Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 045, 9 pages      arXiv:1012.5225      https://doi.org/10.3842/SIGMA.2012.045

High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

Jen-Chi Lee a, Catherine H. Yan b and Yi Yang a
a) Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
b) Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

Received April 23, 2012, in final form July 10, 2012; Published online July 18, 2012

Abstract
We give a complete proof of a set of identities (7) proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

Key words: string scattering amplitudes; stirling number identity.

pdf (314 kb)   tex (15 kb)

References

  1. Amati D., Ciafaloni M., Veneziano G., Can spacetime be probed below the string size?, Phys. Lett. B 216 (1989), 41-47.
  2. Amati D., Ciafaloni M., Veneziano G., Classical and quantum gravity effects from Planckian energy superstring collisions, Internat. J. Modern Phys. A 3 (1988), 1615-1661.
  3. Amati D., Ciafaloni M., Veneziano G., Superstring collisions at Planckian energies, Phys. Lett. B 197 (1987), 81-88.
  4. Andreev O., Remarks on the high-energy behavior of string scattering amplitudes in warped spacetimes. II, Phys. Rev. D 71 (2005), 066006, 6 pages, hep-th/0408158.
  5. Brower R.C., Polchinski J., Strassler M.J., Tan C.I., The pomeron and gauge/string duality, J. High Energy Phys. 2007 (2007), no. 12, 005, 62 pages, hep-th/0603115.
  6. Chan C.T., Ho P.M., Lee J.C., Teraguchi S., Yang Y., High-energy zero-norm states and symmetries of string theory, Phys. Rev. Lett. 96 (2006), 171601, 4 pages, hep-th/0505035.
  7. Chan C.T., Lee J.C., Zero-norm states and high-energy symmetries of string theory, Nuclear Phys. B 690 (2004), 3-20, hep-th/0401133.
  8. Chan C.T., Lee J.C., Yang Y., Anatomy of zero-norm states in string theory, Phys. Rev. D 71 (2005), 086005, 14 pages, hep-th/0501020.
  9. Chan C.T., Lee J.C., Yang Y., Scatterings of massive string states from D-brane and their linear relations at high energies, Nuclear Phys. B 764 (2007), 1-14, hep-th/0610062.
  10. Chung T.D., Lee J.C., Discrete gauge states and w charges in c=1 2D gravity, Phys. Lett. B 350 (1995), 22-27, hep-th/9412095.
  11. Danilov G.S., Lipatov L.N., BFKL pomeron in string models, Nuclear Phys. B 754 (2006), 187-232, hep-ph/0603073.
  12. Gross D.J., High-energy symmetries of string theory, Phys. Rev. Lett. 60 (1988), 1229-1232.
  13. Gross D.J., Strings at super-Planckian energies: in search of the string symmetry. Physics and mathematics of strings, Philos. Trans. Roy. Soc. London Ser. A 329 (1989), 401-413.
  14. Gross D.J., Mañes J.L., The high energy behavior of open string scattering, Nuclear Phys. B 326 (1989), 73-107.
  15. Gross D.J., Mende P.F., String theory beyond the Planck scale, Nuclear Phys. B 303 (1988), 407-454.
  16. Gross D.J., Mende P.F., The high-energy behavior of string scattering amplitudes, Phys. Lett. B 197 (1987), 129-134.
  17. He S., Lee J.C., Takahashi K., Yang Y., Massive superstring scatterings in the Regge regime, Phys. Rev. D 83 (2011), 066016, 21 pages, arXiv:1001.5392.
  18. He S., Lee J.C., Yang Y., Exponential fall-off behavior of Regge scatterings in compactified open string theory, arXiv:1012.3158.
  19. Kachelriess M., Plumacher M., Remarks on the high-energy behaviour of cross-sections in weak-scale string theories, hep-ph/0109184.
  20. Kao H.C., Lee J.C., Decoupling of degenerate positive-norm states in Witten's string field theory, Phys. Rev. D 67 (2003), 086003, 9 pages, hep-th/0212196.
  21. Kauers M., Summation algorithms for Stirling number identities, J. Symbolic Comput. 42 (2007), 948-970.
  22. Ko S.L., Lee J.C., Yang Y., Patterns of high energy massive string scatterings in the Regge regime, J. High Energy Phys. 2009 (2009), no. 6, 028, 21 pages, arXiv:0812.4190.
  23. Lee J.C., Calculation of zero-norm states and reduction of stringy scattering amplitudes, Progr. Theoret. Phys. 114 (2005), 259-273, hep-th/0302123.
  24. Lee J.C., Decoupling of degenerate positive-norm states in string theory, Phys. Rev. Lett. 64 (1990), 1636-1638.
  25. Lee J.C., New symmetries of higher spin states in string theory, Phys. Lett. B 241 (1990), 336-342.
  26. Lee J.C., Mitsuka Y., Yang Y., States scattered from D-particle in the Regge regime and factorized ratios of fixed angle scatterings, Progr. Theoret. Phys. 126 (2011), 397-417, arXiv:1101.1228.
  27. Muzinich I.J., Soldate M., High-energy unitarity of gravitation and strings, Phys. Rev. D 37 (1988), 359-367.
  28. Polchinski J., String theory. Vol. I. An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2005.
  29. Soldate M., Partial-wave unitarity and closed-string amplitudes, Phys. Lett. B 186 (1987), 321-327.

Previous article  Next article   Contents of Volume 8 (2012)