\mathbf{SeMR} ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 4, стр. 136-140 (2007)

УДК 512.5 MSC 13A99

RECOGNIZABILITY BY SPECTRUM OF THE GROUP $L_2(7)$ IN THE CLASS OF ALL GROUPS

D. V. LYTKINA, A. A. KUZNETSOV

ABSTRACT. It is proved that the finite simple group $L_2(7)$ is characterized up to isomorphism by its set of element orders in the class of all groups. This gives the answer to the question 16.57 from "Kourovka Notebook".

Introduction

The spectrum of a periodic group G is the set $\omega(G)$ consisting of element orders of G. A group G is recognizable by spectrum in the class of all groups if every group with spectrum coinciding with the spectrum of G is isomorphic to G.

Our goal is to give a positive answer to the question 16.57 from [1] (see also [2]) on recognizability by spectrum of the simple group $L_2(7)$.

Theorem. If the spectrum of a group G is equal to $\{1, 2, 3, 4, 7\}$ then $G \simeq L_2(7)$. For finite groups this result is proved in [3].

1. Notation and known results

If H is a subgroup of group G, $x,y \in G$, X,Y are subsets of G, then $x^y = y^{-1}xy, X^y = \{y^{-1}xy | x \in X\}, [x,y] = x^{-1}x^y, x^Y = \{x^y | y \in Y\}, X^Y = \{x^y | x \in X, y \in Y\}, N_H(X) = \{g \in H | X^g = X\}, \langle X \rangle$ is a subgroup generated by X, $[X,Y] = \langle [x,y] | x \in X, y \in Y \rangle$, $C_H(X) = \{h \in H | [h,x] = 1 \text{ for all } x \in X\}, Z(G) = C_G(G)$. If X is a group then X' = [X,X]. If p is a prime then $O_p(G)$ is defined as a product of all normal p-subgroups of G, and $O_{p,q}(G)$ as a full pre-image in G of group $O_q(G/O_p(G))$. Let $\Phi(G)$ be the Frattini subgroup, $SL_2(q)$ ($L_2(q)$) be (projective) special linear group of dimension 2 over a field of order q.

Lytkina, D.V., Kuznetsov, A.A. Recognizability by spectrum of the group $L_2(7)$ in the class of all groups.

^{© 2007} Lytkina D.V., Kuznetsov A.A.

We need the following known facts which will be referred to as propositions with corresponding numbers.

- 1. (Shunkov's theorem [4]). Periodic group containing an involution with a finite centralizer is locally finite.
 - 2. (W. Shi [3]). If F is a finite group and $\omega(F) = \{1, 2, 3, 4, 7\}$, then $F \simeq L_2(7)$.
- 3. (J. Thompson [5]). Finite group which admits an automorphism of a prime order without fixed points is nilpotent.
- 4. (Theorem 1 of [6]). Let G be a group whose element orders are at most 4. Then G is locally finite, and one of the following holds:
 - a) G is a group of exponent 3 or 4.
- b) G contains a normal elementary abelian 3-subgroup N and G/N is isomorphic to a subgroup of the quaternion group of order 8.
- c) G contains a normal elementary abelian 2-subgroup N, and G/N isomorphic to S_3 .
 - d) G contains a normal 2-subgroup N of index 3 and nilpotency class 2.
- 5. (Lemmas 4 and 5 from [7]). Let G be a group with $\omega(G) = \{1, 2, 3, 4, 7\}$. Then the subgroup generated by all involutions of G is not a 2-group.

2. Preliminary lemmas

The following results (Lemmas 1-5) can be easily verified with the help of the coset enumeration algorithm realized, for example, in GAP system [9].

Lemma 1. Let $H_i = \langle x, y | R_i \rangle$ be a group with two generators defined by the set $R_i, i = 1, 2, ..., 11$, of relations recorded in i-ths line of Table 1. Then the order of H_i equals to the number h_i from this table.

