⊆ M are always Ψ-patches. They are of maximal dimension which, for
instance, is necessary if there is a point in U whose stabilizer equals G, see Lemma 3.4.1.

3. We allow zero-dimensional patches, i.e., N = {x} for x ∈M . Necessarily, then deΨx(g) =
TxM and Ψ|H×N = Ψx|H for each submanifold H of G.

The second part of the next elementary lemma equals Lemma 2.1.1 in [3].

Lemma 3.4. Let (G,Ψ) be a Lie group that acts on the manifold M and let x ∈M .

1. If N is a Ψ-patch with x ∈ N , then dim[N ] ≥ dim[M ]− dim[G] + dim[Gx].

2. Let V and W be algebraic complements of deΨx(g) in TxM and of gx in g, respectively.
Then there are submanifolds N of M through x and H of G through e such that TxN = V ,
TeH = W . In particular, N is a Ψ-patch and dim[N ] = dim[M ]− dim[G] + dim[Gx].

Proof. 1. By Remark 3.3.1 and since ker[deΨx] = gx, we have

dim[M ] ≤ dim[deΨx(g)] + dim[TxN ] = dim[G]− dim[Gx] + dim[N ]. (3.1)

2. Of course, we find submanifolds N ′ of M through x and H ′ of G through e such that
TxN

′ = V and TeH
′ = W . So, if ~g ∈ g and ~vx ∈ TxN ′, then 0 = d(e,x)Ψ(~g,~vx) = deΨx(~g) + ~vx

implies deΨx(~g) = 0 and ~vx = 0. Hence, ~g ∈ ker[deΨx] = gx so that10 d(e,x)Ψ|TeH′×TeN ′ is
injective. It is immediate from the definitions that this map is surjective so that by the inverse
function theorem we find open neighbourhoods N ⊆ N ′ of x and H ⊆ G of e such that Ψ|H×N
is a diffeomorphism to an open subset U ⊆M . Then N is a Ψ-patch and since in (3.1) equality
holds, also the last claim is clear. �

Definition 3.5. Let (G,Φ) be a Lie group of automorphisms of the principal fibre bundle
P and recall the actions ϕ and Θ defined by (2.2) and (2.3), respectively. A family of Θ-
patches {Pα}α∈I is said to be a Φ-covering of P iff each ϕ-orbit intersects at least one of the
sets π(Pα).

8The sum is not necessarily direct.
9In fact, let V ⊆ deΨx(g) be an algebraic complement of TxN in TxM and V ′ ⊆ g a linear subspace with

dim[V ′] = dim[V ] and deΨx(V ′) = V . Then we find a submanifold H of G through e with TeH = V ′ so that
d(e,x)Ψ: TeH × TxN → TxM is bijective.

10Recall that d(e,x)Ψ|TeH′×TeN′ :
(
~h,~vx

)
7→ d(e,x)Ψ

(
deτH(~h),dxτN (~vx)

)
.
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Remark 3.6.

1. If O ⊆ P is a Θ-patch, then Lemma 3.4.1 and (2.4) yield

dim[O] ≥ dim[P ]− dim[Q] + dim[Qp]
(2.4)
= dim[M ]− dim[G] + dim[Gπ(p)].

2. It follows from Remark 3.3.1 and deΘp(q) = deΦp(g) + TvpP that O is a Θ-patch iff

TpP = TpO + deΦp(g) + TvpP ∀ p ∈ O. (3.2)

As a consequence

• each Φ-patch is a Θ-patch,

• P is always a Φ-covering by itself and if P = M × S is trivial, then M × {e} is
a Φ-covering.

3. If N is a ϕ-patch and s0 : N → P a smooth section, i.e., π ◦ s0 = idN , then O := s0(N) is
a Θ-patch as Lemma 3.7.2 shows.

Lemma 3.7. Let (G,Φ) be a Lie group of automorphisms of the principal bundle (P, π,M, S).

1. If O ⊆ P is a Θ-patch, then for each p ∈ O and q ∈ Q the differential d(q,p)Θ: TqQ×TpO →
Tq·pP is surjective.

2. If N is a ϕ-patch and s0 : N → P a smooth section, then O := s0(N) is a Θ-patch.

Proof. 1. Since O is a Θ-patch, the claim is clear for q = e. If q is arbitrary, then for each
~mq ∈ TqQ we find some ~q ∈ q such that ~mq = dLq~q. Consequently, for ~wp ∈ TpP we have

d(q,p)Θ (~mq, ~wp) = d(q,p)Θ(dLq~q, ~wp) = dpLq
(
d(e,p)Θ(~q, ~wp)

)
.

But, left translation w.r.t. Θ is a diffeomorphism so that dpLq is surjective.

2. First observe that O is a submanifold of P because s0 is an injective immersion. By
Remark 3.6.2 it suffices to show that

dim
[
Ts0(x)O + deΦs0(x)(g) + Tvs0(x)P

]
≥ dim[Ts0(x)P ] ∀x ∈ N.

For this, let x ∈ N and V ′ ⊆ g be a linear subspace such that TxM = TxN ⊕ deϕx(V ′). Then
Ts0(x)O ⊕ deΦs0(x)(V

′) ⊕ Tvs0(x)P because if dxs0(~vx) + deΦs0(x)(~g
′) + ~vv = 0 for ~vx ∈ TxN ,

~g ′ ∈ V ′ and ~vv ∈ Tvs0(x)P , then

0 = ds0(x)π
(
dxs0(~vx) + deΦs0(x)(~g

′) + ~vv
)

= ~vx + deϕx(~g ′)

so that ~vx= 0and ~g′=0 by assumption, hence ~vv=0. In particular, this shows dim[deΦs0(x)(V
′)]

≥ dim[deϕx(V ′)] and we obtain

dim
[
Ts0(x)O + deΦs0(x)(g) + Tvs0(x)P

]
≥ dim

[
Ts0(x)O ⊕ deΦs0(x)(V

′)⊕ Tvs0(x)P
]

= dim[TxN ] + dim[deΦs0(x)(V
′)] + dim[S]

≥ dim[TxN ] + dim[deϕx(V ′)] + dim[S]

= dim[P ]. �
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4 Characterization of invariant connections

In this section we use Φ-coverings {Pα}α∈I of the bundle P to characterize the set of Φ-invariant
connections by families {ψα}α∈I of smooth maps ψα : g×TPα → s whose restrictions ψα|g×TpαPα
are linear and that fulfil two additional compatibility conditions. Here we follow the lines of
Wang’s original approach, which means that we generalize the proofs from [8] to the non-
transitive case. We will proceed in two steps where the first one is done in the next subsection.
Here we show that a Φ-invariant connection gives rise to a consistent family {ψα}α∈I of smooth
maps as described above. We also discuss the situation in [6] in order to make the two conditions
more intuitive. Then, in Subsection 4.2, we verify that such families {ψα}α∈I glue together to
a Φ-invariant connection on P .

4.1 Reduction of invariant connections

In the following let {Pα}α∈I be a fixed Φ-covering of P and ω a Φ-invariant connection on P .
We define ωα := (Θ∗ω)|TQ×TPα and ψα := ωα|g×TPα . For q′ ∈ Q we let αq′ : Q × P → Q × P
denote the map αq′(q, p) :=

(
αq′(q), p

)
for αq′ : Q 7→ Q the conjugation map w.r.t. q′ as defined

in Section 2.1.

Lemma 4.1. Let q ∈ Q, pα ∈ Pα, pβ ∈ Pβ with11 pβ = q · pα and ~wpα ∈ TpαPα. Then

1) ωβ(~η ) = ρ(q) ◦ ωα(~0q, ~wpα) for all ~η ∈ TQ× TPβ with dΘ(~η ) = dLq ~wpα,

2)
(
α∗qωβ

) (
~m,~0pβ

)
= ρ(q) ◦ ωα

(
~m,~0pα

)
for all ~m ∈ TQ.

Proof. 1. Let ~η ∈ Tq′Q × TpPβ for q′ ∈ Q. Then, since12 L∗qω = ρ(q) ◦ ω for each q ∈ Q and
q′ · p = q · pα = pβ, we have

ωβ(~η ) = ωq′·p(d(q′,p)Θ(~η )) = ωpβ (dLq ~wpα) = (L∗qω)pα(~wpα)

= ρ(q) ◦ ωpα(~wpα) = ρ(q) ◦ ωpα
(
d(e,pα)Θ(~wpα)

)
= ρ(q) ◦ ωα

(
~0q, ~wpα

)
.

2. For ~mq′ ∈ Tq′Q let γ : (−ε, ε)→ Q be smooth with γ̇(0) = ~mq′ . Then(
α∗qωβ

)
(q′,pβ)

(
~mq′ ,~0pβ

)
= ωβ(αq(q′),pβ)

(
Adq(~mq′),~0pβ

)
= ωqq′q−1q·pα

(
d
dt

∣∣
t=0

qγ(t)q−1q · pα
)

=
(
L∗qω

)
q′·pα

(
d
dt

∣∣
t=0

γ(t) · pα
)

= ρ(q) ◦ ωq′·pα
(
d(q′,pα)Θ

(
~mq′
))

= ρ(q) ◦ ωα(q′,pα)
(
~mq′ ,~0pα

)
. �

Corollary 4.2. Let q ∈ Q, pα ∈ Pα, pβ ∈ Pβ with pβ = q · pα and ~wpα ∈ TpαPα. Then for
~wpβ ∈ TpβPβ, ~g ∈ g and ~s ∈ s we have

i) g̃(pβ) + ~wpβ − s̃(pβ) = dLq ~wpα =⇒ ψβ(~g, ~wpβ )− ~s = ρ(q) ◦ ψα
(
~0g, ~wpα

)
,

ii) ψβ
(
Adq(~g),~0pβ

)
= ρ(q) ◦ ψα

(
~g,~0pα

)
.

