$\mathbf{S}(\mathbf{e})\mathbf{M}\mathbf{R}$ ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 3, стр. 143–144 (2006) Краткие сообщения УДК 515.16

MSC 57M12; 57M25

REPRESENTATIONS OF (1,1)-KNOTS

MICHELE MULAZZANI

A knot K in a 3-manifold N^3 is called a (1,1)-knot if there exists a Heegaard splitting of genus one $(N^3,K)=(H,A)\cup_{\psi}(H',A')$, where H and H' are solid tori, $A\subset H$ and $A'\subset H'$ are properly embedded trivial arcs and $\psi:(\partial H',\partial A')\to(\partial H,\partial A)$ is an attaching homeomorphism. Obviously, N^3 turns out to be a lens space (possibly \mathbf{S}^3). In particular, the family of (1,1)-knots contains all torus knots and all two-bridge knots in \mathbf{S}^3 . The topological properties of (1,1)-knots have recently been studied in several papers from different points of view (see references in [2]).

We develop two different representations of (1,1)-knots and study the connections between them.

The first representation is algebraic: every (1,1)-knot is represented by an element of the pure mapping class group of the twice punctured torus $PMCG_2(T)$, where $T = \partial H$ (see [1, 2]).

Proposition 1. [2] The kernel of the natural homomorphism $\Omega : PMCG_2(T) \to MCG(T) \cong SL(2,\mathbb{Z})$ is a free group of rank two, and there is a surjective map $\Theta_{p,q}$ from ker Ω to the class of all (1,1)-knots in a fixed lens space L(p,q), sending the identity element to the trivial knot in L(p,q).

This type of representation has been explicitly obtained for two-bridge knots and torus knots.

The second representation is parametric: using the results of [4] and [3], every (1,1)-knot can be represented by a 4-tuple (a,b,c,r) of integer parameters.

Proposition 2. [3] A (1,1)-knot $(L(p,q),K) = (H,A) \cup_{\psi} (H',A')$, is completely determined, up to equivalence, by the isotopy class in $\partial H - \partial A$ of the curve $\psi(\beta')$, where β' is the boundary of a meridian disk of H' not intersecting A'. As a consequence, K can be represented by four non-negative integers a, b, c, r.

^{© 2005} MULAZZANI, M.

This representation has been obtained for two-bridge knots, torus knots and several (1,1)-knots (not belonging in S^3) related to Seifert manifolds.

References

- [1] A. Cattabriga, M. Mulazzani, Strongly-cyclic branched coverings of (1,1)-knots and cyclic presentations of groups, Math. Proc. Cambridge Philos. Soc., 135 (2003), 137–146.
- [2] A. Cattabriga, M. Mulazzani, (1,1)-knots via the mapping class group of the twice punctured torus, Adv. Geom., 4 (2004), 263–277.
- [3] A. Cattabriga, M. Mulazzani, All strongly-cyclic branched coverings of (1,1)-knots are Dunwoody manifolds, J. London Math. Soc., 70 (2004), 512–528.
- [4] L. Grasselli, M. Mulazzani, Genus one 1-bridge knots and Dunwoody manifolds, Forum Math., 13 (2001), 379–397.

MICHELE MULAZZANI

Dipartimento di Matematica, Universitá di Bologna,

Piazza di Porta San Donato, 5

40126 Bologna, Italy

 $E\text{-}mail\ address{:}\ \mathtt{mulazza@dm.unibo.it}$