Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 4 (2008), 070, 21 pages      arXiv:0806.4851      https://doi.org/10.3842/SIGMA.2008.070
Contribution to the Special Issue on Kac-Moody Algebras and Applications

The PBW Filtration, Demazure Modules and Toroidal Current Algebras

Evgeny Feigin a, b
a) Mathematical Institute, University of Cologne, Weyertal 86-90, D-50931, Cologne, Germany
b) I.E. Tamm Department of Theoretical Physics, Lebedev Physics Institute, Leninski Prospect 53, Moscow, 119991, Russia

Received July 04, 2008, in final form October 06, 2008; Published online October 14, 2008

Abstract
Let L be the basic (level one vacuum) representation of the affine Kac-Moody Lie algebra ^g. The m-th space Fm of the PBW filtration on L is a linear span of vectors of the form x1¼xlv0, where lm, xi Î ^g and v0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space Lgr with respect to the PBW filtration. The ''top-down'' description deals with a structure of Lgr as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field eθ(z)2, which corresponds to the longest root θ. The ''bottom-up'' description deals with the structure of Lgr as a representation of the current algebra g Ä C[t]. We prove that each quotient Fm/Fm-1 can be filtered by graded deformations of the tensor products of m copies of g.

Key words: affine Kac-Moody algebras; integrable representations; Demazure modules.

pdf (332 kb)   ps (208 kb)   tex (22 kb)

References

  1. Ardonne E., Kedem R., Fusion products of Kirillov-Reshetikhin modules and fermionic multiplicity formulas, J. Algebra 308 (2007), 270-294, math.RT/0602177.
  2. Ardonne E., Kedem R., Stone M., Fusion products, Kostka polynomials and fermionic characters of ^su(r+1)k, J. Phys. A: Math. Gen. 38 (2005), 9183-9205, math-ph/0506071.
  3. Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, Vol. 88, Amer. Math. Soc., Providence, RI, 2001.
  4. Chari V., Le T., Representations of double affine Lie algebras, in A Tribute to C.S. Seshadri (Chennai, 2002), Trends Math., Birkhäuser, Basel, 2003, 199-219, math.QA/0205312.
  5. Chari V., Loktev S., Weyl, Demazure and fusion modules for the current algebra of slr+1, Adv. Math. 207 (2006), 928-960, math.QA/0502165.
  6. Chari V., Presley A., Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191-223, math.QA/0004174.
  7. Demazure M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88.
  8. Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Springer-Verlag, New York, 1997.
  9. Feigin E., Infinite fusion products and ^sl2 cosets, J. Lie Theory 17 (2007), 145-161, math.QA/0603226.
  10. Feigin E., The PBW filtration, math.QA/0702797.
  11. Feigin B., Feigin E., Q-characters of the tensor products in sl2 case, Moscow Math. J. 2 (2002), 567-588, math.QA/0201111.
  12. Feigin B., Feigin E., Integrable ^sl2-modules as infinite tensor products, in Fundamental Mathematics Today, Editors S. Lando and O. Sheinman, Independent University of Moscow, 2003, 304-334, math.QA/0205281.
  13. Feigin B., Feigin E., Jimbo M., Miwa T., Takeyama Y., A f1,3-filtration on the Virasoro minimal series M(p,p¢) with 1 < p¢/p < 2, Publ. Res. Inst. Math. Sci. 44 (2008), 213-257, math.QA/0603070.
  14. Feigin B., Jimbo M., Kedem R., Loktev S., Miwa T., Spaces of coinvariants and fusion product. I. From equivalence theorem to Kostka polynomials, Duke. Math. J. 125 (2004), 549-588, math.QA/0205324.
    Feigin B., Jimbo M., Kedem R., Loktev S., Miwa T., Spaces of coinvariants and fusion product. II. ^sl2 character formulas in terms of Kostka polynomials, J. Algebra 279 (2004), 147-179, math.QA/0208156.
  15. Frenkel I.B., Kac V.G., Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980/1981), 23-66.
  16. Feigin B., Kirillov A.N., Loktev S., Combinatorics and geometry of higher level Weyl modules, in Moscow Seminar on Mathematical Physics. II, Amer. Math. Soc. Transl. Ser. 2, Vol. 221, Amer. Math. Soc., Providence, RI, 2007, 33-47, math.QA/0503315.
  17. Feigin B., Loktev S., On generalized Kostka polynomials and quantum Verlinde rule, in Differential Topology, Infinite-Dimensional Lie Algebras and Applications, Amer. Math. Soc. Transl. Ser. 2, Vol. 194, Amer. Math. Soc., Providence, RI, 1999, 61-79, math.QA/9812093.
  18. Fourier G., Littelmann P., Tensor product structure of affine Demazure modules and limit constructions, Nagoya Math. J. 182 (2006), 171-198, math.RT/0412432.
  19. Fourier G., Littelmann P., Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), 566-593, math.RT/0509276.
  20. Hernandez D., Quantum toroidal algebras and their representations, Selecta Math., to appear, arXiv:0801.2397.
  21. Kac V., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  22. Kac V., Vertex algebras for begginers, University Lecture Series, Vol. 10. Amer. Math. Soc., Providence, RI, 1997.
  23. Kedem R., Fusion products, cohomology of GLN flag manifolds, and Kostka polynomials, Int. Math. Res. Not. 2004 (2004), no. 25, 1273-1298, math.RT/0312478.
  24. Kreiman V., Lakshmibai V., Magyar P., Weyman J., Standard bases for affine SL(n)-modules, Int. Math. Res. Not. 2005 (2005), no. 21, 1251-1276, math.RT/0411017.
  25. Kumar S., Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, Vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002.
  26. Loktev S., Weight multiplicity polynomials of multi-variable Weyl modules, arXiv:0806.0170.

Previous article   Next article   Contents of Volume 4 (2008)