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Abstract. We formulate an approach to the geometry of Riemann–Cartan spaces provided
with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics
inducing effective nonlinear and affine connections. Such geometries can be modelled by
moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types
of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lagrange spaces with connections
compatible to a general nonsymmetric metric structure. Elaborating a metrization pro-
cedure for arbitrary distinguished connections, we define the class of distinguished linear
connections which are compatible with the nonlinear connection and general nonsymmet-
ric metric structures. The nonsymmetric gravity theory is formulated in terms of metric
compatible connections. Finally, there are constructed such nonholonomic deformations of
geometric structures when the Einstein and/or Lagrange–Finsler manifolds are transformed
equivalently into spaces with generic local anisotropy induced by nonsymmetric metrics and
generalized connections. We speculate on possible applications of such geometric methods
in Einstein and generalized theories of gravity, analogous gravity and geometric mechanics.
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1 Introduction

The possibility that there are gravitational and matter field interactions described by non-
symmetric metrics has attracted attention beginning 1925, when A. Einstein [1, 2] proposed
an unified theory of physical field (there were considered nonsymmetric metrics and complex
tensor fields with Hermitian symmetry). Then, at the second step, L.P. Eisenhart investigated
the properties of generalized Riemannin spaces enabled with nonsymmetric metrics [3, 4]. He
put the problem to define the class of linear connections which are compatible with the sym-
metric part of a nonsymmetric metric (the Eisenhart problem). Further developments extended
the problem to compatibility with general nonsymmetric metrics.

The third step of developments on nonsymmetric theory of gravity can be associated with
J. Moffat works [5, 6] and further modifications proposed and outlined in [7, 8], generalization
to noncommutative quantum gravity [9], and applications in modern cosmology [10, 11, 12].

The mentioned Eisenhart problem was solved in an important particular case in [13] and
than approached in a form when the compatibility is with nonsymmetric metrics on generalized

?This paper is a contribution to the Special Issue “Élie Cartan and Differential Geometry”. The full collection
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Lagrange spaces (extending the Riemann–Finsler geometry) in [14], see a review of results, on our
conventional forth direction in geometry and physics with nonsymmetric metrics, in Chapter 8
of monograph [15].

A set of additional arguments for geometric and physical models with nonsymmetric metrics
follows from the theory of nonholonomic Ricci flows [16, 17] (the fifth direction of research
with nonsymmetric metrics). It was mentioned that nonholonomic distributions on manifolds
result in nonholonomic deformations of geometric objects (local frames, metrics, connections,
functional and effective thermodynamical effects, . . . ) which define naturally new classes of
canonical metric compatible linear connections with nonsymmetric Ricci tensor. Such nonsym-
metric sources in the evolution equations for the nonholonomically constrained Ricci flows, in
general, give rise to nonsymmetric components of metrics. Following certain geometric methods
of generating exact solutions for Ricci flows of physically valuable metrics in gravity theories
[18, 19, 20, 21, 22], we constructed in explicit form [23] new classes of solutions defining evolu-
tions of Taub NUT, solitonic and pp-waves and Schwarzschild metrics, in general relativity, into
nonsymmetric metrics. It was concluded that nonholonomic spaces with nonsymmetric metrics
and generalized connections arise naturally in modern geometry and physics if we try to describe
a constrained dynamics and flow evolution of physical processes and geometrical/physical ob-
jects; a rigorous study of such theories presents a substantial interest.

The aim of this work is to elaborate a geometric approach to physical models and spaces
enabled with nonholonomic (equivalently, nonintegrable/constrained) distributions and adapted
frames with associated nonlinear connection structures and nonsymmetric metrics. We shall
formulate a solution of the Eisenhart problem on nonholonomic manifolds1 when modelling of
various types of generalizations, including those with nonsymmetric metrics and supersymmet-
ric/spinor/noncommutative variables of the Riemann–Finsler and Lagrange–Hamilton geome-
tries, is possible. This way, we shall provide a synthesis of the methods and ideas developed in
directions two, three and four (mentioned above) in a general nonsymmetric metric compatible
form, for various classes of linear and nonlinear connection, in strong relations to the fifth di-
rection following the methods of geometry of nonholonomic manifolds. As general references on
nonholonomic manifolds enabled with nonlinear connection structure, on the geometry of spaces
with generic local anisotropy and applications to modern physics and mechanics, we cite the
works [24, 25].

It should be emphasized that compatibility between the metric and general connection struc-
tures is very important not only for modelling physical theories in a more simplified geometrical
form but also crucial for further both conceptual and technical developments of spinor analysis
and theory of Dirac operators, on nonholonomic spaces with nonsymmetric metrics. A spinor
formulation for nonsymmetric metrics and related nonholonomic manifolds will allow us to estab-
lish a connection with the geometry of nonholonomic Clifford bundles and algebroids [26, 27, 28],
noncommutative and/or nonholonomic geometry and gravity [29, 30] and geometric quantiza-
tion [31] developed following the methods of Lagrange and Finsler geometry and applied to the
Einstein gravity and generalizations.

The work is organized as follows. In Section 2 we outline the algebraic properties of non-
holonomic manifolds of even dimension enabled with nonlinear connection and nonsymmetric
metric structures. The basic results from the differential geometry of distinguished connec-
tions compatible with nonsymmetric metrics are provided in Section 3. A metrization method
for distinguished connections with nonsymmetric metrics is formulated in Section 4. Section 5
is devoted to the main theorems defining the set of distinguished connections being compati-
ble with general nonsymmetric metric structures. In Section 6 we formulate the nonsymmetric
gravity in terms of nonholonomic frames with associated nonlinear connection structure and dis-
tinguished linear connections; we emphasize the possibility to perform all constructions in metric

1For instance, on (pseudo) Riemannian manifolds enabled with nonholonomic distributions.
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compatible form. Some models of nonsymmetric Lagrange and Finsler spaces are analyzed in
Section 7, where there are considered the conditions when such geometries can be generated by
nonholonomic deformations of Einstein spaces and result in analogous modelling of gravitational
effects by corresponding nonholonomic distributions. Conclusions and discussion are presented
in Section 8. Some important local formulas are outlined in Appendix.

Remarks on notations and proofs of results. In this work, one follows the conventions
from [24]. The Einstein’s convention on summing “up” and “low” indices will be applied if the
contrary will not be stated. We shall use “boldface” letters, A,Bα

β, . . . for geometric objects
and spaces adapted to (provided with) a nonlinear connection structure. In general, small Greek
indices are considered as abstract ones, which may split into horizontal (h) and vertical (v)
indices, for instance α = (i, a), β = (j, b), . . . where with respect to a coordinate basis they
run values of type i, j, . . . = 1, 2, . . . , n and a, b, . . . = n + 1, n + 2, . . . , n + m, for n ≥ 2 and
m ≥ 1. There are introduced also left “up” and “low” labels of geometric objects: for instance,
tϕ is the matrix transposed to a matrix ϕ, and nR = {nRα

βγτ}, and nRic(nD) = {nR βγ} are
respectively the Riemannian and Ricci tensors for the normal d-connection nΓα

βγ . We shall omit
certain labels and indices if that will not result in ambiguities.

We shall not present detailed proofs if they can be obtained by local computations similar
to those presented in [24, 25, 15, 7, 8]. The main difference is that in this article we work on
nonholonomic manifolds with locally fibred structure defined by the nonlinear connection struc-
ture but not on tangent bundles or on usual Riemann–Cartan spaces and their nonsymmetric
metric generalizations. With respect to certain classes of associated nonholonomic frames, the
algebraic structure of formulas is similar to the case of integrable nonholonomic distributions.
This allows us to simplify substantially the proofs of theorems even a formal dubbing into the
so-called horizontal and vertical components exists.

2 Nonsymmetric metrics on nonholonomic manifolds

In this section we outline the algebraic properties of nonholonomic manifolds of even dimension
enabled with nonlinear connection and nonsymmetric metric structures. We redefine on such
spaces with local fibred structure the constructions from [13, 14, 15].

Let us consider a smooth manifold Vn+n of even dimension n + n (in a particular case, for
a tangent bundle, Vn+n = TM, where M is a smooth manifold of dimension n). We denote
local coordinates in the form u = (x, y), or uα = (xi, ya), where indices i, j, k, . . . = 1, 2, . . . , n
and a, b, c, . . . = n + 1, n + 2, . . . , n + n (on TM, we can use the same indices for both base and
fiber indices).

Definition 2.1. A nonlinear connection (N-connection) structure N is defined by a nonholo-
nomic (nonintegrable) distribution (a Whitney sum)

TVn+n = hVn+n ⊕ vVn+n (2.1)

into conventional horizontal (h) and vertical (v) subspaces.

In local form, a N-connection is given by its coefficients Na
i (u), for

N = Na
i (u)dxi ⊗ ∂

∂ya
, (2.2)

stating on Vn+n a preferred frame (vielbein) structure

eν =
(
ei =

∂

∂xi
−Na

i (u)
∂

∂ya
, ea =

∂

∂ya

)
, (2.3)
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and a dual frame (coframe) structure

eµ =
(
ei = dxi, ea = dya + Na

i (u)dxi
)
. (2.4)

The vielbeins (2.4) satisfy the nonholonomy relations

[eα, eβ] = eαeβ − eβeα = wγ
αβeγ

with (antisymmetric) nontrivial anholonomy coefficients wb
ia = ∂aN

b
i and wa

ji = Ωa
ij , where

Ωa
ij = ej (Na

i )− ei

(
Na

j

)
(2.5)

are the coefficients of N-connection curvature. The particular holonomic/integrable case is
selected by the integrability conditions wγ

αβ = 0.2

Definition 2.2. A N-anholonomic manifold is a manifold enabled with N-connection struc-
ture (2.1).

The nonholonomic properties of a N-anholonomic manifold are completely defined by the
the N-adapted bases (2.3) and (2.4). For instance, we can always transform an arbitrary mani-
fold into a N-anholonomic one by enabling it with a set of coefficients Na

i for a corresponding
N-connection structure. Equivalently, we can say that such coefficients define a class of (li-
nearly depending on Na

i ) linear frames. A geometric/physical motivation for such constructions
can be provided if, for instance, the N-coefficients are induced by a (regular) Lagrange struc-
ture (in geometric mechanics, see [25, 15]), or by certain off-diagonal coefficients of symmetric
and/or nonsymmetric metrics, see examples and details in [24, 30, 17, 23]. A manifold is not
N-anholonomic if it is enabled with a trivial N-connection structure when the corresponding
nonholonomic coefficients vanish.

One says that a geometric object is N-adapted (equivalently, distinguished), i.e. a d-object,
if it can be defined by components adapted to the splitting (2.1) (one uses terms d-vector, d-
form, d-tensor)3. For instance, a d-vector is written in the form X = Xαeα = Xiei + Xaea

and a one d-form X̃ (dual to X) is X̃ = Xαeα = Xie
i + Xae

a. On N-anholonomic manifold
it is convenient to work with d-objects because in this case all geometric and physical objects
are derived in a form adapted to the N-connection structure (i.e. to the corresponding class of
imposed nonholonomic constraints). Of course, any d-tensor can be transformed into a general
tensor but in such a case we “do not take care” about existing N-connection structure.