Proof. i) In general, for ~wp ∈ TpP , ~g ∈ g and ~s ∈ s we have

d(e,p)Θ((~g,~s), ~wp) = d(e,p)Φ(~g, ~wp)− s̃(p) = g̃(p) + ~wp − s̃(p) (4.1)

11More precisely, τPβ (pβ) = q · τPα(pα) by Convention 3.1.
12See end of Subsection 2.2.
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and, since ω is a connection, for ((~g,~s), ~wpα) ∈ q× TPα we obtain

ωα((~g,~s), ~wpα) = ω
(
d(e,pα)Φ(~g, ~wpα)− s̃(pα)

)
= ω

(
d(e,pα)Φ(~g, ~wpα)

)
− ~s

= ωα (~g, ~wpα)− ~s = ψα (~g, ~wpα)− ~s.
(4.2)

Now, assume that deΦpβ (~g )+ ~wpβ−s̃(p) = dLq ~wpα . Then d(e,pβ)Θ((~g,~s), ~wpβ ) = dLq ~wpα by (4.1)

so that ωβ((~g,~s), ~wpβ ) = ρ(q) ◦ ωα
(
~0g, ~wpα

)
by Lemma 4.1.1. Consequently,

ψβ
(
~g, ~wpβ

)
− ~s (4.2)

= ωβ((~g,~s), ~wpβ ) = ρ(q) ◦ ωα
(
~0q, ~wpα

) (4.2)
= ρ(q) ◦ ψα

(
~0g, ~wpα

)
.

ii) Lemma 4.1.2 yields

ψβ
(
Adq(~g ),~0pβ

)
= (α∗qωβ)(e,pβ)

(
~g,~0pβ

)
= ρ(q) ◦ (ωα)(e,pα)

(
~g,~0pα

)
= ρ(q) ◦ ψα

(
~g,~0pα

)
. �

Definition 4.3. A family {ψα}α∈I of smooth maps ψα : g × TPα → s that are linear in the
sense that ψα|g×TpαPα is linear for all pα ∈ Pα is called reduced connection w.r.t. {Pα}α∈I iff it
fulfils the conditions i) and ii) from Corollary 4.2.

Remark 4.4.

1) In particular, Corollary 4.2.i) encodes the following condition

a) For all β ∈ I, (~g,~s) ∈ q and ~wpβ ∈ TpβPβ we have

g̃(pβ) + ~wpβ − s̃(pβ) = 0 =⇒ ψβ(~g, ~wpβ )− ~s = 0.

2) Assume that a) is true and let q ∈ Q, pα ∈ Pα, pβ ∈ Pβ with pβ = q ·pα. Moreover, assume
that we find elements ~wpα ∈ TpαPα and ((~g,~s), ~wpβ ) ∈ q× TpβPβ such that

d(e,pβ)Θ((~g,~s), ~wpβ ) = dLq ~wpα and ψβ(~g, ~wpβ )− ~s = ρ(q) ◦ ψα(~0g, ~wpα)

holds. Then ψβ
(
~g ′, ~w′pβ

)
−~s ′ = ρ(q)◦ψα

(
~0g, ~wpα

)
holds for each element13

(
(~g ′, ~s ′), ~w′pβ

)
∈

q× TpβPβ with14 d(e,pβ)Θ
(
(~g ′, ~s ′), ~w′pβ

)
= dLq ~wpα . In fact, we have

d(e,pβ)Θ
(
(~g − ~g ′, ~s− ~s ′), ~wpβ − ~w′pβ

)
= 0

so that a) gives

0
a)
= ψβ(~g − ~g ′, ~wpβ − ~w′pβ )− (~s− ~s ′)) =

[
ψβ(~g, ~wpβ )− ~s

]
−
[
ψβ(~g ′, ~w′pβ )− ~s ′

]
= ρ(q) ◦ ψα

(
~0g, ~wpα

)
−
[
ψβ(~g ′, ~w′pβ )− ~s ′

]
.

3) Assume that dLq ~wpα ∈ TpβPβ holds for all q ∈ Q, pα ∈ Pα, pβ ∈ Pβ with pβ = q · pα and
all ~wpα ∈ TpαPα. Then d(e,pβ)Θ (dLq ~wpα) = dLq ~wpα so that it follows from 2) that in this
case we can substitute i) by a) and condition

b) Let q ∈ Q, pα ∈ Pα, pβ ∈ Pβ with pβ = q · pα. Then

ψβ
(
~0g,dLq ~wpα

)
= ρ(q) ◦ ψα

(
~0g, ~wpα

)
∀ ~wpα ∈ TpαPα.

13Observe that due to surjectivity of d(e,pβ)Φ such elements always exist.
14Recall equation (4.1).
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Now, b) looks similar to ii) and makes it plausible that the conditions i) and ii) from
Corollary 4.2 encode the ρ-invariance of the corresponding connection ω. However, usually
there is no reason for dLq ~wpα to be an element of TpβPβ. Even for pα = pβ and q ∈ Qpα
this is not true in general. So, typically there is no way to split up i) into parts whose
meaning is more intuitive.

Remark 4.4 immediately proves

Case 4.5 (gauge fixing). Let P0 be a Θ-patch of the bundle P such that π(P0) intersects each
ϕ-orbit in a unique point and dLq(TpP0) ⊆ TpP0 for all p ∈ P0 and all q ∈ Qp. Then a cor-
responding reduced connection consists of one single smooth map ψ : g × TP0 → s and we have
p = q · p′ for q ∈ Q, p, p′ ∈ P0 iff p = p′ and q ∈ Qp. Then, by Remark 4.4 the two conditions
from Corollary 4.2 are equivalent to:

Let p ∈ P0, q = (j, φp(j)) ∈ Qp, ~wp ∈ TpP0 and ~g ∈ g, ~s ∈ s. Then

i′) g̃(p) + ~wp − s̃(p) = 0 =⇒ ψ(~g, ~wp)− ~s = 0,

ii′) ψ
(
~0g,dLq ~wp

)
= ρ(q) ◦ ψ

(
~0g, ~wp

)
,

iii′) ψ
(
Adj(~g ),~0p

)
= Adφp(j) ◦ ψ

(
~g,~0p

)
.

The next example is a slight generalization of Theorem 2 in [6]. Here the authors assume
that ϕ admits only one orbit type so that dim[Gx] = l for all x ∈ M . Then they restrict
to the situation where we find a triple (U0, τ0, s0) consisting of an open subset U0 ⊆ Rk for
k = dim[M ] − [dim[G] − l], an embedding τ0 : U0 → M and a smooth map s0 : U0 → P with
π ◦ s0 = τ0 and the addition property that Qp is the same for all p ∈ im[s0]. More precisely,
they assume that Gx and the structure group of the bundle are compact. Then they show the
non-trivial fact that s0 can be modified in such a way that in addition Qp is the same for all
p ∈ im[s0].

Observe that the authors omitted to require that im[dxτ0]+im
[
deϕτ0(x)

]
= Tτ0(x)M holds for

all x ∈ U0, i.e., that τ0(U0) is a ϕ-patch (so that s0(U0) is a Θ-patch). Indeed, Example 4.10.2
shows that this additional condition is crucial. The next example is a slight modification of the
result [6] in the sense that we do not assume Gx and the structure group to be compact but
make the ad hoc requirement that Qp is the same for all p ∈ P0.

Example 4.6 (Harnad, Shnider, Vinet). Let P0 be a Θ-patch of the bundle P such that π(P0)
intersects each ϕ-orbit in a unique point, and assume that the Θ-stabilizer L := Qp is the same
for all p ∈ P0. Then it is clear from (2.4) that H := Gπ(p) and φ := φp : H → S are independent
of the choice of p ∈ P0. Finally, we require that

dim[P0] = dim[M ]− [dim[G]− dim[H]] = dim[P ]− [dim[Q]− dim[H]]. (4.3)

Now, let p ∈ P0 and q = (j, φ(j)) ∈ Qp. Then for ~wp ∈ TpP0 we have

dLq ~wp = d
dt

∣∣
t=0

Φ(j, γ(t)) · φ−1p (j) = d
dt

∣∣
t=0

[γ(t) · φγ(t)(j)] · φ−1p (j)

= d
dt

∣∣
t=0

[γ(t) · φp(j)] · φ−1p (j) = ~wp,

where γ : (−ε, ε)→ P0 is some smooth curve with γ̇(0) = ~wp. Consequently, dLq(TpP0) ⊆ TpP0

so that we are in the situation of Case 4.5. Here ii′) now reads ψ
(
~0g, ~wp

)
= Adφ(j) ◦ ψ

(
~0g, ~wp

)
for all j ∈ H and iii′) does not change. For i′) observe that the Lie algebra l of L is contained
in the kernel of d(e,p0)Θ. But d(e,p0)Θ is surjective since P0 is a Θ-patch15 so that

dim
[

ker
[
d(e,p0)Θ

]]
= dim[Q] + dim[P0]− dim[P ]

(4.3)
= dim[H].