Table 1

i	R_i	h_i
1 2 3	$x^{3} = y^{2} = (xy)^{7} = (yy^{x})^{7} = 1$ $x^{3} = y^{2} = (xy)^{7} = (yy^{x})^{4} = 1$ $x^{3} = y^{2} = (xy)^{7} = (yy^{x})^{3} = 1$	1092 168 1
4 5	$x^{3} = y^{2} = (xy)^{4} = 1$ $x^{3} = y^{2} = (xy)^{3} = 1$	24 12
6	$x^{4} = y^{2} = (xy)^{4} = ((xy)^{2}y)^{3} = 1$ $x^{4} = y^{2} = (xy)^{4} = ((xy)^{2}y)^{4} = 1$	36 64
8 9 10 11	$\begin{vmatrix} x^4 = y^2 = (xy)^7 = (yy^x)^4 = (x^2y)^4 = 1\\ x^4 = y^2 = (xy)^7 = (yy^x)^4 = (x^2y)^3 = 1\\ x^4 = y^2 = (xy)^7 = (yy^x)^3 = (x^2y)^3 = 1\\ x^4 = y^2 = (xy)^7 = (yy^x)^3 = (x^2y)^4 = 1 \end{vmatrix}$	2 168 1 2

Lemma 2. Let $X(m,n) = \langle x,y,z|x^3 = y^2 = (xy)^7 = (yy^x)^4 = z^2 = (z^xz)^2 = zz^xz^{x^2} = (tz)^2 = (zu)^2 = (u^xz)^2 = (yz)^m = (xyz)^n = 1\rangle$, where $m, n \in \{3,4,7\}$, $u = y^{(xy)^2x}$, $t = u^y$. Then |X(4,7):H| = 64, |X(4,4):H| = 8 and X(m,n) = 1 for other m and n

Note that, by Lemma 1, H is a homomorphic image of group $L_2(7)$, therefore all the groups X(m,n) from Lemma 2 are finite.

Lemma 3. Let $X(m,n) = \langle x,y,z|x^2 = y^2 = z^3 = (xy)^7 = (xz)^2 = (yz)^m =$ $(xyz)^n = 1$. Then X(3,3) = X(3,4) = 1, |X(4,3)| = 6, |X(4,4)| = 68880.

Lemma 4. Let $X(m,n) = \langle x,y,z|x^2 = y^2 = z^3 = (xy)^7 = (xz)^2 = (yz)^4 = (xyz)^7 = (xz^y)^m = (xz^{yxy})^n = 1\rangle$. Then |X(4,4)| = 14, X(4,3) = X(3,3) = X(3,3)X(3,4) = 1.

Lemma 5. Let $X(m,n) = \langle x,y,z|x^2 = y^2 = z^3 = (xy)^7 = (xz)^3 = (yz)^3 = (xyz)^m = ((xy)^2xz)^n = 1\rangle$. Then |X(3,3)| = 12, X(3,4) = X(4,3) = X(4,4) = 1.

The following remark follows from description of subgroups in $L_2(q)$ (see section II.8 in [8]).

Lemma 6. If M is a proper subgroup in $L_2(7)$, then the order of M is not divisible by 14. If M is a proper subgroup in $L_2(13)$, then the order of M is not divisible by

Lemma 7. The following isomorphisms hold.

- 1. $L_2(13) \simeq \langle x, y | x^3 = y^2 = (xy)^7 = (yy^x)^7 = 1 \rangle$. 2. $L_2(7) \simeq \langle x, y | x^3 = y^2 = (xy)^7 = (yy^x)^4 = 1 \rangle$. 3. $L_2(7) \simeq \langle x, y | x^4 = y^2 = (xy)^7 = (yy^x)^4 = (x^2y)^3 = 1 \rangle$. 4. $S_4 \simeq \langle x, y | x^3 = y^2 = (xy)^4 = 1 \rangle$. 5. $A_4 \simeq \langle x, y | x^3 = y^2 = (xy)^3 = 1 \rangle$.

Proof. Let $a = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}, b = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in SL_2(13)$. If x and y are images of aand b in $L_2(13)$, then x and y satisfy relations of item 1. Since the order of $\langle a,b\rangle$ obviously is divisible by 21, Lemma 6 implies that $\langle x,y\rangle \simeq L_2(13)$. Since order of $L_2(13)$ equals 1092, item 1 is true by Lemma 1.

Let x and y be images of elements a, b in $L_2(7)$, where $a = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$,

 $b = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in SL_2(7)$. Then x, y satisfy relations of item 2 and arguments similar to these in previous paragraph show trueness of item 2.