There is an almost complex structure F associated to a prescribed N-connection structure N,
which is defined by operators

F
(
ei =

∂

∂xi
−Na

i

∂

∂ya

)
= −ei = − ∂

∂yi
,

F
(

ei =
∂

∂yi

)
= ei =

∂

∂xi
−Na

i

∂

∂ya
(2.6)

and has the property F2 = −I, where I is the identity matrix.
In this work, we study the geometric properties of spaces (ǧij ,Vn+n,N), where the h-subspace

is enabled with a nonsymmetric tensor field (metric) ǧij = gij + aij , where the symmetric part
gij = gji is nondegenerated and aij = −aji.

2we use boldface symbols for spaces (and geometric objects on such spaces) enabled with N-connection struc-
ture.

3As general references on the geometry of nonholonomic manifolds and applications to modern physics, we
cite [24, 30] and, for former constructions on tangent and vector bundles, [25, 15]. Readers may consult those
works and provided there references and appendices for details and applications of the formalism of so-called d-
tensors and d-objects. We note that in this work similar constructions are generalized to the case when manifolds
(in general, nonholonomic ones) are enabled with nonsymmetric metric structures and related linear connection
structures.
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Definition 2.3. A d-metric ǧij(x, y) is of index k if there are satisfied the properties:

1) det |gij | 6= 0 and
2) rank |aij | = n− k = 2p, for 0 ≤ k ≤ n.

We denote by gij the reciprocal (inverse) to gij d-tensor field. The matrix ǧij is not invertible
unless for k = 0.

Definition 2.4. A N-anholonomic (we shall use also the term nonholonomic) Eisenhart space
of index k is a nonholonomic manifold (ǧij ,Vn+n,N) provided with d-metric ǧij = gij + aij of
index k.

For k > 0 and a positive definite gij(x, y), on each domain of local chart there exists k
d-vector fields ξi

i′ , where i = 1, 2, . . . , n and i′ = 1, . . . , k with the properties

aijξ
j
j′ = 0 and gijξ

i
i′ξ

j
j′ = δi′j′ .

If gij is not positive definite, we shall assume the existence of k linearly independent d-vector
fields with such properties. For arbitrary signatures of gij , we can chose any k independent and
orthonormalized vectors defined as a linear combination of a linear basis of n vectors.

We note that we can define completely the metric properties on Vn+n if we state additionally
that this space is provided with the metric structure

ǧ = g + a = ǧαβeα ⊗ eβ = ǧije
i ⊗ ej + ǧabea ⊗ eb,

g = gαβeα ⊗ eβ = gije
i ⊗ ej + gabea ⊗ eb,

a = aije
i ∧ ej + acbec ∧ eb, (2.7)

where the v-components ǧab are defined by the same coefficients as ǧij .

Definition 2.5. A h-v-metric on a N-anholonomic manifold is a second rank d-tensor of
type (2.7).

We can define the local d-covector fields ηi′
i = gijξ

j
i′ and the d-tensors of type (1, 1), lij and mi

j ,
satisfying the conditions

lij = ξi
i′η

i′
j and mi

j = δi
j − ξi

i′η
i′
j , for i′ = 1, . . . , k;

lij = 0 and mi
j = δi

j , for k = 0.

For further computations, it is useful to use a matrix calculus. One denotes A = (aij), B = (bij),
or C = (ci

j), where the index i specifies the row and the index j specify the column. Thus
bijajk = ci

k means BA = C and aijb
jk = ck

i means AB = tC, the transpose of C. We shall
consider the matrices

ĝ = (gij), â = (aij), ξ̂ = (ξi
i′), l̂ = (lij),

η̂ = (ηi′
i ), m̂ = (mi

j), δ̂′ = (δi′j′), δ̂ = (δi
j) (2.8)

for which the formulas

âξ̂ = 0, tξ̂ĝξ̂ = δ̂, tη̂ = ĝξ̂, l̂ = ξ̂η̂, m̂ = δ̂ − l̂,

imply

âl̂ = 0, âm̂ = â, ξ̂η̂ = δ̂, η̂l̂ = η̂, η̂m̂ = 0,

ĝl̂ = tη̂η̂, ĝm̂ = ĝ − tη̂η̂, ĝl̂−1 = tξ̂ξ̂, m̂ĝ−1 = ĝ − tξ̂ξ̂. (2.9)
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One follows that the matrices ĝl̂, ĝm̂, l̂ĝ−1, m̂ĝ−1 are symmetric. Similar matrices and formulas
can be defined on the v-subspaces. They are labelled, for instance, ĝ = (gab), â = (abc), ξ̂ = (ξa

a′),
l̂ = (lab ), . . . . We shall write hĝ or v ĝ if it would be necessary to emphasize that a corresponding
matrix is defined on h- or v-subspaces. For simplicity, we shall present only the formulas for the
h-subspace and omit similar ones for the v-subspace.

Let us denote by dX (hV) the module of d-vector fields on hV (we note that hV = M if we
take Vn+n = TM). One considers the submodules

hK =
{
ξj ∈ dX (hVn) | aijξ

j = 0
}
,

hH =
{
ζi ∈ dX (hVn) | gijξ

iζj = 0, ∀ ξi ∈ K
}
. (2.10)

The elements of hK are globally defined since they are in the kernel of the mapping ξj → aijξ
j .

The structure hH is also global because its elements are orthogonal to hK which is locally
spanned by (ξi

i′). One holds the following mutually equivalent conditions:

ζi ∈ hH, ηi′
i ζi = 0, lijζ

j = 0. (2.11)

One also follows:

Proposition 2.1. The system of linear equations aijX
j = 0 and ηi′

i Xi = 0 has only the trivial
solution Xj = 0.

The formulas (2.9) and (2.11) result in properties lijX
j ∈ hK and mi

jX
j ∈ hH, for every

Xj ∈ dX (hVn), and

l̂ + m̂ = δ̂, l̂2 = l̂, m̂2 = m̂, l̂m̂ = m̂l̂ = 0, t l̂ĝ = 0, (2.12)

proving that the submodules hK and hH are orthogonal and supplementary, i.e. dX (hV) =
hK+hH, hK ∩ hH = {0} and gijξ

iζj = 0, for every ξi ∈ hK and ζj ∈ hH. Following formu-
las (2.12), we conclude that l̂ and m̂ are unique projectors (tensor fields) not depending on ξ̂
which are completely determined, respectively, by hK and hH and globally defined on Vn+n.

The next step is to extend the matrix â to a nonsingular skew symmetric one of dimension

(n + k, n + k), ã =
[

â −tϕ
ϕ 0

]
. The inverse matrix ã−1, satisfying the condition ãã−1 = δ̂, has

the form

ã−1 =

[
ǎ ξ̂
tξ̂ 0

]
, (2.13)

where the matrix ǎ =
(
ǎij

)
does not depend on the choice of ξ̂ and it is uniquely defined by

âǎ = tm̂ and l̂ǎ = 0, i.e. this matrix is uniquely defined on Vn+n.

If the nonsymmetric part of metric vanishes, â = 0, we have ϕ = ξ̂−1, l̂ = δ̂, m̂ = 0 and
ǎ = 0. In the case k = 0, we have l̂ = 0, m̂ = δ̂ and ǎ = â−1 and if additionally ĝ = 0, the
constructions reduces to an almost symplectic structure.

3 Distinguished connections and nonsymmeric metrics

We consider the basic properties of linear connections adapted to the N-connection structure on
a nonholonomic manifold Vn+n enabled with nonsymmetric metric structure g.
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3.1 Torsion and curvature of d-connections

In general, the concept of linear connection (adapted or not adapted to a N-connection structure)
does not depend on the concept of metric (symmetric or nonsymmetric).

Definition 3.1. A distinguished connection (d-connection) D on Vn+n is a N-adapted linear
connection, preserving by parallelism the vertical and horizontal distribution (2.1).

In local form, a d-connection D =
(
hD, vD

)
is given by its coefficients Γγ

αβ = (Li
jk, L

a
bk, C

i
jc,

Ca
bc), where hD = (Li

jk, L
a
bk) and vD = (Ci

jc, C
a
bc) are respectively the covariant h- and v-

derivatives.
The torsion T of a d-connection D, is defined by the d-tensor field

T (X,Y) + DXY −DYX− [X,Y],

for any d-vectors X = hX+vX = hX+ vX and Y = hY+vY, with a corresponding N-adapted
decomposition into

T (X,Y) = {hT (hX, hY), hT (hX, vY), hT (vX, hY), hT (vX, vY),
vT (hX, hY), vT (hX, vY), vT (vX, hY), vT vX, vY)}. (3.1)

The nontrivial N-adapted coefficients of

T =
{
Tα

βγ = −Tα
γβ =

(
T i

jk, T
i
ja, T

a
jk, T

b
ja, T

b
ca

)}
can be computed by introducing X = eα and Y = eβ into (3.1), see formulas (A.1) in Appendix
and [24].

The curvature of a d-connection D is defined

R(X,Y) + DXDY −DYDX −D[X,Y],

with N-adapted decomposition

R(X,Y)Z = {R(hX, hY)hZ, R(hX, vY)hZ, R(vX, hY)hZ, R(vX, vY)hZ,

R(hX, hY)vZ, R(hX, vY)vZ, R(vX, hY)vZ, R(vX, vY)vZ}. (3.2)

The formulas for local N-adapted components and their symmetries, of the d-torsion and d-
curvature, can be computed by introducing X = eα, Y = eβ and Z = eγ in (3.2). The
nontrivial N-adapted coefficients

R =
{
Rα

βγδ =
(
Ri

hjk, R
a
bjk, R

i
hja, R

c
bja, R

i
hba, R

c
bea

) }
are given by formulas (A.2) in Appendix, see also [24].

Contracting the first and forth indices R βγ = Rα
βγα, one gets the N-adapted coefficients

for the Ricci tensor

Ric + {Rβγ = (Rij , Ria, Rai, Rab)},

see formulas (A.3) in Appendix and [24]. It should be noted here that for general d-connections
the Ricci tensor is not symmetric, i.e. Rβγ 6= Rγβ .

On spaces of dimension n+n, it is convenient to work with a particular class of d-connections.

Definition 3.2. A normal d-connection nD is compatible with the almost complex structu-
re F (2.6), i.e. satisfies the condition

nDXF = 0, (3.3)

for any d-vector X on Vn+n.
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From local formulas for (3.3), one follows:

Theorem 3.1. A normal d-connection is characterized by a pair of local coefficients nΓ
γ
αβ =(

nLi
jk, nCa

bc

)
defined by conditions

nDek
(ej) = nLi

jkei, nDek
(ea) = nLb

akeb : for j = a, i = b, nLi
jk = nLb

ak,

nDec(ej) = nCi
jcei, nDec(ea) = nCb

aceb : for j = a, i = b, nCi
jc = nCb

ac.