This shows ker[d(e,p)Θ] = l for all p ∈ P0. Altogether, it follows that a reduced connection
w.r.t. P0 is a smooth, linear16 map ψ : g× TP0 → s which fulfils the following three conditions:

15Cf. Lemma 3.7.1.
16In the sense that ψ|g×TpP0 is linear for all p ∈ P0.
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i′′) ψ
(
~j,~0p

) (4.2)
= deφ

(
~j
)

∀~j ∈ h, ∀ p ∈ P0,

ii′′) ψ
(
~0g, ~w

)
= Adφ(j) ◦ ψ

(
~0g, ~w

)
∀ j ∈ H, ∀ ~w ∈ TP0,

iii′′) ψ
(
Adj(~g),~0p

)
= Adφ(j) ◦ ψ

(
~g,~0p

)
∀~g ∈ g, ∀ j ∈ H, ∀ p ∈ P0.

Then µ := ψ|TP0 and Ap0(~g ) := ψ
(
~g,~0p0

)
are the maps that are used for the characterization in

Theorem 2 in [6].

4.2 Reconstruction of invariant connections

Let {Pα}α∈I be a Φ-covering of P . We now show that each corresponding reduced connection
{ψα}α∈I gives rise to a unique Φ-invariant connection on P . To this end, for each α ∈ I we
define the maps λα : q× TPα → s, ((~g,~s), ~w) 7→ ψα(~g, ~w)− ~s and

ωα : TQ× TPα → s,(
~mq, ~wpα

)
7→ ρ(q) ◦ λα

(
dLq−1 ~mq, ~wpα

)
,

where ~mq ∈ TqQ and ~wpα ∈ TpαPα.

Lemma 4.7. Let q ∈ Q, pα ∈ Pα, pβ ∈ Pβ with pβ = q · pα and ~wpα ∈ TpαPα. Then

1) λβ(~η ) = ρ(q) ◦ λα
(
~0q, ~wpα

)
for all ~η ∈ q× TpβP with dΘ(e,pβ)(~η ) = dLq ~wpα,

2) λβ
(
Adq(~q ),~0pβ

)
= ρ(q) ◦ λα

(
~q,~0pα

)
for all ~q ∈ q.

For all α ∈ I we have

3) ker
[
λα|q×TpαPα

]
⊆ ker

[
d(e,pα)Θ

]
for all pα ∈ Pα,

4) the map ωα is the unique s-valued 1-form on Q × Pα that extends λα and for which we
have L∗qωα = ρ(q) ◦ ωα for all q ∈ Q.

Proof. 1. Write ~η = ((~g,~s), ~wpβ ) for ~g ∈ g, ~s ∈ s and ~wpβ ∈ TpβPβ. Then

g̃(pβ) + ~wpβ − s̃(pβ)
(4.1)
= dΘ(e,pβ)(~η) = dLq ~wpα

so that from condition i) in Corollary 4.2 we obtain

λβ(~η ) = ψβ(~g, ~wpβ )− ~s = ρ(q) ◦ ψα
(
~0g, ~wpα

)
= ρ(q) ◦ λα

(
~0q, ~wpα

)
.

2. Let ~q = (~g,~s) for ~g ∈ g and ~s ∈ s. Then by Corollary 4.2.ii) we have

λβ
(
Adq(~q ),~0pβ

)
= ψβ

(
Adq(~g ),~0pβ

)
−Adq(~s) = ρ(q) ◦ [ψα

(
~g,~0pα

)
− ~s ] = ρ(q) ◦ λα

(
~q,~0pα

)
.

3. This follows from the first part for α = β, q = e and ~wpα = ~0pα .
4. By definition we have ωα|q×TPα = λα and for the pullback property we calculate(

L∗q′ωα
)
(q,pα)

(
~mq, ~wpα

)
= ωα(q′q,pα)

(
dLq′ ~mq, ~wpα

)
= ρ

(
q′q
)
◦ λα

(
dLq−1q′−1dLq′ ~mq, ~wpα

)
= ρ

(
q′
)
◦ ρ(q) ◦ λα

(
dLq−1 ~mq, ~wpα

)
= ρ

(
q′
)
◦ ωα(q,pα)(~mq, ~wpα),

where q, q′ ∈ Q and ~mq ∈ TqQ. For uniqueness let ω be another s-valued 1-form on Q × Pα
whose restriction to q× TPα is λα and that fulfils L∗qω = ρ(q) ◦ ω for all q ∈ Q. Then

ω(q,pα) (~mq, ~wpα) = ω(q,pα)

(
dLq ◦ dLq−1 ~mq, ~wpα

)
= (L∗qω)(e,pα)

(
dLq−1 ~mq, ~wpα

)
= ρ(q) ◦ ω(e,pα)(dLq−1 ~mq, ~wpα) = ρ(q) ◦ λα

(
dLq−1 ~mq, ~wpα

)
= ωα(dLq−1 ~mq, ~wpα).

Finally, smoothness of ωα is an easy consequence of smoothness of the maps ρ, λα and µ : TQ→
q, ~mq 7→ dLq−1 ~mq with ~mq ∈ TqQ. For this observe that µ = dτ ◦ κ for τ : Q × Q → Q,

(q, q′) 7→ q−1q′ and κ : TQ→ TQ× TQ, ~mq 7→
(
~0q, ~mq

)
for ~mq ∈ TqQ. �
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So far, we have shown that each reduced connection {ψα}α∈I gives rise to uniquely determined
maps {λα}α∈I and {ωα}α∈I . In the final step we will construct a unique Φ-invariant connection ω
out of the data {(Pα, λα)}α∈I . Here, uniqueness and smoothness of ω will follow from uniqueness
and smoothness of the maps ωα.

Proposition 4.8. There is one and only one s-valued 1-form ω on P such that

ωα = (Θ∗ω)|TQ×TPα

holds for all α ∈ I. Moreover, ω is a Φ-invariant connection on P .

Proof. For uniqueness we have to show that the values of such an ω are uniquely determined
by the maps ωα. To this end, let p ∈ P , α ∈ I and pα ∈ Pα such that p = q · pα for some q ∈ Q.
By Lemma 3.7.1 for ~wp ∈ TpP we find some ~η ∈ TqQ × TpαPα with ~wp = d(q,pα)Θ(~η), so that
uniqueness follows from

ωp(~wp) = ωq·pα
(
d(q,pα)Θ(~η )

)
= (Θ∗ω)(q,pα)(~η ) = ωα(~η ).

For existence let α ∈ I and pα ∈ Pα. Due to surjectivity of d(e,pα)Θ and Lemma 4.7.3 there is

a (unique) map λ̂pα : TpαP → s with

λ̂pα ◦ d(e,pα)Θ = λα
∣∣
q×TpαPα

. (4.4)

Let λ̂α :
⊔
pα∈Pα TpαP → s denote the (unique) map whose restriction to TpαP is λ̂pα for each

pα ∈ Pα. Then λα = λ̂α ◦ dΘ|q×TPα and we construct the connection ω as follows. For p ∈ P
we choose some α ∈ I and (q, pα) ∈ Q× Pα such that q · pα = p and define

ωp
(
~wp
)

:= ρ(q) ◦ λ̂α
(
dLq−1

(
~wp
))

∀ ~wp ∈ TpP. (4.5)

We have to show that this depends neither on α ∈ I nor on the choice of (q, pα) ∈ Q × Pα.
For this, let pα ∈ Pα, pβ ∈ Pβ and q ∈ Q with pβ = q · pα. Then for ~w ∈ TpαP we have
~w = dΘ(~q, ~wpα) for some (~q, ~wpα) ∈ q×TpαPα, and since dLq ~wpα ∈ TpβP , there is ~η ∈ q×TpβPβ
such that d(e,pβ)Θ(~η ) = dLq ~wpα . It follows from the conditions 1 and 2 in Lemma 4.7 that

λ̂β(dLq ~w) = λ̂β((dLq ◦ dΘ)(~q, ~wpα)) = λ̂β
(
(dLq ◦ dΘ)

(
~q,~0pα

))
+ λ̂β

(
dLq ~wpα

)
(4.7)
= λ̂β ◦ dΘ

(
Adq(~q ),~0pβ

)
+ λ̂β ◦ dΘ(~η )

(4.4)
= λβ

(
Adq(~q ),~0pβ

)
+ λβ(~η ) = ρ(q) ◦ λα

(
~q,~0pα

)
+ ρ(q) ◦ λα

(
~0q, ~wpα

)
= ρ(q) ◦ λα(~q, ~wpα) = ρ(q) ◦ λ̂α ◦ dΘ(~q, ~wpα) = ρ(q) ◦ λ̂α(~w),

(4.6)

where for the third equality we have used that

(dLq ◦ dΘ)
(
~q,~0pα

)
= d

dt

∣∣
t=0

q · (exp(t~q ) · pα)

= d
dt

∣∣
t=0

αq(exp(t~q )) · pβ = dΘ
(
Adq(~q ),~0pβ

)
.

(4.7)

Consequently, if q̃ · pβ = p with (q̃, pβ) ∈ Q × Pβ for some β ∈ I, then pβ = (q−1q̃)−1 · pα and
well-definedness follows from

ρ(q̃) ◦ λ̂β
(
dLq̃−1(~wp)

)
= ρ(q) ◦ ρ

(
q−1q̃

)
◦ λ̂β

(
dL(q−1q̃)−1

(
dLq−1 ~wp

))
= ρ(q) ◦ λ̂α

(
dLq−1 ~wp

)
,
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where the last step is due to (4.6) with ~w = dLq−1 ~wp ∈ TpαP . Next, we show that ω fulfils the
pullback property. For this, let (~m, ~wpα) ∈ TqQ× TpαPα. Then

(Θ∗ω) (~mq, ~wpα) = ωq·pα (dΘ(~mq, ~wpα))
(4.5)
= ρ(q) ◦ λ̂α

(
dLq−1dΘ(~mq, ~wpα)

)
= ρ(q) ◦ λ̂α ◦ dΘ

(
dLq−1 ~mq, ~wpα

) (4.4)
= ρ(q) ◦ λα

(
dLq−1 ~mq, ~wpα

)
= ωα(~mq, ~wpα).

