Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 045, 8 pages      hep-ph/0512324      https://doi.org/10.3842/SIGMA.2006.045

Electroweak Interaction Model with an Undegenerate Double Symmetry

Leonid M. Slad
D.V. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119899 Russia

Received December 12, 2005, in final form March 31, 2006; Published online April 20, 2006

Abstract
The initial P-invariance of the electroweak interaction Lagrangian together with the low-energy results of the Weinberg-Salam model is provided by a local secondary symmetry. Among the transformation parameters of this symmetry there are both scalars, and pseudo-scalars with respect to the orthochronous Lorentz group. Such symmetry does admissible existence of a light (massless) axial gauge boson and its possible nonuniversal interaction with the leptons of various types.

Key words: double symmetry; electroweak interactions; light axial gauge boson.

pdf (198 kb)   ps (151 kb)   tex (13 kb)

References

  1. Slad L.M., Double symmetries in field theories, Mod. Phys. Lett. A, 2000, V.15, 379-389, hep-th/0003107.
  2. Gell-Mann M., Levy M., The axial vector current in beta decay, Nuovo Cimento, 1960, V.16, 705-726.
  3. Slad L.M., Toward an infinite-component field theory with a double symmetry: Free fields, Theor. Math. Phys., 2001, V.129, 1369-1384, hep-th/0111140.
  4. Slad L.M., Toward an infinite-component field theory with a double symmetry: Interaction of fields, Theor. Math. Phys., 2002, V.133, 1363-1375, hep-th/0210120.
  5. Slad L.M., Double symmetry and infinite-component field theory, in Proceedinds of Fifth International Conference "Symmetry in Nonlinear Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych, and I.A. Yehorchenko, Proceedings of Institute of Mathematics, Kyiv, 2004, V.50, Part 2, 947-954, hep-th/0312273.
  6. Slad L.M., Mass spectra in the doubly symmetric theory of infinite-component fields, Theor. Math. Phys., 2005, V.142, 15-28, hep-th/0312150.
  7. Ginzburg V.L., On relativistic wave equations with mass spectrum, Acta Physica Polonica, 1956, V.15, 163-175.
  8. Gelfand I.M., Minlos R.A., Shapiro Z.Ya., Representations of the rotation and Lorenz group and their applications, New York, The Macmillan Company, 1963.
  9. Pati J.C., Salam A., Lepton number as the fourth "color", Phys. Rev. D, 1974, V.10, 275-289.
  10. Mohapatra R.N., Pati J.C., Left-right gauge symmetry and an "isoconjugate" model of CP violation, Phys. Rev. D, 1975, V.11, 566-571.
  11. Mohapatra R.N., Pati J.C., "Natural" left-right symmetry, Phys. Rev. D, 1975, V.11, 2558-2561.
  12. Senjanovic G., Mohapatra R.N., Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D, 1975, V.12, 1502-1505.
  13. Eidelman S. et al., Review of particle physics, Phys. Lett. B, 2004, V.592, 1-1109.
  14. Weinberg S., A model of leptons, Phys. Rev. Lett., 1967, V.19, 1264-1266.
  15. Adler S.L., Axial-vector vertex in spinor electrodynamics, Phys. Rev., 1969, V.177, 2426-2438.
  16. Bell J., Jackiw R., A PCAC puzzle: p0 ® gg in the sigma model, Nuovo Cimento A, 1969, V.60, 47-61.
  17. Adler S.L., Bardeen W.A., Absence of higher-order corrections in the anomalous axial-vector divergence equation, Phys. Rev., 1969, V.182, 1517-1536.
  18. Adler S.L., Anomalies, hep-th/0411038.
  19. Gross D.J., Jackiw R., Effect of anomalies on quasi-renormalizable theories, Phys. Rev. D, 1972, V.6, 477-493.
  20. Bouchiat C., Iliopoulos J., Meyer Ph., An anomaly-free version of Weinberg's model, Phys. Lett. B, 1972, V.38, 519-523.
  21. Geng C.Q., Marshak R.E., Uniqueness of quark and lepton representations in the standard model from the anomalies viewpoint, Phys. Rev. D, 1989, V.39, 693-696.
  22. Fayet P., Effects of the spin-1 partner of the goldstino (gravitino) on neutral current phenomenology, Phys. Lett. B, 1980, V.95, 285-289.
  23. Fayet P., A la recherche d'un nouveau boson de spin un, Nucl. Phys. B, 1981, V.187, 184-204.
  24. Fayet P., Extra U(1)'s and new forces, Nucl. Phys. B, 1990, V.347, 743-768.
  25. Boehm C., Implications of a new light gauge boson for neutrino physics, Phys. Rev. D, 2004, V.70, 055007, 9 pages.
  26. Bellerive A., Review of solar neutrino experiments, Int. J. Mod. Phys. A, 2004, V.19, 1167-1179.
  27. Marciano W.J., Parsa Z., Neutrino-electron scattering theory, J. Phys. G, 2003, V.29, 2629-2646.
  28. Reines F., Curr H.S., Sobel H.W., Detection of ne-e scattering, Phys. Rev. Lett., 1976, V.37, 315-318.
  29. Daraktchieva Z. et al., Final results on the neutrino magnetic moment from the MUNU experiment, Phys. Lett. B, 2005, V.615, 153-159.
  30. Levine M.J., Park H.Y., Roskies R.Z., High-precision evaluation of contributions to g-2 of the electron in sixth order, Phys. Rev. D, 1982, V.25, 2205-2207.
  31. Mohr P.J., Taylor B.N., CODATA recommended values of the fundamental physical constants: 2002, Rev. Mod. Phys., 2005, V.77, 1-107.

Previous article   Next article   Contents of Volume 2 (2006)