By a straightforward local calculus introducing the pairs of coefficients fornΓ
γ
αβ , respectively,

in (3.1) and (3.2), see also formulas (A.1) and (A.2) in Appendix, we prove

Corollary 3.1. The N-adapted coefficients of torsion nT = {nTα
βγ} and curvature nR =

{nRα
βγτ} of the normal d-connection nD are defined respectively by formulas

nT i
jk = nLi

jk − nLi
kj , nT i

ja = nCi
ja, nT a

ji = Ωa
ji,

nT a
bi =

∂Na
i

∂yb
− nLa

bi, nT a
bc = nCa

bc − nCa
cb,

and

nRi
hjk = ek

(
nLi

hj

)
− ej

(
nLi

hk

)
+ nLm

hjnLi
mk − nLm

hknLi
mj − nCi

haΩ
a
kj ,

nRc
bka = ea (nLc

bk)− nDk (nCc
ba) + nCc

bdnT c
ka,

nRa
bcd = ed (nCa

bc)− ec (nCa
bd) + nCe

bcnCa
ed − nCe

bdnCa
ec.

In the geometry of N-anholonomic manifolds and Finsler–Lagrange spaces an important role
is given to a special type of d-connections:

Definition 3.3. A normal d-connection cΓ
γ
αβ =

(
cL

i
jk, cC

a
bc

)
on Vn+n is a Cartan d-connection

if it satisfies the conditions

h
c Dky

a = 0 and v
cDay

b = δb
a. (3.4)

By an explicit local N-adapted calculus, we can verify:

Proposition 3.1. The N-connection and Cartan d-connection coefficients satisfy the conditions

Na
i = yb

cL
a
bi and yb

cC
a
bc = 0

and the d-torsions and d-curvatures are related by formulas

cT
a
kj = Ωa

kj = yb
cR

a
bjk, cT

c
bi = ya

cR
c
akb, cT

a
bc = yd

cR
a
dbc.

Finally, we note that on N-anholonomic manifolds we can work equivalently with different
classes of d-connections. For applications in modern physics [24, 30, 17, 23], the constructions
with metric compatible d-connections which are defined in a unique way by a metric and certain
prescribed torsion structures are considered to be more related to standard theories.

3.2 Distinguished connections compatible with nonsymmetric metrics

In this section, we define a class of d-connections which are compatible with nonsymmetric
metric structures.

Let us consider a nonholonomic manifold Vn+n with fixed N-connection N and enabled with
a d-connection Dα = (Di, Da) and nonsymmetric metric structure ǧ = g + a. A nonsymmet-
ric metric ǧ is characterized by d-tensor fields/matrices (2.8) satisfying the properties (2.9)
and (2.12). Considering actions of a general d-connection D on the mentioned formulas, one
prove:
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Proposition 3.2. One holds the following formulas for the h-covariant (v-covariant) derivatives
of the coefficients of matrices (2.8) defined globally by a nonsymmetric metric structure:

lipl
q
jDkl

p
q = 0, mi

pDkl
p
q = lsq Dkl

i
s, ms

jDkl
i
s = liq Dkl

q
j ,

lpi l
q
jDkapq = 0, asj ǎ

irDkl
s
r = 0, lsj(ǎ

irDkars −Dkl
i
s) = 0 (3.5)

(one v-subspace the formulas are similar but with hD = {Dk} → vD = {Da}).

Proof. In order to prove the formulas (3.5), it is convenient to use the matrix covariant h-
derivative Dk l̂ =

(
Dkl

i
j

)
and v-derivative Da l̂ =

(
Dal

i
j

)
which for l̂2 = l̂ imply respectively

Dk l̂l̂ + l̂Dk l̂ = l̂ and Da l̂l̂ + l̂Da l̂ = l̂. One should be used the matrix relation âl̂ = 0 to get the
formulas containing the anti-symmetric part of metric. �

We shall work with a more restricted class of d-connections on Vn+n:

Definition 3.4. A d-connection D = {Γγ
αβ =

(
Li

jk, C
a
bc

)
} is compatible with a nonsymmetric

d-metric ǧ if

Dkǧij = 0 and Daǧij = 0. (3.6)

For the d-metric (2.7), the equations (3.6) are written Dkgij = 0, Dagbc = 0, Dkaij = 0,
Deabc = 0.

In such cases, there are additional to (3.5) properties:

Proposition 3.3. The d-tensor fields l̂ = (lij), m̂ = (mi
j), ǧ = (gij) and ǎ =

(
ǎij

)
satisfy the

conditions

Dkl
i
j = 0, Dkm

i
j = 0, Dkg

ij = 0, Dkǎ
ij = 0,

Dal
b
c = 0, Dam

b
c = 0, Dag

bc = 0, Daǎ
bc = 0,

for any D compatible to ǧ.

Proof. It is important to take the covariant h- and v-derivatives for formulas aijξ
i
i′ = 0,

gijξ
i
i′ξ

j
j′ = δi′j′ , ars ǎsj = mj

r and lis ǎsj = 0 and use the properties (2.9) and (2.12). �

It is important to define the geometric properties of tensor fields from Proposition 3.3 because
they are used to formulate and prove main Theorems 5.3 and 5.4.

To work with metric compatible connections is not only a preferred approach in order to
elaborate more “simple” physical theories, but it is motivated geometrically by the fact that
there is a method of metrization for arbitrary d-connections.

4 (Non)symmetric metrization procedure of d-connections

Usually, in gravity theories, one fix a linear connection connection structure which is, or not,
metric compatible and, in general, with nontrivial torsion (in general relativity, this is the Levi-
Civita connection which by definition is both metric compatible and torsionless). In Finsler
geometry, A. Kawaguchi [32, 33, 34] proposed the method of metrization of d-connections which
was further developed for Lagrange spaces, see [25, 15]. The approach was also used for Einstein
and Riemann–Cartan spaces defined by generic off-diagonal metrics when the nonholonomic
deformations were considered not only for frame and metric structures but also for linear con-
nections in order to generate such ansatz for geometric objects when the field equations became
exactly integrable for certain systems on nonlinear partial differential equations, see review [24].
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It was emphasized that imposing additional constraints on integral varieties of solutions for more
general classes of connections it is possible to generate solutions for the Levi-Civita connection.
In this section, we show how the metrization method can be applied on N-anholonomic manifolds
enabled with nonsymmetric metrics.

A fixed metric structure on a nonholonomic manifold induces certain (Obata) type operators
defining the set of d-connections being compatible with this metric structure. The aim of this
section is to define the properties of such operators.

4.1 Metrization methods with symmetric metrics

By straightforward computations, for symmetric metrics on vector bundles, one proved two
important results which hold true for N-anholonomic manifolds:

1. Kawaguchi’s metrization: To any fixed d-connection ◦D we can associate a compati-
ble with a metric g d-connection D, satisfying the condition DXg = 0 for any d-vector
on Vn+n. The N-adapted coefficients for d-connections are related by formulas

Li
jk = ◦L

i
jk +

1
2
gim

◦Dkgmj , La
bk = ◦L

a
bk +

1
2
gac

◦Dkgcb,

Ci
jc = ◦C

i
jc +

1
2
gim

◦Dcgmj , Ca
bc = ◦L

a
bc +

1
2
gae

◦Dcgeb.

2. Miron’s procedure: The set of d-connections {D} satisfying the conditions DXg = 0 for
a given g is defined by formulas

Li
jk = L̂i

jk + −Oei
kmXm

ej , La
bk = L̂a

bk + −Oca
bdY

d
ck,

Ci
jc = Ĉi

jc + +Omi
jk Xk

mc, Ca
bc = Ĉa

bc + +Oea
bdY

d
ec,

where

±Oih
jk =

1
2
(δi

jδ
h
k ± gjkg

ih), ±Oca
bd =

1
2
(δc

bδ
a
d ± gbdg

ca) (4.1)

are the so-called the Obata operators; Xm
ej , Xk

mc, Yd
ck and Yd

ec are arbitrary d-tensor fields
and Γ̂γ

αβ =
(
L̂i

jk, L̂
a
bk, Ĉ

i
jc, Ĉ

a
bc

)
, with

L̂i
jk =

1
2
gir (ekgjr + ejgkr − ergjk) ,

L̂a
bk = eb(Na

k ) +
1
2
gac

(
ekgbc − gdc ebN

d
k − gdb ecN

d
k

)
,

Ĉi
jc =

1
2
gikecgjk, Ĉa

bc =
1
2
gad (ecgbd + ecgcd − edgbc) (4.2)

is the canonical d-connections uniquely defined by the coefficients of d-metric g =[gij , gab]
and N-connection N = {Na

i } in order to satisfy the conditions D̂Xg = 0 and T̂ i
jk = 0 and

T̂ a
bc = 0 but T̂ i

ja, T̂ a
ji and T̂ a

bi are not zero, see formulas (A.1). On Vn+n, it is possible
to work with the normal, or the Cartan, d-connection as we defined by (3.3), or (3.4).

4.2 Properties of Obata operators for nonsymmetric d-metrics

The A. Kawaguchi and R. Miron metrization procedures can be generalized for nonsymmetric
metrics ǧ = g + a (2.7) on N-anholonomic manifolds. For simplicity, we consider the formulas
for h-subspaces of a Vn+n with fixed N-connection structure.
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On h-subspace, for the symmetric part g of ǧ, the Obata operators are of type [a]
h O = {±Oih

jk}
(4.1), for [a] = ±. In general, we have on Vn+n the operators O =

(
[a]
h O,

[a]
v O

)
. These operators

act on d-tensor fields of type (1, 2) following the rule
(±
h OX

)i

jk
= ±Oih

sjX
s
hk, when the product

of Obata h-operators, [a]
h O

[b]
h O, is defined(

[a]
h O

[b]
h O

)im

sj
= [a]

h Oir
kj

[b]
h Okm

sr . (4.3)

We can check by explicit computations:

Proposition 4.1. There are satisfied the properties

−
h O + +

h O = I,
([a]
h O

)2 = [a]
h O, −

h O+
h O = +

h O−
h O = 0,

where I is the identity matrix δi
sδ

r
j , when IX = X.

This Proposition states that the operators O are supplementary projectors on the module of
d-tensor fields of type (1, 2).

The skewsymmetric part a of ǧ defines an additional set of Obata operators Φ =
([a]
h Φ,

[a]
v Φ

)
,

where, for instance, 2
(±
h Φ

)ir

sj
= δi

sδ
r
j ±

(
lisl

r
j + asj ǎ

ir
)
.