In the third step we have used that Lq−1 ◦ Θ = Θ(Lq−1(·), ·). Finally, we have to verify that ω
is a Φ-invariant, smooth connection. For this let p ∈ P and (q̃, pα) ∈ Q × Pα with p = q̃ · pα.
Then for q ∈ Q and ~wp ∈ TpP we have(

L∗qω
)
p

(~wp) = ωq·p (dLq ~wp) = ω(qq̃)·pα (dLq ~wp)

= ρ(q) ◦ ρ (q̃) ◦ λ̂α
(
dLq̃−1 ~wp

)
= ρ(q) ◦ ωp(~wp),

hence

R∗sω = L∗(e,s−1)ω = ρ
((
e, s−1

))
◦ ω = Ads−1 ◦ ω,

L∗gω = L∗(g,e)ω = ρ((g, e)) ◦ ω = ω.

So, it remains to show smoothness of ω and that ωp(s̃(p)) = ~s holds for all p ∈ P and all ~s ∈ s.
For the second property let p = q · pα for (q, pα) ∈ Q× Pα. Then q = (g, s) for some g ∈ G and
s ∈ S and we obtain

ωp(s̃(p)) = ρ(q) ◦ λ̂α
(
dLq−1 s̃(q · pα)

)
= ρ(q) ◦ λ̂α

(
d
dt

∣∣
t=0

pα · (αs−1(exp(t~s))
)

= ρ(q) ◦ λ̂α
(
dΘ
(
Ads−1(~s),~0pα

))
= Ads◦ λα

(
Ads−1(~s),~0pα

)
= Ads ◦Ads−1(~s) = ~s.

For smoothness let pα ∈ Pα and choose a submanifold Q′ of Q through e, an open neighbour-
hood P ′α ⊆ Pα of pα and an open subset U ⊆ P such that the restriction Θ̂ := Θ|Q′×P ′α is
a diffeomorphism to U . Then pα ∈ U because e ∈ Q′, hence

ω|U = Θ̂−1∗
[
Θ̂∗ω

]
= Θ̂−1∗

[
(Θ∗ω)|TQ×TPα

]
= Θ̂−1∗ωα.

Since ωα is smooth and Θ̂ is a diffeomorphism, ω|U is smooth as well. Finally, if p = q · pα for
q ∈ Q, then Lq(U) is an open neighbourhood of p and

ω|Lq(U) =
(
L∗q−1

(
L∗qω

) )∣∣
Lq(U)

= ρ(q) ◦
(
L∗q−1ω

)∣∣
Lq(U)

= ρ(q) ◦ L∗q−1 (ω|U )

is smooth because ω|U and Lq−1 are smooth. �

Corollary 4.2 and Proposition 4.8 now prove

Theorem 4.9. Let G be a Lie group of automorphisms of the principal fibre bundle P . Then
for each Φ-covering {Pα}α∈I of P there is a bijection between the corresponding set of reduced
connections and the Φ-invariant connections on P .

As already mentioned in the preliminary remarks to Example 4.6, the second part of the next
example shows the importance of the transversality condition

im[dxτ0] + im
[
deϕτ0(x)

]
= Tτ0(x)M ∀x ∈ U0

for the formulation in [6].
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Example 4.10 ((semi-)homogeneous connections).

1. Let P = X×S for an n-dimensional R-vector space X and an arbitrary structure group S.
Moreover, let G ⊆ X be a linear subspace of dimension 1 ≤ k ≤ n acting via Φ: G×P → P ,
(g, (x, σ)) 7→ (g+x, σ). IfW is an algebraic complement ofG inX and P0 := W×{eS} ⊆ P ,
then P0 is a Φ-covering since Θ: (G× S)× P0 → P is a diffeomorphism and each ϕ-orbit
intersects W in a unique point. Consequently, the Φ-invariant connections on P are in
bijection with the smooth maps ψ : G × TW → s such that ψw := ψ|G×TwW is linear for
all w ∈ W . This is because the conditions i) and ii) from Corollary 4.2 give no further
restrictions in this case. The Φ-invariant connection that corresponds to ψ is given by

ωψ(x,s)(~vx, ~σs) = Ads−1 ◦ ψprW (x)

(
prG(~vx),prW (~vx)

)
+ dLs−1(~σs) (4.8)

for (~vx, ~σs) ∈ T(x,s)P .

2. In the situation of the previous part let X = R2, G = spanR(~e1), W = spanR(~e2) and
P0 = W × {e}. We fix 0 6= ~s ∈ s and define ψ : g× TP0 → s by

ψy(λ~e1, µ~e2) := µf(y) · ~s for (λ~e1, µ~e2) ∈ g× T(y·~e2,e)P0,

where f(0) := 0 and f(y) := 1/ 3
√
y for y 6= 0. Then ωψ defined by (4.8) is not smooth at

the origin because

ωψ((x,y),e)
((
~0, ~e2

)
,~0s
)

= ψy
(
~0, ~e2

)
= f(y) · ~s ∀ y ∈ R.

Now, let U0 = R, τ0 : U0 → R2, t 7→
(
t, t3

)
and s0 : t 7→ (τ0(t), e). Then (U0, τ0, s0) fulfils

the conditions in [6] but we have im[d0τ0]+im
[
deϕτ0(0)

]
=spanR(~e1) 6= T0X=T0R2=R2.17

As a consequence, ψ′ : g× TU0 → s defined by ψ′t := (Φ∗ωψ)|g×TtU0 is smooth because for
t 6= 0 and r ∈ TtU0 = R we have

ψ′t(λ~e1, r) =
(
Φ∗ωψ

) (
λ~e1, r · ~e1 + 3t2r · ~e2

)
= ωψ

((t,t3),e)

(
(λ+ r) · ~e1 + 3t2r · ~e2

)
= ψt3

(
(λ+ r) · ~e1, 3t2r · ~e2

)
= 3tr · ~s,

as well as ψ′0(λ~e1, r) = 0 if t = 0. For the first step keep in mind that (Φ∗ωψ)|g×TtU0(~g, r) =
(Φ∗ωψ)(~g,dts0(r)) by Convention 3.1.2. Then the maps µ := ψ′|TU0 and At0(~g) :=
ψ
(
~g,~0t0

)
fulfil the conditions from Theorem 2 in [6] because ψ′ fulfils the three alge-

braic conditions in Example 4.618. This, however, contradicts that ωψ is not a smooth
connection.

5 Particular cases and applications

In the first part of this section we consider Φ-coverings of P that arise from the induced action ϕ
on the base manifold M of P . Then we discuss the case where Φ acts via gauge transforma-
tions on P . This leads to a straightforward generalization of the description of connections
by consistent families of local 1-forms on M . In the second part we discuss the (almost-)fibre
transitive case and deduce Wang’s original theorem [8] from Theorem 4.9. Finally, we consider
the situation where P is trivial and give examples in loop quantum gravity.

17Then im[d0s0] + im[deΦs0(x)] + Tvs0(0)P = spanR(~e1) ⊕ Tv(0,e)P 6= R2 ⊕ Tv(0,e)P = T(0,e)P so that (U0, s0)
is not a Θ-patch as it fails the transversality condition (3.2) from Remark 3.6.2.

18These are trivial in this case because H = {e}.
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5.1 Φ-coverings and the induced action

Let (G,Φ) be a Lie group of automorphisms of the principal fibre bundle P . According to
Lemma 3.4 for each x ∈ M there is a ϕ-patch (with minimal dimension) Mx with x ∈ M .
Consequently, there is an open neighbourhood M ′x ⊆ Mx of x and a local section sx : U → P
such that M ′x ⊆ U for an open neighbourhood U ⊆ M . Let I ⊆ M be a subset such that19

each ϕ-orbit intersects at least one of the sets Mx. Then it is immediate from Lemma 3.7.2 that
{sx(M ′x)}x∈I is a Φ-covering of P . More generally, we have

Corollary 5.1. Let (P, π,M, S) be a principal fibre bundle and (G,Φ) a Lie group of automor-
phisms of P . Denote by (Mα, sα)α∈I a family consisting of a collection of ϕ-patches {Mα}α∈I
and smooth sections20 sα : Mα → P . Then the sets Pα := sα(Mα) are Θ-patches. They provide
a Φ-covering of P iff each ϕ-orbit intersects at least one patch Mα.

Proof. This is immediate from Lemma 3.7.2. �

We now consider the case where (G,Φ) is a Lie group of gauge transformations of P , i.e.,
ϕg = idM for all g ∈ G. Here we show that Theorem 4.9 can be seen as a generalization
of the description of smooth connections by consistent families of local 1-forms on the base
manifold M . For this let {Uα}α∈I be an open covering of M and {sα}α∈I a family of smooth
sections sα : Uα → P . We define Uαβ := Uα ∩ Uβ and consider the smooth maps δαβ : G ×
Uαβ → S determined by sβ(x) = Φ(g, sα(x)) · δαβ(g, x).21 Finally, let µαβ(g,~vx) := dLδ−1

αβ (g,x)
◦

dxδαβ(g, ·)(~vx) for ~vx ∈ TxUαβ and g ∈ G. Then we have

Case 5.2 (Lie groups of gauge transformations). Let (G,Φ) be a Lie group of gauge transfor-
mations of the principal fibre bundle (P, π,M, S). Then the Φ-invariant connections on P are
in bijection with the families {χα}α∈I of s-valued 1-forms χα : Uα → s for which we have

χβ(~vx) =
(
Adδαβ(g,x) ◦ χα

)
(~vx) + µαβ(g,~vx) ∀~vx ∈ TxUαβ, ∀ g ∈ G. (5.1)

Proof. By Corollary 5.1 {sα(Uα)}α∈I is a Φ-covering of P . So, let {ψα}α∈I be a reduced
connection w.r.t. this covering. We first show that condition i) from Corollary 4.2 implies

ψβ
(
~g,~0p

)
= deφp(~g ) ∀~g ∈ g, ∀ p ∈ sβ(U).