Item 3 can be proved in the same way with replacing a by $\begin{bmatrix} 4 & 1 \\ 2 & 4 \end{bmatrix} \in SL_2(7)$. Items 5 and 6 are well known.

Lemma 8. Let $a = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in SL_2(7)$, x and y be images of a and b, respectively, under natural homomorphism $SL_2(7)$ onto $L_2(7) = SL_2(7)/Z(SL_2(7))$. Then orders of elements x, y, xy and yy^x are equal respectively to 3, 2, 7 and 4; in particular, x and y generate $L_2(7)$. If $t = y^{(xy)^3}$, $u = y^{(xy)^2y}$, then $x^t = x^{-1}$, $u^t = y^{-1}$ $u, [u, u^x] = 1, u^{x^2} = uu^x$ and $u^{xt} = uu^x$. Specifically, $U = \langle u, u^x \rangle$ is elementary abelian subgroup of order $4, R = \langle t, x \rangle \simeq S_3, R$ normalizes U and $X = UR \simeq S_4$. In adition, $S = \langle t, u, u^x \rangle$ is a Sylow 2-subgroup of $L_2(7)$ and $z \in Z(S)$.

Proof is a straightforward calculation.

3. Proof of the main result

Let G be a group whose spectrum $\omega(G)$ is equal to $\{1,2,3,4,7\} = \omega(L_2(7))$.

Lemma 9. If G contains a subgroup H isomorphic to $L_2(7)$ then G = H.

Proof. Suppose the contrary. Choose elements x and y of H in accordance with Lemma 8 and use all the other notations of that lemma.

We shall show that $C=C_G(U) \not\leqslant H$. Indeed, C is X- invariant 2-group. By Proposition 4, C is elementary abelian 2-group. If $C \leqslant H$, then C=U is a coinciding with its centralizer in $C_G(u)$ elementary group of order 4. Since $C_G(u)$ is a locally finite 2-group of exponent 4, $C_G(u)$ is finite. By Proposition 1, G is locally finite. By Proposition 2, $G \simeq L_2(7)$ contradicting to assumption. Thus, $|C| \geqslant 16$ and therefore $C_C(t)$ contains an element z not belonging to H. As C is x-invariant and x acts on C without fixed points, $zz^xz^{x^2}=1$ and $[z,u]=[z^x,u]=1$. Hence $K=\langle x,y,z\rangle$ is a homomorphic image of one of the groups $X(m,n)=\langle x,y,z|x^3=y^2=(xy)^7=(yy^x)^4=z^2=(z^xz)^2=zz^xz^{x^2}=(tz)^2=(zu)^2=(u^xz)^2=(yz)^m=(xyz)^n=1\rangle$, where $m,n\in\{3,4,7\},t=y^{(xy)^3},u=y^{(xy)^2x}$.

By Lemma 2, K is finite. By Proposition 2, K = H contradicting the choice of z. The lemma is proved.

Suppose that G does not contain a subgroup isomorphic to $L_2(7)$.

Lemma 10. If the product of any two involutions of G is a $\{2,3\}$ -element then the subgroup generated by all involutions of G is a $\{2,3\}$ -group.

Proof. Suppose the contrary. Let I is the set of all involutions of G and $H = \langle I \rangle$. Every element z of H can be expressed in the shape $z = i_1 i_2 \dots i_r$, where $i_j \in I$. Suppose r is the least for which the order of z is equal to 7. Then $r \geq 3$ and $x = i_1 i_2 \dots i_{r-1}$ is an element of order 3 or 4. Suppose $y = i_r, K = \langle x, y \rangle$. By assumption, $(yy^x)^4 = 1$ or $(yy^x)^3 = 1$. If x is a 3-element, then, by Lemmas 1 and 7, K is a homomorphic image of $L_2(7)$. Since $L_2(7)$ is simple, $K \simeq L_2(7)$. By Lemma 9, $G \simeq L_2(7)$ contradicting the assumption.

If x is a 4-element, then x^2 is an involution and hence $(yy^x)^r = (x^2y)^s = 1$, where $r, s \in \{3, 4\}$. Again, by Lemmas 1 an 7, K is a homomorphic image of $L_2(7)$ and as earlier we face a contradiction.

Lemma 11. G contains two involutions whose product is an element of order 7.