Introducing the operator hθ = {θir
sj}, with θir

sj = 1
2

(
lism

r
j + mi

s lrj
)
, one proves by algebraic

computations:

Proposition 4.2. One holds the relations

−
h Φ + +

h Φ = I,
([a]
h Φ

)2 = [a]
h Φ− 1

2hθ, −
h Φ+

h Φ = +
h Φ−

h Φ =
1
2hθ. (4.4)

The relations for “skewsymmetric” Obata operators (4.4) are different from those for the
symmetric ones (4.3). We can modify the constructions by introducing Ψ =

([a]
h Ψ,

[a]
v Ψ

)
, where,

for instance, ±
h Ψ = ±

h Φ± hθ.
By direct computations, one proves

Proposition 4.3. The operators Ψ are supplementary projectors on the module of d-tensor
fields of type (1, 2) and satisfy the conditions (for simplicity, we state them for the h-subspace):

−
h Ψ + +

h Ψ = I,
([a]
h Ψ

)2 = [a]
h Ψ, −

h Ψ+
h Ψ = +

h Ψ−
h Ψ = 0, lisasj

(±
h Ψ

)sm

pr
= 0,

lism
r
j

(±
h Ψ

)sm

pr
= 0, +

h Ψhθ = hθ+
h Ψ, −

h Ψhθ = hθ−h Ψ = hθ. (4.5)

One follows from properties (4.4) and (4.5) that the operators [a]
h Φ and [a]

h Ψ commute with θ.
Finally, we note that even a number of properties of Obata operators [a]

h Ψ (or [a]
h Φ), for the

skewsymmetric part a of a nonsymmetric metric ǧ = g + a are similar to the properties of
Obata operators [a]

h O for the symmetric part g, there is a substantial difference between these
two classes of projectors. If θ commutes with [a]

h O, the operators [a]
h Φ and [a]

h Ψ do not necessarily
commute with [a]

h O. For instance, we have(
+
h O+

h Φ− +
h Φ+

h O
)im

pj
=

1
4

(
gsjg

iraprǎ
sm − asj ǎ

irgprg
sm

)
. (4.6)

We need some additional suppositions on commutations of symmetric and skewsymmetric Obata
operators imposing certain nonholonomic constraints on the components of nonsymmetric met-
rics.
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4.3 Natural nonsymmetric metrics

Let us define a subclass of nonsymmetric d-metrics for which the procedure of metrization of
d-connections will be commutative both for the symmetric and skewsymmetric parts.

Definition 4.1. A nonsymmetric d-metric ǧ = g+a is natural (2.7) if its associated symmetric
and skewsymmetric Obata operators satisfy at least one of the conditions (for simplicity, we
state them for the h-part)

[a]
h O

[b]
h Φ = [a]

h Φ[b]
h O and [a]

h O
[b]
h Ψ = [a]

h Ψ[b]
h O. (4.7)

We emphasize that, if one of the commutation rules holds true from the set of eight ones (4.7),
the statement is true for all projectors. So, we can verify the commutation rule only for any two
operators and consider that similar commutation rules exist for other operators.

Let us consider a set of unknown d-tensor of type (1, 2) denoted by symbols Y, U, V, W
which are supposed to be connected to actions of Obata operators on X being also a d-tensor
of type (1, 2). One holds:

Proposition 4.4. The equation −
h OX = 0 has the general solution X = +

h OY, where Y is
arbitrary. There are also mutually equivalent the equations −

h ΦX = W and −
h ΨX = W+2hθW.

Proof. The statement on general solution is an obvious conclusion from the properties of matrix
equations. The statement on equivalence of two matrix equations follows from the fact that
multiplying those equations on θ one gets θX = 2θW which proves the equivalence. �

For the Obata operators defining the class of natural nonsymmetric d-metrics, we provide:

Theorem 4.1. Let us suppose that +
h O+

h Ψ = +
h Ψ+

h O and consider the system of equations

−
h OX = U, +

h ΨX = V (4.8)

has solutions if and only if

+
h OU = 0, +

h ΨV = 0, −
h ΨU = −

h OV. (4.9)

The general solutions (4.8) can be written in two equivalent forms

X = U + +
h O(V + +

h ΨY) = V + +
h Ψ(U + +

h OY), (4.10)

for arbitrary d-tensors Y.

Proof. The necessity conditions follow from Propositions 4.1 and 4.3 and conditions (4.7).
To prove the enough conditions we assume that the conditions (4.9) are satisfied. The first
equation in (4.8) is equivalent to −

h O(X −U) = 0 having the general solution X = U + +
h OY,

with arbitrary Y, which solves also the equation −
h ΨX = V if and only if −

h Ψ(U + +
h OY) = V.

We have −
h Ψ = I − +

h Ψ which allows to write U + +
h OY = V + +

h Ψ(U + +
h OY) proving that

the d-tensor X can be represented in the forms (4.10) when obviously both forms solve the
equations (4.8). �

We can formulate a criteria of existence of normal nonsymmetric d-metrics:

Theorem 4.2. A nonsymmetric d-metric ǧij(x, y) on N-anholonomic manifold Vn+n is natural
if and only if one exists a non-vanishing real scalar function ν(x, y) such that

ǎij = νaij (4.11)

where aij = girgjsǎ
rs.
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Proof. Taking from the conditions (4.7) the relation +
h O+

h Ψ = +
h Ψ+

h O, we express (4.6), mul-
tiplied on gimgth, in the form

ǎijakl = ǎklaij . (4.12)

Contracting this expression by ǎlk together with alkǎ
lk = mk

k = n − k 6= 0, we get (4.11)
with ν = (ǎlkǎ

lk)/n − k 6= 0 because otherwise we get ǎlk = 0 and ǎlk = 0 imposing mi
j = 0

which contradicts k < n. Conversely, the equation (4.11) with ν 6= 0 transforms (4.12) into
+
h O+

h Ψ = +
h Ψ+

h O. �

Two examples how to construct natural nonsymmetric metrics in explicit form will be pro-
vided below in Section 5.1. Finally, we emphasize that the metrization method proposed in this
section is more particular than the Kawaguchi and Miron methods outlined in [25], although it
is in a more general setting of Eisenhart N-anholonomic manifolds.

5 d-connections compatible with nonsymmetric metrics

For any natural nonsymmetric d-metric, we can define in explicit form the set of d-connections
compatible to this metric structure.The goal of this section is to provide explicit methods of con-
structing natural nonsymmetric d-metrics and elaborate a method for metrization of arbitrary
d-connections, with respect to such a d-metric.

5.1 Examples of natural nonsymmetric metrics

Let us consider two quadruplets
(
gij ,±F i

j , ξ
j
i′ , η

i′
i

)
, where gij is a symmetric d-metric; +F̂ =

(+F i
j ) and −F̂ = (−F i

j ) are d-tensor fields; ξj
i′ are k d-covector fields and ηi′

i = gijξ
j
i′ , where

i, j, . . . = 1, 2, . . . , n and i′, j′, . . . = 1, 2, . . . , k.

Definition 5.1. A respective quadruplet defines a
(
ĝ,±F̂ , ξ̂, η̂

)
-structure of index k if one holds

the conditions

±F̂ 2 = ∓δ̂ ± ξ̂η̂, η̂±F̂ = 0, ±F̂ ξ̂ = 0, η̂ξ̂ = δ̂, t
±F̂ ĝ±F̂ = ±ĝ ∓ tη̂η̂. (5.1)

For k > 0, one holds
(
±F̂

)3 = ±F̂ . One assumes that for k = 0 the conditions (5.1) transform
into ±F̂ 2 = ∓δ̂ and t

±F̂ ĝ±F̂ = ±ĝ and define an almost Hermitian structure for +F̂ , or an
almost hyperbolic structure for −F̂ . In the hyperbolic case, there is an eigen d-vector v such
that −F̂Z = ±Z, when t

−F̂ ĝ−F̂ = −ĝ leads to tZĝZ = 0, which holds for a nonpositively defined
symmetric metric ĝ.

Theorem 5.1. We obtain a natural nonsymmetric d-metric ǧij = gij + aij of index k, with â =
c−1ĝ±F̂ and respective nonvanishing on Vn+n scalar function ν = ∓c2 for a given

(
ĝ,±F̂ , ξ̂, η̂

)
-

structure of index k.

Proof. By straightforward computations, we can verify that a sum gij +aij , where the symmet-
ric and skew-symmetric parts are connected to the

(
ĝ,±F̂ , ξ̂, η̂

)
-structure of index k and scalar

function in the theorem, is a natural nonsymmetric metric. �

The inverse statement also holds true. To show this we note that for modules (2.10) one
follows that ĝm̂ = tm̂ĝ which proves:

Theorem 5.2. For any natural nonsymmetric metric ǧij = gij +aij of index k with ν = ∓c2, we
can define values the ±F̂ 2 = ∓cĝ−1â (or, equivalently, ±F̂ 2 = ∓c−1ǎĝ) which for the quadruplet(
gij ,±F i

j , ξ
j
i′ , η

i′
i

)
states a

(
ĝ,±F̂ , ξ̂, η̂

)
-structure of index k.

We conclude that the class of natural nonsymmetric metrics naturally generalizes the concepts
of (pseudo) Riemannian metrics and of almost Hermitian/hyperbolic structures.
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5.2 Main theorems for d-connections metric compatibility

For a fixed d-connection ◦D = (◦Dk, ◦Dc) =
(
◦L

i
jk, ◦C

a
bc

)
, we establish the existence and ar-

bitariness of the d-connections which are compatible with a nonsymmetric d-metric ǧ = g + a.
Our aim is to redefine the A. Kawaguchi metrization procedure [32, 33, 34] considered in Finsler
geometry and developed for Lagrange spaces (including their noncommutative metric genera-
lizations) [13, 14, 15] for nonholonomic manifolds enabled with nonsymmetric metric struc-
tures [23, 16, 17].

Let us consider a system of tensorial equations for unknown d-tensors hB = {Bs
rk} and

vB = {Bb
ec},

+
h OhB = hU, +

v OvB = vU, +
h ΨhB = hŨ, +

v ΨvB = vŨ,

lri
(
asjB

s
rk + ◦Dkarj

)
= 0, lba

(
abdB

b
ec + ◦Dcaed

)
= 0,

lis
(
mr

jB
s
rk + ◦Dkl

s
j

)
= 0, lab

(
me

dB
b
ec + ◦Dcl

b
d

)
= 0, (5.2)

where hU = {U i
rk}, vU = {U b

ec} and hŨ = {Ũ s
rk}, vŨ = {Ũ b

ec} are given by formulas

2U i
jk = −gir

◦Dkgrj , 2U b
ec = −gbd

◦Dcgde, (5.3)

and

2Ũ i
jk = −

(
ǎir

◦Dkarj + 3lis◦Dkl
s
j − ◦Dkl

i
j

)
,

2Ũ b
ec = −

(
ǎbd

◦Dcade + 3lbd◦Dcl
d
e − ◦Dcl

b
e

)
. (5.4)

One holds:

Theorem 5.3. A d-connection D =
(
Li

jk, C
a
bc

)
= ◦D + B is compatible with the nonsymmetric

d-metric ǧ = g+a on Vn+n if it is defined by a deformation (distorsion) d-tensor B =
(
hB, vB

)
which is a solution of d-tensor equations (5.2) for the values U =

(
hU, vU

)
and Ũ =

(
hŨ, vŨ

)
constructed from the coefficients of the nonsymmetric metric and fixed d-connection ◦D follow-
ing, respectively, formulas (5.3) and (5.4).

Proof. We sketch the proof for the h-components (considerations for v-components being si-
milar). The metricity conditions (3.6) are equivalent to

◦Dkgij + gsrB
r
jk + grjB

r
sk = 0 and ◦Dkaij + asrB

r
jk + arjB

r
sk = 0.