For this observe that condition a) from Remark 4.4 means that for all β ∈ I, p ∈ sβ(Uβ),
~wp ∈ Tpsβ(Uβ) and ~g ∈ g, ~s ∈ s we have

deΦp(~g ) + ~wp − s̃(p) = 0 =⇒ ψβ(~g, ~wp)− ~s = 0.

Now, Tpsβ(Uβ) is complementary to TvpP and im[deΦp] ⊆ ker[dpπ] so that a) is the same as

a′) deΦp(~g ) = s̃(p) =⇒ ψβ
(
~g,~0p

)
= ~s for ~g ∈ g, ~s ∈ s and all p ∈ Pβ.

But, since Gx = G for all x ∈ M , this just means22 ψβ
(
~g,~0p

)
= deφp(~g) for all ~g ∈ g and is in

line with condition ii) from Corollary 4.2 as φp is a Lie group homomorphism. Consequently,
we can ignore this condition in the following. Now, we have pβ = q · pα for q ∈ Q, pα ∈ Pα,
pβ ∈ Pβ iff π(pα) = π(pβ) = x ∈ Uαβ and q =

(
g, δ−1αβ (g, x)

)
. Consequently, the left hand side of

condition i) from Corollary 4.2 reads

g̃(sβ(x)) + dxsβ(~vβ)− s̃(sβ(x)) =
(
dLg ◦ dRδαβ(g,x) ◦ dxsα

)
(~vα),

19It is always possible to choose I = M .
20This is that π ◦ sα = idMα .
21Observe that δαβ(g, x) = φ−1

sα(x)(g) · δαβ(e, x).
22deΦp(~g )− s̃(p) = 0 iff (~g,~s) ∈ qp iff ~s = deφp(~g).
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where ~vα, ~vβ ∈ TxM and g ∈ G. This is true for ~vα = ~vβ = ~vx, ~g = 0 and ~s = µαβ(g,~vx), which
follows from

dxsβ(~vβ) = dx
[
Lg ◦Rδαβ(g,·) ◦ sα

]
(~vx)

= dLg
[
dsα(x)R

(
dxδαβ(g, ·)(~vx)

)
+ dRδαβ(g,x)(dxsα(~vx))

]
,

s̃(sβ(x)) = d
dt

∣∣
t=0

Lg ◦Rδαβ(g,x)·exp(t~s )(sα(x))

= dLg
[
dsα(x)R

(
dLδαβ(g,x)(~s)

)]
= dLg

[
dsα(x)R

(
dxδαβ(g, ·)(~vx)

)]
.

Consequently, by Corollary 4.2.i) we have23

ψβ
(
~0g,dxsβ(~vx)

)
=
(
Adδαβ(g,x) ◦ ψα ◦ dxsα

)
(~vx) + µαβ(g,~vx) (5.2)

for all g ∈ G and all ~vx ∈ TxUαβ. Due to part 2) in Remark 4.4 the condition i) from Corollary 4.2
now gives no further restrictions so that for χβ := ψβ ◦ dsβ we have

ψβ(~g,dxsβ(~vx)) = deφsβ(x)(~g ) + χβ(~vx) ∀~g ∈ g, ∀~vx ∈ TxM, ∀x ∈ Uβ.

Then ψβ is uniquely determined by χβ for each β ∈ I so that (5.2) yields the consistency
condition (5.1) for the maps {χα}α∈I . �

Example 5.3 (trivial action). If G acts trivially, then for each x ∈ Uαβ we have

δαβ(g, x) = φ−1sα(x)(g) · δαβ(e, x) = δαβ(e, x),

so that δαβ is independent of g ∈ G. Here Case 5.2 just reproduces the description of smooth
connections by means of consistent families of local 1-forms on the base manifold M .

5.2 (Almost-)fibre transitivity

In this subsection we discuss the situation where M admits an element that is contained in the
closure of each ϕ-orbit. For instance, this holds for all x ∈M if each ϕ-orbit is dense in M and,
in particular, is true for fibre transitive actions.

Case 5.4 (almost-fibre transitivity). Let x ∈ M be contained in the closure of each ϕ-orbit
and let p ∈ π−1(x). Then each Θ-patch P0 ⊆ P with p ∈ P0 is a Φ-covering of P . Hence, the
Φ-invariant connections on P are in bijection with the smooth maps ψ : g× TP0 → s for which
ψ|g×TpP0 is linear for all p ∈ P0 and that fulfil the two conditions from Corollary 4.2.

Proof. It suffices to show that π (P0) intersects each ϕ-orbit [o]. Since P0 is a Θ-patch, there
is an open neighbourhood P ′ ⊆ P0 of p and a submanifold Q′ of Q through (eG, eS) such that
Θ|Q′×P ′ is a diffeomorphism to an open subset U ⊆ P . Then π(U) is an open neighbourhood
of π(p) and by assumption we have [o] ∩ π(U) 6= ∅ for each [o] ∈ M/G. Consequently, for
[o] ∈ M/G we find p̃ ∈ U with π(p̃) ∈ [o]. Let p̃ = Θ((g′, s′), p′) for ((g′, s′), p′) ∈ Q′ × P ′.
Then

[o] 3 π(p̃) = π
(
Φ(g′, p′) · s′

)
= ϕ(g′, π(p′)) ∈ [π(p′)]

shows that [o] = [π(p′)], hence π (P0) ∩ [o] 6= ∅. �

The next example to Case 5.4 shows that evaluating the conditions i) and ii) from Corol-
lary 4.2 at one single point can be sufficient to verify non-existence of invariant connections.

23(ψα ◦ dxsα)(~vx) := ψα
(
~0g, dxsα(~vx)

)
for ~vx ∈ TxUαβ .
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Example 5.5 (general linear group).

1. Let P := GL(n,R) and G = S = B ⊆ GL(n,R) the subgroup of upper triangular mat-
rices. Moreover, let Sn ⊆ GL(n,R) be the group of permutation matrices. Then P is
a principal fibre bundle with base manifold M := P/S, structure group S and projection
map π : P →M , p 7→ [p]. Moreover, G acts via automorphisms on P by Φ(g, p) := g · p
and we have the Bruhat decomposition

GL(n,R) =
⊔
w∈Sn

BwB.

Then M =
⊔
w∈Sn G · π(w), G · π(e) = π(e) and π(e) ∈ G · π(w) for all w ∈ Sn. Now,

im[deΘe] = g, since deΘe(~g ) = ~g for all ~g ∈ g. Moreover, g = spanR{Eij |1 ≤ i ≤ j ≤ n} so
that V := spanR{Eij | 1 ≤ j < i ≤ n} is an algebraic complement of g in TeP = gl(n,R).
By Lemma 3.4.2 we find a patch H ⊆ P through e with TeH = V and due to Case 5.4
this is a Φ-covering.

2. A closer look at the point e ∈ P shows that there cannot exist any Φ-invariant connection
on GL(n,R). In fact, if ψ : g× TH → s is a reduced connection w.r.t. H, then for ~w := ~0e
and ~g = ~s we have

g̃(e) + ~w − s̃(e) = ~g + ~w − ~s = 0.

So, condition i) from Corollary 4.2 gives ψ
(
~g,~0e

)
−~g = 0, hence ψ

(
~g,~0e

)
= ~g for all ~g ∈ g.

Now q · e = e iff q = (b, b) for some b ∈ B. Let

V 3 ~h := En1, B 3 b := 1 + E1n, g 3 ~g := E11 − E1n − Enn.

Then g̃(e) + ~h = ~g + ~h = b~hb−1 = dLq~h so that condition i) yields

ψ
(
~g,~h

)
= ρ(q) ◦ ψ

(
~0g,~h

)
= Adb ◦ ψ

(
~0g,~h

)
,

hence ~g + [id−Adb] ◦ ψ
(
~0g,~h

)
= 0. But (~g)11 = 1 and(

ψ
(
~0g,~h

)
−Adb ◦ ψ

(
~0g,~h

))
11

=
(
ψ
(
~0g,~h

))
11
−
(
ψ
(
~0g,~h

))
11

= 0

so that ψ cannot exist.

Corollary 5.6. If Φ is fibre transitive, then {p} is a Φ-covering for all p ∈ P .

Proof. It suffices to show that {π(p)} is a ϕ-patch, since then {p} is a Θ-patch by Corollary 5.1
and a Φ-covering by Case 5.4. This, however, is clear from Remark 3.3.1. In fact, if x := π(p),
then by general theory we know that M is diffeomorphic to G/Gx via ϑ : [g] 7→ ϕ(g, x) and that
for each [g] ∈ G/Gx we find an open neighbourhood U ⊆ G/Gx of [g] and a smooth section
s : U → G. Then surjectivity of deϕx is clear from surjectivity of d[e]ϑ and

deϕx ◦ d[e]s = d[e](ϕx ◦ s) = d[e]ϕ(s(·), x) = d[e]ϑ,

showing that TxM = deϕx(g). �

Let φ be transitive and p ∈ P . Then {p} is a Φ-covering by Corollary 5.6 and Tp{p} is the
zero vector space. Moreover, we have pα = q · pβ iff pα = pβ = p and q ∈ Qp. It follows that
a reduced connection w.r.t. {p} can be seen as a linear map ψ : g→ s that fulfils the following
two conditions:

• deΘp(~g,~s) = 0 =⇒ ψ(~g ) = ~s for ~g ∈ g, ~s ∈ s,

• ψ
(
Adq(~g )

)
= ρ(q) ◦ ψ(~g ) ∀ q ∈ Qp, ∀~g ∈ g.

