|
SIGMA 9 (2013), 047, 40 pages arXiv:1202.4673
https://doi.org/10.3842/SIGMA.2013.047
The Universal Askey-Wilson Algebra and DAHA of Type (C∨1,C1)
Paul Terwilliger
Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
Received December 22, 2012, in final form July 07, 2013; Published online July 15, 2013
Abstract
Let F denote a field, and fix a nonzero q∈F such that q4≠1.
The universal Askey-Wilson algebra Δq is the associative F-algebra defined by
generators and relations in the following way.
The generators are A, B, C.
The relations assert that each of
A+qBC−q−1CBq2−q−2,
B+qCA−q−1ACq2−q−2,
C+qAB−q−1BAq2−q−2
is central in Δq.
The universal DAHA ˆHq of type (C∨1,C1) is the associative F-algebra defined by
generators {t±1i}3i=0 and relations (i) tit−1i=t−1iti=1; (ii) ti+t−1i is central; (iii) t0t1t2t3=q−1.
We display an injection of F-algebras ψ:Δq→ˆHq that sends
A↦t1t0+(t1t0)−1,
B↦t3t0+(t3t0)−1,
C↦t2t0+(t2t0)−1.
For the map ψ we compute the image of the three central elements mentioned above.
The algebra Δq has another central element of interest, called the Casimir element Ω.
We compute the image of Ω under ψ.
We describe how the Artin braid group B3 acts on Δq and ˆHq as a group of automorphisms.
We show that ψ commutes with these B3 actions.
Some related results are obtained.
Key words:
Askey-Wilson polynomials; Askey-Wilson relations; rank one DAHA.
pdf (609 kb)
tex (36 kb)
References
- Alperin R.C., PSL2(Z)=Z2⋆Z3, Amer. Math. Monthly
100 (1993), 385-386.
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that
generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54
(1985), no. 319, iv+55 pages.
- Bergman G.M., The diamond lemma for ring theory, Adv. Math.
29 (1978), 178-218.
- Cherednik I., Double affine Hecke algebras, Knizhnik-Zamolodchikov
equations, and Macdonald's operators, Int. Math. Res. Not.
(1992), 171-180.
- Ion B., Sahi S., Triple groups and Cherednik algebras, in Jack,
Hall-Littlewood and Macdonald Polynomials, Contemp. Math.,
Vol. 417, Amer. Math. Soc., Providence, RI, 2006, 183-206,
math.QA/0304186.
- Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable,
Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge
University Press, Cambridge, 2009.
- Ito T., Terwilliger P., Double affine Hecke algebras of rank 1 and the
Z3-symmetric Askey-Wilson relations, SIGMA
6 (2010), 065, 9 pages, arXiv:1001.2764.
- Ito T., Terwilliger P., Weng C.-W., The quantum algebra Uq(sl2)
and its equitable presentation, J. Algebra 298 (2006),
284-301, math.QA/0507477.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials
and their q-analogues, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2010.
- Koornwinder T.H., The relationship between Zhedanov's algebra AW(3)
and the double affine Hecke algebra in the rank one case, SIGMA
3 (2007), 063, 15 pages, arXiv:math.QA/0612730.
- Koornwinder T.H., Zhedanov's algebra AW(3) and the double affine
Hecke algebra in the rank one case. II. The spherical subalgebra,
SIGMA 4 (2008), 052, 17 pages, arXiv:0711.2320.
- Korovnichenko A., Zhedanov A., Classical Leonard triples, in Elliptic
Integrable Systems (2004, Kyoto), Editors M. Noumi, K. Takasaki, Rokko Lectures in Mathematics, no. 18, Kobe University, 2005, 71-84.
- Oblomkov A., Double affine Hecke algebras of rank 1 and affine cubic
surfaces, Int. Math. Res. Not. 2004 (2004), 877-912,
math.RT/0306393.
- Sahi S., Nonsymmetric Koornwinder polynomials and duality, Ann. of
Math. (2) 150 (1999), 267-282, q-alg/9710032.
- Terwilliger P., The universal Askey-Wilson algebra, SIGMA
7 (2011), 069, 24 pages, arXiv:1104.2813.
- Terwilliger P., The universal Askey-Wilson algebra and the equitable
presentation of Uq(sl2), SIGMA 7 (2011),
099, 26 pages, arXiv:1107.3544.
- Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations,
J. Algebra Appl. 3 (2004), 411-426,
math.QA/0305356.
- Wiegmann P.B., Zabrodin A.V., Algebraization of difference eigenvalue equations
related to Uq(sl2), Nuclear Phys. B 451 (1995),
699-724, cond-mat/9501129.
- Zhedanov A.S., "Hidden symmetry" of Askey-Wilson polynomials,
Theoret. and Math. Phys. 89 (1991), 1146-1157.
|
|