Contracting the first equation with gsi we get the first equation from (5.2). Contracting the
second equation with ǎir and lri and taking into account the the compatibility of D with ǧ
means lisDkl

s
j = 0, one obtains the firsts equations from the third and forth rows in (5.2) and

the equation +
h ΨhB = hÛ, where 2Û i

jk = −
(
ǎir

◦Dkarj + lis◦Dkl
s
j

)
. Following Proposition 4.4, the

last equation is equivalent to the first equation in the second row in (5.2) with hŨ = hÛ+2hθhÛ,
where the values (5.3) are obtained by re-grouping the coefficients. �

One can be proposed a further simplification of such geometric models:

Definition 5.2. A natural nonsymmetric metric of index k is of elliptic (hyperbolic) type if
ν = −c2

0 (ν = c2
0), where c0 is a nonzero constant.

This definition is suggested by Theorems 4.2, 5.1 and 5.2 and Proposition 3.3:

Corollary 5.1. The function ν(x, y) in equation (4.11) is a nonzero constant, ν(x, y) = ∓c2
0, if

the d-connection D is compatible with the normal nonsymmetric metric ǧ.
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Proof. One follows from equations (3.6) and Proposition 3.3 that (Dαν)aij = 0 which means
that (Dαν) = 0 because aij ǎ

ji = n− k 6= 0. This is possible if ν is a nonzero constant. �

One holds true the inverse statement of Theorem 5.3:

Theorem 5.4. For a natural nonsymmetric metric ǧ of index k, the values U =
(
hU, vU

)
and

Ũ =
(
hŨ, vŨ

)
defined respectively by formulas (5.3) and (5.4) satisfy the equations

+
h OhU = 0, +

h ΨhŨ = 0, −
h ΨhU = −

h OhŨ,

+
v OvU = 0, +

v ΨvŨ = 0, −
v ΨvU = −

v OvŨ. (5.5)

A proof of this Theorem consists from straightforward verifications that U and Ũ really
solves the equations (5.5) for given values of Obata operators O and Ψ constructed respectively
from the components of symmetric and skew-symmetric parts of nonsymmetric metric (in [15]
it is contained a similar proof for the so-called nonsymmetric Eisenhart–Lagrange metric on
tangent bundles).

Example 5.1. By direct computations, we can check that for any given d-connection ◦Γα
βγ =(

◦L
i
jk, ◦C

a
bc

)
and nonsymmetric d-metric ǧ = g+a on Vn+n the d-connection ∗Γα

βγ=
(
∗L

i
jk, ∗C

a
bc

)
,

where

∗L
i
jk = ◦L

i
jk +

1
2
[gir

◦Dkgrj + ±Oir
sj(ǎ

st
◦Dkatr + 3lst ◦Dkl

t
r − ◦Dkl

s
r)],

∗C
a
bc = ◦C

a
bc +

1
2
[gah

◦Dcghb + ±Oah
eb (ǎed

◦Dcadh + 3led◦Dcl
d
h − ◦Dcl

e
h)] (5.6)

is d-metric compatible, i.e. satisfies the conditions ∗Dǧ = 0.

In a more general case, one holds:

Theorem 5.5. The set of d-connections D = ◦D + B being generated by deformations of an
arbitrary fixed d-connection ◦D in order to be compatible with a given nonsymmetric d-metric
ǧ = g + a on Vn+n is defined by distorsion d-tensors B =

(
hB, vB

)
of type

hB = hU + +
h O

(
hŨ + +

h ΨY
)

and vB = vU + +
v O

(
vŨ + +

v ΨZ
)
, (5.7)

or

hB = hŨ + +
h Ψ

(
hU + +

h OY
)

and vB = vŨ + +
v Ψ

(
vU + +

v OZ
)
, (5.8)

where Y and X are arbitrary d-tensor fields of type (1, 2).

Proof. It follows from Theorems 5.3 and 5.4. �

For the statements of Example 5.1, we have:

Remark 5.1. The formulas for the metric compatible d-connection ∗Γα
βγ (5.6) consist a par-

ticular case when the deformation d-tensor B =
(
hB, vB

)
is computed by (5.7), or (5.8), for

Y = 0 and Z = 0.

From the Corollary 5.1 and Theorem 5.5, we get:

Conclusion 5.1. The set of all d-connections Γα
βγ =

(
Li

jk, C
a
bc

)
being compatible to a nonsym-

metric metric ǧ of elliptic/hyperbolic type on Vn+n is parametrized by formulas

Li
jk = ∗L

i
jk + +Oir

sj
+Ψsm

pr Yp
mk and Ca

bc = ∗C
a
bc + +Oah

eb
+Ψed

fhZ
f
dc, (5.9)

where ∗L
i
jk and ∗C

a
bc are given respectively by formulas (5.6), +

h Ψ = {+Ψsm
pr } and +

v Ψ = {+Ψed
fh}

and Y = {Y p
mk} and Z = {Zf

dc} are correspondingly arbitrary horizontal and vertical d-tensors
of type (1, 2).
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To chose a parametrization that ν is constant is the simplest way to prove formulas (5.9)
defining the set of all d-connections being compatible to a given nonsymmetric metric.

Finally, we note that because ◦Γα
βγ =

(
◦L

i
jk, ◦C

a
bc

)
is an arbitrary d-connection, we can

chose it to be an important one for certain physical or geometrical problems. For instance,
in Section 7 we shall consider that ◦Γα

βγ is defined by the Cartan d-connection constructed
for Lagrange/Finsler spaces for a symmetric d-metric g corresponding to the Lagrange/Finsler
d-metric which will allow us to perform certain nonsymmetric generalizations of such geome-
tries. In our further researches, we are going to consider certain exact solutions in gravity with
nonholonomic variables defining a corresponding ◦Γα

βγ and then deformed to nonsymmetric
configurations following formulas (5.6) and/or (5.9).

6 Nonsymmetric gravity and nonholonomic frames

A nonsymmetric gravitational theory (NGT) based on decompositions of the nonsymmetric
metric ǧµν and affine connection Γα

βγ was elaborated in series of work by J. Moffat and co–
authors, see [5, 6, 7, 8, 9, 10] and references therein4.

In this section, we show how NGT can be formulated on N-anholonomic manifolds where an
additional geometric structure (the N-connection) is present and the geometric constructions
can be equivalently (at least at classical level) performed in N-adapted or not N-adapted forms.

We note that for a class of geometric and physical models the N-connection coefficients are
induced by certain subsets of generic off-diagonal coefficients of the metric. In this approach, the
N-connection splitting results in a nonholonomic decompositon of geometric objects with respect
to certain frames with mixed holonomic-nonholonomic basic vectors which may be convenient for
constructing, for instance, new classes of exact solutions, to define spacetimes with generalized
symmetries, nonholomogeneity and effective local anisotropy, or in order to elaborate certain
models of gauge type and/or geometric/deformation quantization.

In a more general context, we can consider that the N-connection is defined by an additional
geometric structure (independent from the metric and linear connection structures), like in gene-
ralized Lagrange–Finsler theories, when certain geometric or physical/mechanical theories are
defined on nonholonomic manifolds. Nevertheless, even in such cases, following the method of
metrization of d-connections considered in the previous section, we can redefine the construc-
tions for nonholonomic (pseudo) Riemann or Riemann–Cartan with additional effective field
interactions and nonholonomic constraints. As a matter of principle, we can use the Levi-Civita
connection working with non N-adapted geometric objects.

6.1 On (not) N-adapted models of NGT

Let us consider a d-connection Γα
βγ not obligatory compatible to a nonsymmetric metric ǧ =

{ǧαβ} (2.7) on V2+2 enabled with an arbitrary N-connection structure N = {Na
i } (2.2)5. We

can introduce nonsymmetric gravitational equations following the approach elaborated in [6],
but in our case working with respect to N-adapted bases (2.3) and (2.4).

4we note that in this paper we use a different system of denotations; the final version of NGT proposed by
J. Moffat’s group is free of ghosts, tachions and higher-order poles in the propagator in the linear approximation
on Minkowski space; an expansion of the general nonsymmetric metric about an arbitrary Einstein background
metric yields field equations to first order in the skew-symmetric part of metric, which are free of coupling to un-
physical (negative energy) modes; the solutions of such gravitational field equations have consistent asymptotic
boundary conditions; here, it should be noted that in the mentioned works a set of theoretical and experimental
data were explained and in consistent way by NGT and its further modifications.

5For our purposes, we consider four dimensional spacetimes with 2+2 nonholonomic splitting.
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For any system of reference, we can write

gµν = ǧ(µν) =
1
2

(ǧµν + ǧµν) , aµν = ǧ[µν] =
1
2

(ǧµν − ǧµν) , Γλ
µν = Γλ

(µν) + Γλ
[µν].

Introducing the unconstrained (nonsymmetric) affine connection

W λ
µν + Γλ

µν −
2
3
δλ
µWν , (6.1)

where Wν = 1
2

(
W λ

µλ −W λ
λµ

)
, which leads to the condition Γµ = Γλ

[µλ] = 0. We note that the
coefficients of Γλ

µν and W λ
µν are given with respect to N-adapted bases (2.3) and (2.4) but we

do not use for such values “boldfaced” symbols because we have not supposed that these linear
connections are adapted to the N-connection splitting (2.1).

The contracted curvature tensors for the above linear connections are related by formulas

W Rµν = ΓRµν +
2
3
e[νWµ],

where

ΓRµν = eβΓβ
µν −

1
2
(
eνΓλ

(µλ) + eµΓλ
(νλ)

)
− Γβ

ανΓ
α
µβ + Γλ

(αλ)Γ
α
µν .

The field equations of N-anholonomic NGT in presence of a source Υµν for matter fields are

W Gµν + λǧµν +
µ2

4
Sµν −

1
6P Gµν = 8πΥµν ,

2eν

(√
|ǧ|ǧ[νµ]

)
=

√
|ǧ|ǧ(νµ)Wν , (6.2)(√

|ǧ|
)−1eσ

(√
|ǧ|ǧµν

)
+ ǧρνWµ

ρσ − ǧµνW ρ
ρσ +

Wβ

6
(
δν
σǧ

(µβ) + δµ
σ ǧ(νβ)

)
+

2
3
δν
σǧ

µρW β
[ρβ] = 0,

where |ǧ| + det |ǧµν |, ǧµν ǧσν = ǧνµǧνσ = δµ
σ (we use boldface indices for the nonsymmetric

metric and bases (2.3) and (2.4) because they can be adapted to the N-connection structure
even a general linear connection and related tensors are not distinguished); λ is the cosmological
constant and µ2 is an additional cosmological constant associated to to aµν (there are used the
physical units when the gravitational and vacuum speed are stated to be dimensionless and
equal to unity);

Sµν + aµν + ǧ[ρσ]

(
ǧµσǧρν +

1
2
aσρǧµν

)
,

W Gµν + W Rµν −
1
2
ǧµνW

←−
R, P Gµν + Pµν −

1
2
ǧµνP, (6.3)

for Pµν + WµWν and P + ǧµνPµν = ǧ(µν)Pµν , when the scalar curvatures are defined respec-
tively W

←−
R + ǧµν

W Rµν , Γ
←−
R + ǧµν

ΓRµν , . . . We note that, in general, the h- and v-components
of ǧ[ρσ] are different from ã−1 (2.13) because we have not yet introduced here metric d-connec-
tions and complete N-adapted and d-tensor calculus.