Since ker[deΘp] = qp, we have shown
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Case 5.7 (Hsien-Chung Wang, [8]). Let (G,Φ) be a fibre transitive Lie group of automorphisms
of P . Then for each p ∈ P there is a bijection between the Φ-invariant connections on P and
the linear maps ψ : g→ s that fulfil

a) ψ
(
~j
)

= deφp
(
~j
)

∀~j ∈ gπ(p),

b) ψ ◦Adj = Adφp(j) ◦ ψ ∀ j ∈ Gπ(p).

This bijection is explicitly given by ω 7→ Φ∗pω.

Example 5.8.

1. Homogeneous connections. In the situation of Example 4.10 let k = n, X = Rn. Then
Φ is fibre transitive and for p = (0, e) we have Gπ(p) = e and gπ(p) = {0}. Consequently, the
reduced connections w.r.t. {p} are just the linear maps ψ : Rn → s and the corresponding
homogeneous connections are given by

ωψ(x,s)(~vx, ~σs) = Ads−1 ◦ ψ(~vx) + dLs−1(~σs) ∀ (~vx, ~σs) ∈ T(x,s)P.

2. Homogeneous isotropic connections. Let P = R3 × SU(2) and % : SU(2)→ SO(3) be
the universal covering map. We consider the semi direct product E := R3o% SU(2) whose
multiplication is given by (v, σ) ·% (v′, σ′) := (v + %(σ)(v′), σσ′) for all (v, σ), (v′, σ) ∈ E.
Since E equals P as a set, we can define the action Φ of E on P just by ·%. Then E is
a Lie group that resembles the euclidean one, and it follows from Wang’s theorem that the
Φ-invariant connections are of the form (see e.g. Appendix A.3 in [5])

ωc(x,s)(~vx, ~σx) = cAds−1 [µ(~vx)] + s−1~σs ∀ (~vx, ~σs) ∈ T(x,s)P.

Here c runs over R and µ :
3∑
i=1

vi~ei →
3∑
i=1

viτi with matrices

τ1 :=

(
0 −i
−i 0

)
τ2 :=

(
0 −1
1 0

)
τ3 :=

(
−i 0
0 i

)
and {~e1, ~e2, ~e3} the standard basis in R3.

We close this section with a remark concerning the relations between sets of invariant con-
nections that correspond to different lifts of the same Lie group action on the base manifold of
a principal fibre bundle.

Remark 5.9. Let P be a principal fibre bundle and Φ,Φ′ : G × P → P be two Lie groups
of automorphisms with ϕ = ϕ′. Then the respective sets of invariant connections can differ
significantly. In fact, in the situation of the second part of Example 5.8 let Φ′((v, σ), (x, s)) :=
(v + %(σ)(x), s). Then ϕ′ = ϕ and Appendix B.1 shows that ω0(~vx, ~σs) := s−1~σs for (~vx, ~σs) ∈
T(x,s)P is the only Φ′-invariant connection on P .

5.3 Trivial bundles – applications to LQG

In this section we determine the set of isotropic connections on R3 × SU(2) to be used for the
description of isotropic gravitational systems in the framework of loop quantum gravity. To this
end, we reformulate Theorem 4.9 for trivial bundles.

The spherically symmetric connections on P = R3 × SU(2) are such connections, invariant
under the action Φ: SU(2) × P → P , (σ, (x, s)) 7→ (σ(x), σs). Since Φ is not fibre transitive,
we cannot use Case 5.7 for the necessary calculations. Moreover, it is not possible to apply the
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results from [6] (see Example 4.6) because the ϕ-stabilizer of x = 0 equals SU(2) whereas that of
each x ∈ R3\{0} is given by the maximal torus Tx := {exp(tµ(x) | t ∈ R)} ⊆ SU(2). Of course,
we could ignore the origin and consider the bundle R3\{0}×SU(2) together with the Φ-covering
{λ · ~e1 | λ ∈ R>0}. This, however, is a different situation because an invariant connection on
R3\{0} × SU(2) is not necessarily extendable to an invariant connection on R3 × SU(2) as the
next example illustrates24.

Example 5.10.

1. Let S be a Lie group and P = Rn × S. We consider the action Φ: R>0 × P → P ,
(λ, (x, s)) 7→ (λx, s) and claim that the only Φ-invariant connection is given by

ω0(~vx, ~σs) := dsLs−1(~σs) ∀ (~vx, ~σs) ∈ T(x,e)P.

In fact, P∞ := Rn × {e} is a Φ-covering of P by Corollary 5.1 and it is straightforward to
see25 that condition i) from Corollary 4.2 is equivalent to the conditions a) and b) from
Remark 4.4. Let ψ : g×TP∞ be a reduced connection w.r.t. P∞ and define ψx := ψ|g×T(x,e) .
Since the exponential map exp: g → R>0 is just given by λ 7→ eλ for λ ∈ R = g, we have
g̃((x, e)) = ~g · x ∈ T(x,e)P∞ for ~g ∈ g. Then for ~w := −~g · x ∈ T(x,e)P∞ from a) we obtain

ψx
(
~g,~0

)
= ψx

(
~0g, ~g · x

)
∀~g ∈ g, ∀x ∈ Rn. (5.3)

In particular, ψ0

(
~g,~0

)
= 0 and since Q(0,e) = R>0 × {e}, for q = (λ, e) condition b) yields

λψ0

(
~0g, ~w

)
= ψ0

(
~0g, λ~w

) b)
= ψ0

(
~0g, ~w

)
∀λ > 0, ∀ ~w ∈ T(0,e)P∞,

hence ψ0 = 0. Analogously, for x 6= 0, ~w ∈ T(λx,e)P∞, λ > 0 and q = (λ, e), we obtain

λψλx
(
~0g, ~w

)
= ψλx

(
~0g, dLq(~w)

) b)
= ρ(q) ◦ ψx

(
~0g, ~w

)
= ψx

(
~0g, ~w

)
,

i.e., ψλx
(
~0g, ~w

)
= 1

λψx
(
~0g, ~w

)
. Here, in the second step, we have used the canonical

identification of the linear spaces T(x,e)P∞ and T(λx,e)P∞. Using the same identification,
from continuity (smoothness) of ψ and ψ0 = 0 we obtain

0 = lim
λ→0

ψλx
(
~0g, ~w

)
= lim

λ→0

1

λ
ψx
(
~0g, ~w

)
∀x ∈ Rn, ∀ ~w ∈ T(x,e)P∞

so that ψx
(
~0g, ·

)
= 0 for all x ∈ Rn, hence ψ = 0 by (5.3). Finally, it is straightforward to

see that (Φ∗ω0)|g×TP∞ = ψ = 0.

2. Let P ′ = Rn\{0} × S and Φ be defined as above. Then K × {e}, for the unit-sphere
K := {x ∈ Rn | ‖x‖ = 1}, is a Φ-covering of P ′ with the properties from Example 4.6.
Evaluating the corresponding conditions i′′), ii′′), iii′′) immediately shows that the set
of Φ-invariant connections on P ′ is in bijection with the smooth maps ψ : R × TK → s
for which ψ|R×TkK is linear for all k ∈ K. The corresponding invariant connections are
given by

ωψ(x,s)(~vx, ~σs) = ψ
(

1
‖x‖pr‖(~vx),pr⊥(~vx)

)
+ s−1~σs ∀ (~vx, ~σs) ∈ T(x,s)P ′.

Here pr‖ denotes the projection onto the axis defined by x ∈ Rn and pr⊥ the projection
onto the corresponding orthogonal complement in Rn.

24See also remarks following Example 5.12.
25Cf. Remark 4.4.3.
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Also in the spherically symmetric case the ϕ-stabilizer of the origin has full dimension and
it turns out to be convenient26 to use the Φ-covering R3 × {e} in this situation, too. Since the
choice P∞ := M × {e} is always reasonable27 if there is a point in the base manifold M (of the
trivial bundle M × S) whose stabilizer is the whole group, we now adapt Theorem 4.9 to this
situation. For this, we identify TxM with T(x,e)P∞ for each x ∈M in the sequel.

Case 5.11 (trivial principal fibre bundles). Let (G,Φ) be a Lie group of automorphisms of the
trivial principal fibre bundle P = M ×S. Then the Φ-invariant connections are in bijection with
the smooth maps ψ : g × TM → s for which ψ|g×TxM is linear for all x ∈ M and that fulfil the
following properties. Let ψ± (~g,~vy, ~s) := ψ (~g,~vy)±~s for ((~g,~s), ~vy) ∈ q×TyM . Then for q ∈ Q,
x ∈M with q · (x, e) = (y, e) ∈M × {e} and all ((~g,~s), ~vx) ∈ q× TxM we have

i) g̃(x, e) + ~vx − ~s = 0 =⇒ ψ−(~g,~vx, ~s) = 0,

ii) ψ+(dLq~vx) = ρ(q) ◦ ψ
(
~0g, ~vx

)
∀~vx ∈ TxM ,

iii) ψ
(
Adq(~g),~0y

)
= ρ(q) ◦ ψ

(
~g,~0x

)
∀~g ∈ g.