Proof. Suppose the contrary. By Lemma 10, the subgroup I generated by all involutions of group G is a normal $\{2,3\}$ -subgroup in G. By assumption, G contains an element x of order 7. By Proposition 5, I is not a 2-group and hence contains elements y and z of orders 2 and 3, respectively. The subgroup $N = \langle \langle y, z \rangle^{\langle x \rangle} \rangle$ is a finitely generated subgroup from I. By Proposition 4, N is a finite $\langle x \rangle$ -invariant subgroup. By Proposition 3, N is nilpotent and hence the order of yz is equal to six contradicting the assumption.

Lemma 12. The product of any 3-element and an involution is a $\{2,3\}$ -element.

Proof. Suppose the contrary. Let x be element of order 3, y be involution of G whose product is an element of order 7. Then $(yy^x)^m = 1$ for $m \in \{3,4,7\}$. By Lemmas 1 and 7, $\langle x,y \rangle \simeq L_2(7)$ contradicting Lemma 9. The lemma is proved.

Let us finish the proof of Theorem. By Lemma 11, G contains involutions x, y, whose product is of order 7. In addition, by Lemma 12, the product of any 3-element and an involution is a $\{2,3\}$ -element.

Suppose first that G contains an element z of order 3, such that $(xz)^3 = (yz)^3 = 1$. Since x and $(xy)^2x$ are involutions, by Lemma 12, $(xyz)^m = ((xy)^2xz)^n = 1$ for some m, n equal to 3 or 4. This contradicts Lemma 5.

Thus we may assume that there exists an element z of order 3 for which $(xz)^4 = 1$. If the order of xz equals 4 then, by Lemma 7, $\langle x, z \rangle \simeq S_4$, hence $\langle x, z \rangle$ contains an element z_1 of order 3 for which $(xz_1)^2 = 1$, hence, replacing, when needed, z_1 with z we may assume that $(xz)^2 = 1$.

By Lemma 12, yz is a $\{2,3\}$ -element, hence $(yz)^3=1$ or $(yz)^4=1$. If yz is of order 3 then, by Lemma 12, xyz is a $\{2,3\}$ -element and, by Lemma 3, $\langle x,y,z\rangle=1$ which is not true. Therefore $(yz)^4=1$. If yz is an element of order 2 then $z^y=z^x=z^{-1}$, hence $z^{xy}=z$ and xyz is of order 21 which is not true. It follows that yz is an element of order 4 and, in addition, $K=\langle x,y,z\rangle$ satisfies the equality $\omega(K)=\omega(G)$. By Lemma 12, xz^y and xz^{yxy} are $\{2,3\}$ -elements, hence K is finite by Lemmas 3 and 4. By Proposition 2, $K\simeq L_2(7)$ contradicting the assumption. Theorem is proved.

Notice that all computations used in the proof have been realized with aid of GAP [9] and checked with the help of a special algorithm devised by the second author.

References

- [1] Unsolved problems of group theory. The Kourovka Notebook, 16-th edition. Novosibirsk, 2006.
- [2] V. D. Mazurov, Groups with given spectrum (in Russian), Izvestiya Uralskogo gosudarstvennogo universiteta. Matematika i mekhanika, 36: 7 (2005), 119–138.
- [3] W. J. Shi, A characteristic property of PSL₂(7), J.Austral. Math. Soc. Ser. A. 36: 3 (1984), 354–356.
- [4] V. P. Shunkov, On periodic groups with an almost regular involution, Algebra and Logic, 11:4 (1972), 260–272.
- [5] J. G. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 578-581.
- [6] D. V. Lytkina, Structure of a group with elements of order at most 4, Siberian Math. J., 48:2 (2007), 268–272.
- [7] A. A. Kuznetsov, About recognizability of the group L₂(7) by spectrum (in Russian), Siberian Electronic Math. Reports (http://semr.math.nsc.ru) 2 (2005), 250-252.
- [8] B. Huppert, Endliche Gruppen, I. Springer Verlag, 1979.
- [9] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4.6, 2005 (http://www.gap-system.org).

Daria Victorovna Lytkina Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia E-mail address: d_lytkin@mail.ru

ALEXANDER ALEXEEVICH KUZNETSOV KRASNOYARSK STATE AGRICULTURAL UNIVERSITY, MIRA 90, 660049, KRASNOYARSK, RUSSIA E-mail address: alex_kuznetsov80@mail.ru