The matter fields d-tensor Υµν from the first equation in (6.2) is constrained to satisfy the
so-called matter response equations,

ǧµρeν(
√
|ǧ|Υµν) + ǧρµeν(

√
|ǧ|Υνµ) + (eν ǧµρ + eµǧρν − eρǧµν)

√
|ǧ|Υνµ = 0, (6.4)

which is a consequence of the generalized Bianchi identities

eµ

[√
|ǧ|ǧµν

ΓGρv +
√
|ǧ|ǧνµ

ΓGvρ

]
+

√
|ǧ|ΓGµveρǧµν = 0,
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see a detailed study in [35, 6], where a variational proof of equations (6.2) and (6.4) is formulated
by fixing a corresponding coefficient before Pµν in order to yield a consistent theory with ghost
and tachyon free perturbative solutions to the field equations.

It should be emphasized that different models of nonsymmteric theory of gravity were elab-
orated in such a way that the induced general linear connection is not metric compatible. In
our approach, we shall prove that it is possible to elaborate the nonsymmetric gravity theory
in a general metric compatible form by using corresponding classes of d-connections. This is
very important from physical point of view (there is not a well accepted interpretation of non-
metricity fields) and presents certain interests from the viewpoint of the Ricci flow theory with
nonholonomic constraints [17, 23] when in the simplest approach a symmetric metric can evolve
into a nonsymetric one, and inversely, but preserving the general metric compatibility of li-
near connection which is very important for definition of conservation laws and related physical
values.

Theorem 6.1. We obtain a canonical d-metric compatible and N-adapted nonholonomic NGT
completely defined by a N-connection N = {Na

i } and d-metric ǧ = g + a (2.7) of ellip-
tic/hyperbolic type if we chose instead of arbitrary affine connection Γλ

µν the metric compatible
d-connection ∗Γα

βγ =
(
∗L

i
jk, ∗C

a
bc

)
(5.6).

Proof. We sketch the idea of the proof which can be obtained by a N-adapted variational
calculus, similar to that from [35] when instead of partial derivatives there are used the “N-
elongated” partial derivatives eρ (2.3), varying independently the d-fields ǧ = g + a and ∗Γα

βγ .

In this case, ǎ = (ǎij) does not depend on the choice of fields ξ̂, see (2.13), and we can write
ǧ[ρσ] = ǎρσ = [ǎij , ǎcb], where ǎij = −ǎji and ǎcb = −ǎbc. Instead of an affine connection (6.1)
we work with metric d-connections,

∗Wλ
µν + ∗Γλ

µν −
2
3
δλ
µ∗Wν , (6.5)

where ∗Wν = 1
2

(
∗Wλ

µλ − ∗Wλ
λµ

)
, and we use boldface symbols. The corresponding Ricci d-

tensors are related by formulas

∗
WRµν = ∗

ΓRµν +
2
3
e[ν

∗Wµ],

where

∗
ΓRµν = eβ∗Γβ

µν −
1
2
(
eν∗Γλ

(µλ) + eµ∗Γλ
(νλ)

)
− ∗Γβ

αν∗Γ
α
µβ + ∗Γλ

(αλ)∗Γ
α
µν .

has h- and v-components of type (A.3).
The canonical N-adapted field equations for the nonholonomic NGT are

∗
WGµν + λǧµν +

µ2

4 ∗Sµν −
1
6
∗
PGµν = 8πΥµν ,

2eν

(√
|ǧ|ǎ[νµ]

)
=

√
|ǧ|ǧ(νµ)

∗Wν ,(√
|ǧ|

)−1eσ

(√
|ǧ|ǧµν

)
+ ǧρν

∗Wµ
ρσ − ǧµν

∗Wρ
ρσ

+ ∗Wβ

6
(
δν
σǧ

(µβ) + δµ
σ ǧ(νβ)

)
+

2
3
δν
σǧ

µρ
∗W

β
[ρβ] = 0, (6.6)

where the formulas for geometric objects and conservation laws are defined, respectively, simi-
larly to (6.3) and (6.4) but for boldfaced d-connections (6.5). These equations can be derived
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from the Lagrangian density

∗LNGT = ∗LR + LM ,

∗LR =
√
|ǧ|ǧρν∗

WRµν − 2λ
√
|ǧ| − µ2

4

√
|ǧ|ǧµνaµν −

1
6
ǧµν

∗Wµ∗Wν ,

LM = −8πǧµνΥµν

following a N-adapted variational calculus. �

The above considerations motivate the concepts:

Definition 6.1. A Moffat gravity (spacetime) model is defined by a nonsymmetric metric
ǧ = {ǧαβ} (2.7) and an affine connection W λ

µν + Γλ
µν − 2

3δλ
µWν (6.1) solving the NGT field

equations (6.2).

In a more general case, we have

Definition 6.2. A canonical nonholonomic Eisenhart–Moffat gravity (spacetime) model is
defined by a fixed N-connection structure N and a nonsymmetric metric ǧ = {ǧαβ} (2.7)
and a metric compatible d-connection ∗Γα

βγ =
(
∗L

i
jk, ∗C

a
bc

)
(5.6) solving the N-adapted NGT

field equations (6.6).

As a matter of principle, following the Kawaguchi’s metrization method we can work with
various classes of metric or nonmetric d-connections:

Remark 6.1. Analogous of Theorem 6.1 can be formulated and proven for any metric noncom-
patible d-connection ◦D = (◦Dk, ◦Dc) =

(
◦L

i
jk, ◦C

a
bc

)
, or for any metric compatible d-connection

Γα
βγ =

(
Li

jk, C
a
bc

)
(5.9). In all cases, we get N-adapted models of NGT but for ◦D we generate

geometric constructions for nonmetric spaces and for Γα
βγ the models depend on d-tensor fields

of type (1, 2) for which one has to provide additional geometric and physical motivations.

Here we emphasize that it is preferred to work with metric compatible connection for global
definition of spinors and noncommutative versions with Dirac operators in different models of
gravity because metric compatibility results in compatible structure between spinor connections
and generating Clifford structures bases.

From the last Theorem and Remark, one follows:

Corollary 6.1. If the N-connection structure is induced, for instance, by the off-diagonal coef-
ficients of the symmetric part of the nonsymmetric metric, and the canonical nonholonomic
Eisenhart–Moffat gravity (which is a metric compatible theory) is equivalent to the Moffat’s
gravity theory (which was performed in a metric noncompatible form).

Proof. We state that the symmetric part g = gαβeα⊗eβ = gije
i⊗ ej + gabea⊗eb in (2.7) with

respect to a coordinate base eα = duα = (dxi, dya), is given in the form

g = g
αβ

(u) duα ⊗ duβ

where

g
αβ

=
[

gij + Na
i N b

j hab N e
j hae

N e
i hbe hab

]
.

induces the coefficients of N-connection N = Na
i (u)dxi ⊗ ∂/∂ya (2.2). The next step, is to

take ◦Γα
βγ = nΓα

βγ , see Definition 3.2, in ∗Γα
βγ .6 Using the deformation of connection nΓα

βγ =

6In a more general, or special, approach, we can use the d-connections (4.2), or (3.4).



20 S.I. Vacaru

Γα
βγ + Sα

βγ , we can redefine the N-adapted field equations (6.6) in terms of connection Γα
βγ

and Sα
βγ . The last term can be encoded in terms of d-tensor fields of type (1, 2). This way

a model of metric compatible and N-adapted NGT is transformed in a Moffat type model of
gravity. �

The NGT was proven to generate physically consistent models using linear approximations
for the nonsymmetric metric about Minkowski and Einstein spaces, see [35, 6] and references
therein. Various types of approximations can be performed following a corresponding N-adapted
calculus with respect to a nonholonomic background. Depending on the type of background
and constraints on nonsymmetric metric components, we obtain different effective models of
scalar/vector/tensor gravity, with variable/running physical constants which are intensively ex-
ploited in modern cosmology, for instance, see [10, 11]. To work with nonholonomic backgrounds
presents a substantial interest both from conceptual and technical point of views: we can ‘extract’
from NGT new classes of nonholonomic Einstein, generalized Finsler–Lagrange, . . . spaces [24],
establish certain new links and develop new methods in geometric quantization [31] and non-
commutative gravity [9, 29, 30], as well to elaborate new methods of constructing exact solutions
in Einstein and generalized gravity theories and Ricci flows [24, 18, 19, 20, 21, 22].

6.2 Expansion of field equations in NGT with respect
to nonholonomic backgrounds

Let us consider the expansion of the field equations (6.6) for ǧ = g + a around a back-
ground spacetime defined by a symmetric d-connection g = {gαβ} and a metric compatible
d-connection Γ̂α

βγ defined by N and g (it can be a normal, the canonical d-connection, the
Cartan or another one) and denote ǧ[αβ] = aαβ .7 We shall compute

ǧαβ = gαβ + 1gαβ + · · · , aαβ = 1aαβ + 2aαβ + · · · ,

Γα
βγ = Γ̂α

βγ + 1Γα
βγ + · · · , Wµ = 1Wµ + 2Wµ + · · · .

Substituting into field equations, for λ = 0 and Υµν = 0, we get to first order on fields, with
respect to N-adapted bases (2.3) and (2.4),

R̂αβ = 0,

2D̂νaµν = −Wµ,(
�̂ + µ2

)
aµν = 2R̂σ· β

· ν·µaβσ +
1
3
D̂[µWν], (6.7)

where aαβ = 1aαβ , Wµ = 1Wµ, �̂ = D̂νD̂ν for D̂ν = gνµD̂µ, for gνµ being inverse to gαβ

(these d-tensors are used for rasing and lowering indices), and R̂σ· β
· ν·µ and R̂αβ are respec-

tively curvature and Ricci d-tensors, with h- and v-decompositions, defined by formulas (A.2)
and (A.3). Following a d-tensor calculus similar to that in [35, 6], but for a canonical background

7In order to elaborate a consistent “perturbation” theory on fields aαβ , we may consider that such nonsymmet-
ric deformations of metrics are defined by an additional, or the same Newton constant (but under nonholonomic
Ricci flows) used as a small parameter. Such decompositions are used for definition of “week” gravitational
waves in general relativity and in “perturbative” models of quasi-classical gravity; in a more general approach,
for nonsymmmetric metrics, but in not N-adapted forms, such constructions were introduced and developed in a
series of works by J. Moffat and co-authors [5, 6, 7, 8].
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d-connection Γ̂α
βγ , we can represent (6.7) in the form

R̂αβ = 0,

D̂σaµσ =
1
µ2

D̂ν
(
2R̂σ· β

· ν·µaσβ − (R̂a)µν

)
,(

�̂ + µ2
)
aµν = Mµν , (6.8)

where

Mµν = 2R̂σ· β
· ν·µaβσ +

2
µ2

D̂[νD̂
ρ
(
2R̂σ· β

· ρ·µaβσ − (R̂a)µ]ρ

)
and (B̂a)µν denotes additional terms involving products of the Riemann d-tensor and skewsym-
metric part of d-metric.