Proof. The elementary proof can be found in Appendix A. �

Example 5.12 (spherically symmetric systems in loop quantum gravity). Let % : SU(2) →
SO(3) be the universal covering map and σ(x) := %(σ)(x) for x ∈ R3. Moreover, let µ : R→ su(2)
be defined as in the second part of Example 5.8. We consider the action of G = SU(2) on
P = R3 × SU(2) defined by Φ(σ, (x, s)) := (%(σ)(x), σs). It is shown in Appendix B.2 that the
corresponding invariant connections have the form

ωabc(x,s)(~vx, ~σs) := Ads−1

[
a(x)µ(~vx) + b(x)[µ(x), µ(~vx)]

+ c(x)[µ(x), [µ(x), µ(~vx)]]
]

+ s−1~σs
(5.4)

for (~vx, ~σs) ∈ T(x,s)P and with rotation invariant maps a, b, c : R3 → R for which the whole
expression is a smooth connection. We claim that the functions a, b, c can be assumed to be
smooth as well. More precisely, we show that we can assume that

a(x) = f
(
‖x‖2

)
, b(x) = g

(
‖x‖2

)
, c(x) = h

(
‖x‖2

)
for smooth functions f, g, h : (−ε,∞)→ R with ε > 0. Then each pullback of such a spherically
symmetric connection by the global section x 7→ (x, e) can be written in the form

ω̃abcx (~vx) = f ′
(
‖x‖2

)
µ(~vx) + g′

(
‖x‖2

)
µ(x× ~vx) + h′

(
‖x‖2

)
µ (x× (x× ~vx))

for smooth functions f ′, g′, h′ : (−ε,∞)→ R with ε > 0.

Proof of the claim. 1. Smoothness of ωabc implies smoothness of the real functions

a~n(λ) := a(λ~n), b~n(λ) := λb(λ~n), c~n(λ) := λ2c(λ~n) ∀λ ∈ R

for each ~n ∈ R3\{0}. In fact, a~n(λ) · µ(~n) = ωabc(λ~n,e)(~n) is smooth, so that smoothness of b~n

and c~n is immediate from smoothness of λ 7→ ωabc(λ~e1,e)
(~e2).

2. Let ~n be fixed. Then a~n is even so that a~n(λ)=f(λ2) for a smooth function f : (−ε1,∞)→R,
see [10]. Moreover, b~n is smooth and odd so that b~n(λ) = λg

(
λ2
)

for some smooth function

26Cf. Appendix B.2.
27Cf. Lemma 3.4.1.
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g : (−ε2,∞)→ R, again by [10]. Similarly, c~n(λ) = l(λ2) for a smooth function l : (−ε3,∞)→ R.
Since λ 7→ l(λ2) is even and l(0) = 0, for s ∈ N>0 Taylor’s formula yields

l
(
x2
)

= a1x
2 + · · ·+ asx

2s + x2(s+1)φ(x) = x2
(
a1 + · · ·+ asx

2s−2 + x2sφ(x)
)

= x2L(x)

with remainder term φ(x) := 1
(2s+1)!

1
x2s+2

∫ x
0 (x − t)f (2s+2)(t)dt for x 6= 0 and φ(0) := l2s+2(0).

Now, φ is continuous by Theorem 1 in [9] so that L is continuous as well. But x 7→ x2L(x)
is smooth so that Corollary 1 in [9] shows that L is smooth as well. Now, L is even, hence
L(x) = h(x2) for some smooth function h : (−ε4,∞) → R. Then c~n(λ) = l

(
λ2
)

= λ2h
(
λ2
)

and
for x 6= 0 we get

b(x) = ‖x‖b
(
‖x‖ x

‖x‖

)
1

‖x‖
= b x

‖x‖
(‖x‖) 1

‖x‖
= g

(
‖x‖2

)
,

c(x) = ‖x‖2c
(
‖x‖ x

‖x‖

)
1

‖x‖2
= c x

‖x‖
(‖x‖) 1

‖x‖2
= h

(
‖x‖2

)
.

Moreover, for x = 0 we have

b(x)[µ(x), µ(~vx)] = 0 = g
(
‖x‖2

)
[µ(x), µ(~vx)],

c(x)[µ(x), [µ(x), µ(~vx)]
]

= 0 = h(x)[µ(x), [µ(x), µ(~vx)]
]

so that we can assume a(x) = f(‖x‖2), b(x) = g(‖x‖2) and c(x) = h(‖x‖2) for the smooth
functions f, g, h : (−min(ε1, . . . , ε4),∞)→ R. �

In particular, there are spherically symmetric connections on R3\{0}×SU(2) which cannot be
extended to those on P . For instance, if b = c = 0 and a(x) := 1/‖x‖ for x ∈ R3\{0}, then ωabc

cannot be extended smoothly to an invariant connection on R3 × SU(2) since elsewise a~n could
be extended to a continuous (smooth) function on R.

6 Conclusions

We conclude with a short review of the particular cases that follow from Theorem 4.9. For this
let (G,Φ) be a Lie group of automorphisms of the principal fibre bundle (P, π,M, S) and ϕ the
induced action on M .

• If P = M × S is trivial, then M × {e} is a Φ-covering of P . As we have demonstrated
in the spherically symmetric and scale invariant case (cf. Examples 5.10 and 5.12), this
choice can be useful for calculations if there is a point in M whose ϕ-stabilizer is the whole
group G.

• There is an element x ∈ M which is contained in the closure of each ϕ-orbit. Then
every Θ-patch that contains some p ∈ π−1(x) is a Φ-covering of P , see Example 5.5.
If ϕ acts transitively on M , then for each p ∈ P the zero-dimensional submanifold {p} is
a Φ-covering of P leading to Wang’s original theorem, see Case 5.7 and Example 5.8.

• Let Φ act via gauge transformations on P . In this case each open covering {Uα}α∈I of M
together with smooth sections sα : Uα → P provides the Φ-covering {sα(Uα)}α∈I of P .
If G acts trivially, this specializes to the usual description of smooth connections by means
of consistent families of local 1-forms on the base manifold M .

• If we find a Θ-patch P0 such that π(P0) intersects each ϕ-orbit in a unique point, then P0

is a Φ-covering. If, in addition, the stabilizer Qp does not depend on p ∈ P0, then we are
in the situation of [6], see Example 4.6.
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• Assume there is a collection of ϕ-orbits forming an open subset U ⊆M . Then O := π−1(U)
is a principal fibre bundle and each Φ-invariant connection on P restricts to a Φ-invariant
connection on O. Conversely, if U is in addition dense in M , then one can ask the question
whether a Φ-invariant connection on O extends to a Φ-invariant connection on P . Since
such an extension is necessarily unique (continuity), ϕ-orbits not contained in U can be
seen as sources of obstructions for the extendability of invariant connections on O to P .
Indeed, the examples in Subsection 5.3 show that smoothness of these extension gives
crucial restrictions. Moreover, by Example 5.5 taking one additional orbit into account
can shrink the number of invariant connections to zero. Of particular interest, in this
context, is the case where G is compact, as then the orbits of principal type always form
a dense and open subset of M . Moreover, due to compactness the situation of [6] always
holds locally [7], giving rise to a canonical Φ-covering (of P and O) consisting of convenient
patches. So, using the present characterization theorem there is a realistic chance to get
some general classification results in the compact case28.

In the general situation one can always construct Φ-coverings of P from families of ϕ-patches
in M as Corollary 5.1 shows. In particular, the first three cases arise in this way.

Appendix

A A technical proof

Proof of Case 5.11. The only patch is M × {e} so that a reduced connection is a smooth
map ψ : g × TM → s with the claimed linearity property and that fulfils the two conditions
from Corollary 4.2. Obviously, ii) and iii) are equivalent. Moreover, i) follows from i) for
pα = pβ = (x, e), q = (e, e), ~wpβ = ~vx and ~wpα = ~0(x,e), see also a) in Remark 4.4. To obtain ii)
let ~vx ∈ TxM , q ∈ Q and q · (x, e) = (y, e). Then dLq~vx = (~vy,−~s) for elements ~vy ∈ TyM and
~s ∈ s so that

ψ+(dLq~vx) = ψ+(~vy,−~s) = ψ
(
~0g, ~vy

)
− ~s i)

= ρ(q) ◦ ψ
(
~0g, ~vx

)
.

It remains to show that i) and ii) imply i). To this end, let (y, e) = q · (x, e) for x, y ∈ M and
q ∈ Q. Then i) reads

g̃(y, e) + ~vy − ~s = dLq~vx =⇒ ψ−(~g,~vy, ~s) = ρ(q) ◦ ψ
(
~0g, ~vx

)
,

where ~vx ∈ TxM , ~vy ∈ TyM , ~s ∈ s and ~g ∈ g. Let dLq~vx = (~vy,−~s) be as above. If ii) is true,
then it is clear from

ψ−(~vy, ~s) = ψ+(dLq~vx)
i)
= ρ(q) ◦ ψ

(
~0g, ~vx

)
that i) is true for

((
~0g, ~s), ~vy

)
, i.e.,

~0g + ~vy − ~s = dLq~vx =⇒ ψ
(
~0g, ~vy

)
− ~s = ρ(q) ◦ ψ

(
~0g, ~vx

)
.