There were constructed a number of solutions with R̂αβ = 0, see a review of results in [24],
where it is emphasized that we can constrain additionally the integral varieties of these equations
in order to generate off-diagonal vacuum solutions in general relativity. They can be used for
generalizations in NGT when the background is nonholonomic and/or to model a Finsler/Lag-
range like configurations. We constructed such spacetime models with running physical con-
stants and nonsymmetric metrics in [23], where nontrivial values for aβσ where defined from the
nonholonomic Ricci flow evolution equations. Certain classes of those solutions, when the flow
parameter is not identified with a time like coordinate can be constrained additionally to define
solutions of (6.8). For instance, the solitonic and pp-wave solutions with vanishing curvature
2R̂σ· β

· ν·µ at asymptotics result positively in nontrivial solutions for aµσ which closely approximate
solutions of Proca equations labelled additionally by a Ricci flow parameter.

We conclude that we can perform nonholonomic deformation of symmetric metrics into non-
symmetric ones following the method of anholonomic frames and nonholonomic Ricci flows. Such
geometric configurations are also admissible from the viewpoint of metric compatible/noncom-
patible NGT which presents strong theoretical arguments for physical models with nonsymmetric
metrics and nonholonomic configurations.

7 Gravity and nonsymmetric Lagrange–Finsler spaces

The approach to geometrization of mechanics on tangent bundles of the R. Miron’s school on
generalized Lagrange, Hamilton and Finsler geometry is strongly related to the geometry of
nonlinear connections on (co) vector/tangent bundles and their higher order generalizations [15,
25, 36] (this direction was developed as a generalization of the geometry of Finsler and Cartan
spaces). From formal point of view any regular mechanics models can modelled as a Riemann–
Cartan geometry with nonholonomic distributions and, inversely, under well defined conditions,
gravitational interactions admit an equivalent modelling by (semy) spary configurations for
an effective mechanics or nonlinear optics [24]. Here, we note that our approach is different
from the so-called analgous gravity [37] where gravitational (for instance, black hole effects)
are effectively modelled by heuristic media and flows, but not following a rigorous geometric
formalism, for instance, that of N-connections and geometric mechanics.

The aim of this section is to prove that Lagrange–Finsler geometry and nonholonomic gravity
can be naturally related to NSG and define certain models of nonsymmetric Lagrange–Finsler
geometry.
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Let us consider a regular Lagrangian L(x, y) = L(xi, ya) modelled on V, when the Lagrange
metric (equivalently, Hessian)

Lgij =
1
2

∂2L

∂yi∂yj
(7.1)

is not degenerated, i.e. det |gij | 6= 0,
N-connections were first introduced in Finsler and Lagrange geometry by considering (semi)

spray configurations

dya

dς
+ 2Ga(x, y) = 0, (7.2)

of a curve xi(ς) with parameter 0 ≤ ς ≤ ς0, when yi = dxi/dς [spray configurations are ob-
tained for integrable equations]. One holds the fundamental result (proof is a straightforward
computation):

Theorem 7.1. For 4Gj = Lgij
(

∂2L
∂yi∂xk yk − ∂L

∂xi

)
, with Lgij inverse to Lgij , the “nonlinear”

geodesic equations (7.2) are equivalent to the Euler–Lagrange equations d
dς

(
∂L
∂yi

)
− ∂L

∂xi = 0.

Finsler configurations can be obtained in a particular case when L(x, y) = F 2(x, y) for a ho-
mogeneous fundamental function F (x, λy) = λF (x, y), λ ∈ R. Lagrange and Finsler geometries
can be also modelled on N-anholonomic manifolds [38, 24] provided, for instance, with canonical
N-connection structure

LNa
i =

∂Ga

∂yi
. (7.3)

Proposition 7.1. A N-connection defines a set of nonholonomic preferred frames

Leα =
[

Lei =
∂

∂xi
− LNa

i (u)
∂

∂ya
, eb =

∂

∂yb

]
and coframes

Leα =
[
ei = dxi, ea = dya + LNa

i (x, y)dxi
]
.

Proof. One computes the nontrivial nonholonomy coefficients Lwa
ib = ∂LNa

i /∂yb and Lwa
ij =

LΩa
ji = Lei

LNa
j − Lej

LNa
i (where LΩa

ji are the coefficients of the N-connection curvature) for[
Leα, Leβ

]
= Leα

Leβ − Leβ
Leα = Lwγ

αβ
Leγ . �

One holds:

Theorem 7.2. Any regular Lagrange mechanics L(x, y) = L(xi, ya) can be modelled by the ge-
ometry of a N-anholonomic manifold Vn+n enabled with N-connection LN and canonical metric
structure

Lg = Lgij(x, y)
[
ei ⊗ ej + Lei ⊗ Lej

]
. (7.4)

Proof. For V = TM , the metric (7.4) is just the Sasaki lift of (7.1) on total space; see, for
instance, [25]. In abstract form, such canonical constructions can be performed similarly for any
N-anholonomic manifold V. This approach to geometric mechanics follows from the fact that
the (semi) spray configurations are related to the N-connection structure and defined both by
the Lagrangian fundamental function and the Euler–Lagrange equations, see Theorem 7.1. �
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It is important:

Proposition 7.2. Any regular Lagrangian L defines on Vn+n a preferred metric compatible
d-connection structures and metric compatible Lagrange (Finsler, for L = F 2) canonical d-
connection LD̂, or normal d-connection L

nD, Cartan d-connection L
c D.

Proof. We can compute the coefficients of these d-connections by introducing formulas (7.4)
and (7.3), respectively, in (4.2), (3.4) and (3.3). �

Because, in general, a regular Lagrange mechanics induces a nontrivial N-connection struc-
ture, we can consider:

Claim 7.1. There are nonholonomic Ricci flows of Lagrange (Finsler) spaces resulting in addi-
tional nonsymmetric components of d-metric (7.4).

Proof. It follows from equation (29) in [23] ∂
∂χ(N e

j abe), where χ is the Ricci flow parameter.
Ricci flows of Lagrangians L(χ) induce flows of LN e

j (χ), which results in nontrivial values of abe.
The d-metric (7.4) has to be extended to a variant of d-metric (2.7), when Lǧ = Lg + a. �

The above Claim is supported by

Example 7.1. A class of simplest examples of nonsymmetric Lagrange geometry is generated
by a regular Lagrangian L(x, y) and any skew symmetric field a when Lǧ = Lg + a and the
d-connection ◦Γα

βγ =
(
◦L

i
jk, ◦C

a
bc

)
from Example 5.1 is taken to be the Cartan d-connection,

i.e. ◦Γα
βγ = L

c Γα
βγ and the general metric compatible d-connections on Vn+n are defined in the

form L
∗ Γα

βγ =
(
L
∗ Li

jk,
L
∗ Ca

bc

)
where

L
∗ Li

jk = L
c Li

jk +
1
2
[
LgirL

c Dk
Lgrj + ±

LOir
sj

(
ǎstL

c Dkatr + 3lst
L
c Dkl

t
r − L

c Dkl
s
r

)]
,

L
∗ Ca

bc = L
c Ca

bc +
1
2
[
LgahL

c Dc
Lghb + ±

LOah
eb

(
ǎedL

c Dcadh + 3led
L
c Dcl

d
h − L

c Dcl
e
h

)]
(7.5)

is d-metric compatible, i.e. satisfies the conditions L
∗D

Lǧ = 0; we put a left label “L” on values
generated by L. We note that similar constructions are possible for any metric compatible
d-connection generated by L, including the class of normal ones, or the canonical d-connection.

For more general constructions, we formulate:

Theorem 7.3. The set of Lagrange (Finsler) spaces with nonsymmetric metric compatible
d-connections LΓα

βγ =
(
LLi

jk,
LCa

bc

)
generated by a regular Lagrangian L(x, y) (fundamental

Finsler funciton F (x, y), where L = F 2) on Vn+n is parametrized by N-adapted coefficients

LLi
jk = L

∗ Li
jk + +

LOir
sj

+
LΨsm

pr Yp
mk and LCa

bc = L
∗ Ca

bc + +
LOah

eb
+
LΨed

fhZ
f
dc, (7.6)

where L
∗ Li

jk and L
∗ Ca

bc are given respectively by formulas (7.5); +
hLO = {+LOir

sj} and +
hLO = {+LOah

eb }
are defined by formulas (4.1) and (4.3) but for Lg (7.4); +

hLΨ = {+LΨsm
pr } and +

vLΨ = {+LΨed
fh}

are defined by the skewsymmetric part of metric a following formulas (4.4) and (4.5) assuming
that the d-metric Lǧ = Lg+a is natural, i.e. the symmetric and skewsymmetric Obata operators
satisfy the conditions (4.7), and Y = {Y p

mk} and Z = {Zf
dc} are correspondingly arbitrary

horizontal and vertical d-tensors of type (1, 2).

Proof. The statements of this theorem follow from Corollary 5.1, Theorem 5.5 and Con-
clusion 5.1 specified for d-metrics Lǧ = Lg + a, and metric compatible d-connections (7.5)
and (7.6). �



24 S.I. Vacaru

The last main result, in this work, is that we can model various classes of generalized
Lagrange–Finsler spaces in NGT and, inversely, we can model as effective regular Lagrange
systems (or Finsler configurations) the field interactions in NGT:

Result 7.1. A generalized Lagrange (Finsler) geometry defined by a natural Lǧ = Lg+a, with Lg
defined by (7.4), canonical N-connection LN (7.3) and a metric compatible d-connection is non-
holonomically equivalent to a NGT model if the mentioned geometric d-tensor and connections
satisfy the “nonsymmetric” field equations (6.6).

Proof. The direct statement is obvious. The inverse one can be supported by some examples
of solutions. The length of this article does not allow us to present details on constructing
such solutions; see examples, detailed discussions and references in Sections 5 and A.5 of [24]
and [30] and certain solutions for fixed Ricci flow parameter in [18, 19, 20, 21, 22, 23]. For
any class of those solutions modelling solionic pp-waves, black ellipsoids/tori, locally anisotropic
Taub NUT spaces . . . having the property that R̂αβ = 0 (defining vacuum background solutions
for the canonical d-connection) and R̂σ·β

·ν·µ → 0, let say for a radial/cilinder coordinate r →∞,
in (6.8). For such configurations, we can approximate the vacuum NGT field equations for the
skewsymmetric part of metric as

(
�̂ + µ2

)
aµν = 0 and D̂σaµσ = 0 which are well the known

Proca field equations. Technically, it is a very difficult task to construct exact solutions in
NGT, but it is possible almost always to construct certain approximations proving the existence
of such solutions. This states positively that certain classes of symmetric and nonsymmetric
Lagrange–Finsler configurations can be extracted from NSG and, inversely, such regular me-
chanical systems can be used for modelling (non)symmetric gravitational interactions. �

Finally, we note that similar Results can be formulated, for instance, for noncommutative and
quantum geometric generalizations of Lagrange–Finsler geometry and NGT which are topics of
our further investigations.

8 Conclusions and discussion

In summary, we elaborated a geometric approach to physical theories on spacetimes provided
with nonlinear and linear connections compatible with nonsymmetric metrics, in the context
of the geometry of nonholonomic Riemann–Cartan manifolds and generalized Lagrange–Finsler
spaces. Toward such results, we have applied a programme of research that is based prior on
the moving anholonomic frame method and nonholonomic deformations of geometric structures,
nonlinear connection (N-connection) formalism, metrization procedure of distinguished connec-
tions (d-connections), i.e. the linear connections adapted to a N-connections structure, and
former results from the nonsymmetric gravity theory (NGT). The premise of this methodology
is that one can be constructed certain classes of geometric models of NGT which are metric com-
patible and satisfy all conditions imposed for the modern paradigm of standard physics (such
theories are well defined in the linear approximation on Minkowski space and expanded about
arbitrary Einstein, or about/to Lagrange–Finsler and other type backgrounds). The validity
of this approach was substantiated by reproducing and understanding a number of effects in
modern gravity and cosmology.

Nonholonomic distributions and nonsymmetric metrics arise naturally in: the theory of non-
holonomic Ricci flows, as solutions of the evolution equations; dynamics of constrained physical
systems; geometry of nonholonomic maps and deformations of geometric structures on classical
and geometrically quantized models of gravity; noncommutative and quantum group deforma-
tions of gravitational, gauge and spinor theories. Formulation of a rigorous geometric approach to
the theory of classical and quantum field interactions and flow evolution equations with generic
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off-diagonal metrics and constraints positively requests a detailed study of ‘nonsymmetric and
nonholonomic theories’.

Historically, the firsts theoretical schemes for theories with nonsymmetric metrics and con-
ceptual and heuristic arguments to suit with existing experimental data were proposed in [1, 2, 3,
4, 7, 8]. That stimulated certain interest of the scientific community (together with more or less
motivated criticism) and a lot of discussions how to cure such theories [39, 11, 40]. More recently,
new evidences coming from the Ricci flow theory, deformation quantization, geometric meth-
ods of constructing exact solutions of gravitational field and evolution equations, string gravity
and nonholonomic spinor and Clifford–Lie algebroids etc has revealed a quite unexpected and
additional theoretical support for NGT (for simplicity, in this work, we do not concern various
speculations on some cosmological and astrophysical evidences, see details in [10, 11, 12]).

Let us provide and discuss contemporary motivations for theories with nonsymmetric metrics
and nonholonomic structures elaborated in a metric compatible form:

1. Nonsymmetric metrics are positively induced by Ricci flow evolutions of (pseudo) Rie-
mannian/Einstein metrics. Such results were proven following methods of nonholonomic
geometric analysis and by a number of examples of exact solutions defining Ricci flows
of valuable physical equations [17, 23]. The condition of metric compatibility was crucial
for such constructions: it is not clear how to generalize the Perelman’s functionals (with
corresponding entropy, average energy and analogous thermodynamical values which can
be defined even for gravitational and mechanical motion/field equations) and relevant
conservation laws for spaces with nonmetricity. If we try to elaborate certain nonmetric
geometric and physical (?) generalizations of former metric compatible constructions, this
is possible only as distorsions from some well defined metric compatible configurations.
So, metric compatibility is a crucial condition even we are oriented to develop nonmetric
geometric and physical theories. Here we note that nonsymmetric metrics and metric
compatible connections, in general, on nonholonomic manifolds, and their dynamics and
evolution under geometric flows are not prohibited by any general theoretical models or
experimental data in modern physics.

2. We proved that the Einstein gravity can be re-written equivalently in so–called almost
Kähler variables, and related Lagrange–Finsler variables, which is used for a study of sta-
bility of possible nonsymmetric metric generalizations [40]. But such stable configurations
seem to exist only for some classes of nonholonomic constraints and under the condition
of metric compatibility if we wont to preserve a physical limit to general relativity.

3. Nonsymmetric metric configurations are derived also in noncommutative geometry and
gravity and string/brane gravity [9, 29, 31, 41]. Following different geometric techniques,
introducing anti-commuting/noncommuting variables, performing Seiberg–Witten trans-
forms in gauge gravity, or using Born’s reciprocity principle etc, noncommutative and
nonsymmetric metrics and connections are generated to be mutually related as certain
field variables. In nonholonomic and metric compatible form such configurations can be
defined as exact solutions in Einstein, string and gauge gravity theories with noncommu-
tative variables.

4. Applying methods of Fedosov quantization to Einstein, gauge and string gravity theories,
as well to Lagrange–Finsler–Hamilton systems, deforming an effective symplectic (gravi-
tational) form, and related symplectic connections, we may define quantum corrections as
nonsymmetric metric contributions, see details in [31, 42, 43] and references therein. Such
quantum systems are (in general) nonholonomic and characterized by certain canonical
symmetries and invariants if the constructions are metric compatible.

5. The most striking revelation of nonholonomic nonsymmetric (commutative and/or non-
commutative) theories is that a corresponding generalization of the Dirac operator/equa-
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tions and inherent nonhlonomic spinor/Clifford structures have to be elaborated. Such
constructions were performed in a series of our previous works [26, 27, 28], for spinors
in Lagrange–Finsler (and higher order generalizations) and Clifford–Lie algebroids, with
further developments in nonholonomic metric-affine and noncommutative geometry (see
Parts I and III in [44]) and for spectral functionals and noncommutative Ricci flows [45].
In all cases, the condition of metric compatibility is a cornstone one for physical viable
and simplest theoretical/geometric generalizations of classical and quantum field theories.
For instance, it is a problem to define spinors even locally and propose a well defined
generalization of Dirac equations for metric noncompatible manifolds.

6. Incorporating the above mentioned results into standard theories of physics (the prob-
lem is also discussed in details in [24] and Introduction section to [44]), we have to solve
a general mathematical problem how to model geometrically various classes of spaces
enabled with nonsymmetric metrics and nonholonomic distributions. How to define con-
servation laws and relevant invariants which would characterize such theories (in NGT,
the problem was discussed, for instance, in [35] and for the case of nonholonomic spaces
in [44, 24, 17])? It should be emphasized that such geometric structures exist even in Ein-
stein gravity if solutions with generic off-diagonal metrics and nonholonomic frames are
introduced into consideration. So, a standard approach both to generalized field equations
and nonholomic constraints and well defined procedures of quantization of nonlinear field
theories and corresponding conservation laws are possible only if the condition of metricity
is satisfied.

Following the arguments and results outlined above in points 1-6, we conclude that the pre-
sented in this work study of the geometry of nonholonomic manifolds endowed with compatible
nonsymmetric metric and linear and nonlinear connection structures is motivated not only by
certain “academic” generalizations of metric and connection structures in differential geometry
but also by a series of results and requests from modern theoretical and mathematical physics.

Let us speculate on some further perspectives and applications of geometric methods from the
theory of nonholonomic manifolds provided with compatible nonsymmetric metric and nonlinear
and linear connections structures:

In the approximation of week skewsymmetric part of metrics, we can generate various gravity
models with effective scalar/vector/tensor interactions which seem to propose original solutions
of the problem of dark matter and connections to nonhomogeneous and locally anisotropic cos-
mological models and suggest new tests of gravity. It is possible to construct in explicit form
various classes of exact and approximate solutions with variation/runing of physical constants
and their nonlinear and (locally) anisotropic polarizations. Working with nonholonomic dis-
tributions and associated N-connections, one can be extracted from NGT different models of
Lagrange and Finsler geometries and their generalizations. We also argue that we can model by
regular mechanical systems certain classes of (non)symmetric and/or (non)holonomic gravita-
tional interactions and, inversely, the geometric mechanics can be represented and generalized
as certain classes of nonsymmetric and/or nonholonomic Riemann–Cartan spaces.

In this work, we have shown how NGT models can be elaborated in the form when there
are satisfied the metric compatibility and N-connection adapted conditions. This is very im-
portant both from conceptual and technical points of views. For instance, working with metric
compatible connections, we can develop the theory of Clifford structures with nonsymmetric
metrics and N-connections and formulate the criteria when global spinor constructions for such
spaces are possible. We are able to compute the topological obstructions for constructing such
nonsymmetric spinor generalizations and suggested variants of extending such theories. It is
also possible to define self-consistently the theory of Dirac operators with further extensions
to noncommutative models and deformation quantization of NGT. All such tasks become less
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physical and realistic, and very difficult to be solved mathematically, if we work with metric
noncompatible connections.

Finally, it should be emphasized that using canonical metric compatible connections, even (in
general) the metrics can be nonsymmetric, we can generalize the anholonomic frame method of
constructing exact and approximate solutions in various models of gravity. The obtained in this
works results and mentioned theoretical and phenomenological directions provide a considerable
setback for our forthcoming research projects.

A Some important local formulas

The N-adapted splitting into h- and v-covariant derivatives is stated by

hD = {Dk =
(
Li

jk, L
a
bk

)
} and vD = {Dc =

(
Ci

jc, C
a
bc

)
},

where, by definition, Li
jk = (Dkej)cei, La

bk = (Dkeb)cea, Ci
jc = (Dcej)cei, Ca

bc = (Dceb)cea. The
components Γγ

αβ =
(
Li

jk, L
a
bk, C

i
jc, C

a
bc

)
completely define a d-connection D on a N-anholonomic

manifold V.
The simplest way to perform computations with d-connections is to use N-adapted differential

forms like Γα
β = Γα

βγe
γ , with the coefficients defined with respect to (2.4) and (2.3). For

instance, the N-adapted coefficients of torsion (3.1), i.e. d-torsion, is computed in the form
T α + Deα = deα + Γα

β ∧ eβ, where

T i
jk = Li

jk − Li
kj , T i

ja = Ci
ja, T a

ji = Ωa
ji,

T a
bi =

∂Na
i

∂yb
− La

bi, T a
bc = Ca

bc − Ca
cb, (A.1)

for Ωa
ji being the curvature of N-connection (2.5).

By a straightforward d-form calculus, we can find the N-adapted components of the cur-
vature (3.2) of a d-connection D, Rα

β + DΓα
β = dΓα

β − Γγ
β ∧ Γα

γ = Rα
βγδe

γ ∧ eδ, i.e. the
d-curvature,

Ri
hjk = ek

(
Li

hj

)
− ej

(
Li

hk

)
+ Lm

hjL
i
mk − Lm

hkL
i
mj − Ci

haΩ
a
kj ,

Ra
bjk = ek

(
La

bj

)
− ej (La

bk) + Lc
bjL

a
ck − Lc

bkL
a
cj − Ca

bcΩ
c
kj ,

Ri
jka = eaL

i
jk −DkC

i
ja + Ci

jbT
b
ka, Rc

bka = eaL
c
bk −DkC

c
ba + Cc

bdT
c
ka,

Ri
jbc = ecC

i
jb − ebC

i
jc + Ch

jbC
i
hc − Ch

jcC
i
hb,

Ra
bcd = edC

a
bc − ecC

a
bd + Ce

bcC
a
ed − Ce

bdC
a
ec. (A.2)

Contracting respectively the components of (A.2), one proves that the Ricci tensor Rαβ +
Rτ

αβτ is characterized by h- v-components, i.e. d-tensors,

Rij + Rk
ijk, Ria + −Rk

ika, Rai + Rb
aib, Rab + Rc

abc. (A.3)

Finally, we note that the definition of scalar curvature requests a metric structure, which is
an additional geometric structure with respect to that of d-connection.
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