Due to i) and the linearity properties of ψ, the condition i) then is also true for each other
element ((~g ′, ~s ′), ~v ′y) ∈ q× TyM with g̃ ′(y, e) + ~v ′y − ~s ′ = dLq~vx. �

28To be used, e.g., to extend the framework of the foundational LQG reduction paper [2].
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B Technical calculations

Let P = R3 × SU(2), % : SU(2) → SO(3) the universal covering map, E = R3 o% SU(2) and
µ : R3 → su(2) be defined as in the second part of Example 5.8. Then %(σ) = µ−1 ◦Adσ ◦µ and
each σ ∈ SU(2) can be written as

σ = cos(α/2)1 + sin(α/2)µ(~n) = exp
(
α/2 · µ(~n)

)
for some |~n| = 1 and α ∈ [0, 2π]. In this case %(σ) rotates a point x by the angle α w.r.t. the
axis ~n. For simplicity, if σ ∈ SU(2) and x ∈ R3, we write σ(x) instead of %(σ)(x) in the following.

B.1 A result used in the end of Section 5

We consider the fibre transitive action Φ′ : E × P → P that is defined by Φ′((v, σ), (x, s)) :=
(v + σ(x), s) and claim that the connection

ω0(~vx, ~σs) = s−1~σs ∀ (~vx, ~σs) ∈ T(x,s)P

is the only Φ′-invariant one. For this observe that the stabilizer of x = 0 w.r.t. ϕ′ is given by
SU(2) and φ′(0,e)(σ) = e for all σ ∈ SU(2). We apply Wang’s theorem to p = (0, e). Then

condition a) yields ψ(~s) = 0 for all ~s ∈ su(2) and b) now reads ψ ◦ Adσ = ψ for all σ ∈ SU(2).
Consequently, for ~v ∈ R3 ⊆ e = R3 × su(2) we obtain

0 = d
dt

∣∣
t=0

ψ(~v ) = d
dt

∣∣
t=0

ψ ◦Adexp(t~s)(~v ) = ψ
(
d
dt

∣∣
t=0

%(exp(t~s))(~v )
)

= ψ ◦ µ−1([~s, µ(~v )])

for all ~s ∈ su(2) just by linearity of ψ. This gives

0 = ψ
(
µ−1([τi, µ(~ej)])

)
= ψ

(
µ−1([τi, τj ])

)
= 2εijkψ(~ek),

hence ψ = 0 = Φ′∗p ω0.

B.2 Spherically symmetric connections

We consider the action Φ of SU(2) on P defined by Φ(σ, (x, s)) := (σ(x), σs) and show that the
corresponding invariant connections are given by (see (5.4) in Example 5.12)

ωabc(x,s)(~vx, ~σs) := Ads−1

[
a(x)µ(~vx) + b(x)[µ(x), µ(~vx)] + c(x)[µ(x), [µ(x), µ(~vx)]]

]
+ s−1~σs

with rotation invariant maps a, b, c : R3 → R for which the whole expression is a smooth connec-
tion. Now, a straightforward calculation shows that each ωabc is Φ-invariant so that it remains
to verify that each Φ-invariant connection is of the upper form. To this end, we reduce the con-
nections ωabc w.r.t. P∞ = R3 × {e} and show that each map ψ as in Case 5.11 can be obtained
in this way. For this, let ~g ∈ g, p = (x, e) ∈ P∞ and γx : (−ε, ε) → M be a smooth curve with
γ̇x(0) = ~vx ∈ TxM ⊆ TpP∞. Then

d(e,p)Φ(~g,~vx) =
(
d
dt

∣∣
t=0

µ−1
(
exp(t~g )µ(γx(t)) exp(t~g )−1

)
, exp(t~g )

)
=
(
µ−1 ([~g, µ(x)]) + ~vx, ~g

)
.

(B.1)

This equals ~s iff ~g = ~s and ~vx = µ−1([µ(x), ~g ]). Consequently, for the reduced connection ψabc

that corresponds to ωabc we obtain

ψabc(~g,~vx) =
(
Φ∗ωabc

)
(e,p)

(~g,~vx) = ωabcp

(
µ−1 ([~g, µ(x)] + µ(~vx)) , ~g

)
= a(x)

[
[~g, µ(x)] + µ(~vx)

]
+ b(x)

[
[µ(x), [~g, µ(x)]] + [µ(x), µ(~vx)]

]
+ c(x)

[
[µ(x), [µ(x), [~g, µ(x)]]] + [µ(x), [µ(x), µ(~vx)]]

]
+ ~g.
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Now, assume that ψ is as in Case 5.11. Then for q ∈ Q and p ∈ P∞ we have q · p ∈ P∞ iff
q = (σ, σ) for some σ ∈ SU(2) and p = (x, e) for some x ∈M . Consequently, q · p = (σ(x), e) as
well as dLq(~vx) = σ(~vx) for all ~vx ∈ TxM so that ii) gives

ψ
(
~0g, σ(~vx)

)
= ψ+(dLq(~vx)) = Adσ ◦ ψ

(
~0g, ~vx

)
,

hence

ψ
(
~0g, ~vx

)
= Adσ−1 ◦ ψ

(
~0g, σ(~vx)

)
∀~vx ∈ TxM. (B.2)

If x 6= 0, then for σt := exp(tµ(x)) we have σt(x) = x and σt(~vx) ∈ T(x,e)P∞ for all t ∈ R. Then
linearity of ψx := ψ|g×T(x,e)P∞ yields

0 = d
dt

∣∣
t=0

ψ
(
~0g, ~vx

) (B.2)
= d

dt

∣∣
t=0

Adσ−1
t
◦ ψ
(
~0g, σt(~vx)

)
= d

dt

∣∣
t=0

σ−1t
(
ψ ◦ µ−1

) (
σtµ(~vx)σ−1t

)
σt

lin.
= −µ(x)ψ

(
~0g, ~vx

)
+
(
ψx ◦ µ−1

)
[µ(x)µ(~vx)− µ(~vx)µ(x)] + ψ

(
~0g, ~vx

)
µ(x),

hence
[
µ(x), ψ

(
~0g, ~vx

)]
=
(
ψx ◦ µ−1

)
([µ(x), µ(~vx)]). For x = λ~e1 6= 0 and κj := ψ

(
~0g, ~vx

)
with

~vx = ~ej this reads

[τ1, κj ] =
(
ψx ◦ µ−1

)
([τ1, τj ]) =

(
ψx ◦ µ−1

)
(2ε1jkτk) = 2ε1jkψx

(
~0g, ~ek

)
= 2ε1jkκk.

From these relations it follows that

κ1 = r(λ)τ1, κ2 = s(λ)τ2 + t(λ)τ3, κ3 = s(λ)τ3 − t(λ)τ2

for real constants r(λ), s(λ), t(λ) depending on λ ∈ R\{0}. Then for x = λ~e1 and

a(λ~e1) := r(λ), b(λ~e1) :=
t(λ)

2λ
, c(λ~e1) :=

r(λ)− s(λ)

4λ2

linearity of ψx yields that

ψ
(
~0g, ~vx

)
= a(x)µ(~vx) + b(x)[µ(x), µ(~vx)] + c(x)[µ(x), [µ(x), µ(~vx)]].

Now, if x 6= 0 is arbitrary, then x = σ(λ~e1) for some σ ∈ SU(2) and λ > 0. So, (σ, σ) · (λ~e1, e) =
(x, e) and if we consider σ−1(~vx) as an element of T(λ~e1,e)P∞, then ii) yields

ψ
(
~0g, ~vx

)
= ψ+(~vx) = ψ+

(
dL(σ,σ)

(
σ−1(~vx)

))
ii)
= Adσ ◦ ψ+

(
σ−1(~vx)

)
= Adσ ◦ ψ

(
~0g, σ

−1(~vx)
)

= a(λ~e1)µ(~vx) + b(λ~e1) [µ(x), µ(~vx)] + c(λ~e1)[µ(x), [µ(x), µ(~vx)]].

For x = 0 we have σ(x) = x for all σ ∈ SU(2) and analogous to the case x 6= 0 but now for
σt := exp(t~g) with ~g ∈ g we obtain from (B.2) that[

~g, ψ0

(
~0g, ~v0

)]
=
(
ψ0 ◦ µ−1

)
([~g, µ(~v0)]) ∀~g ∈ su(2), ∀~v0 ∈ T0M.

This gives
[
τi, ψ

(
~0g, ~ej

)]
= 2εijkψ

(
~0g, ~ek

)
and forces ψ(~v0) = a(0)µ(~v0) for all ~v0 ∈ T(0,e)P∞

where a(0) ∈ R is some constant. Together, this shows

ψ
(
~0g, ~vx

)
= a(x)µ(~vx) + b(x)[µ(x), µ(~vx)] + c(x)[µ(x), [µ(x), µ(~vx)]]

with functions a, b, c that depend on ‖x‖ in such a way that the whole expression is smooth.
Finally, to determine ψ

(
~g,~0x

)
for ~g ∈ su(2) = g, we consider µ−1([µ(x), ~g]) as an element

of T(x,e)P∞. Then by (B.1) we obtain from i) that ψ
(
~g, µ−1([µ(x), ~g])

)
− ~g = 0, hence

ψ
(
~g,~0x

)
= ~g − ψ

(
~0g, µ

−1([µ(x), ~g ])
)

= ~g − a(x)[µ(x), ~g ]− b(x)[µ(x), [µ(x), ~g ]]− c(x)[µ(x), [µ(x), [µ(x), ~g ]]]

= a(x)[~g, µ(x)] + b(x)[µ(x), [~g, µ(x)]] + c(x)[µ(x), [µ(x), [µ(x), ~g ]]] + ~g.
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