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INTEGRAL p-ADIC DIFFERENTIAL MODULES

by

B. H. Matzat

Abstract — An integral (or bounded) local D-module is a differential module over
a local D-ring R having congruence solution bases over R. In case R is equipped
with an iterative derivation, such a D-module is an iterative differential module (ID-
module) over R. In this paper we solve the connected inverse Galois problem for
integral D-modules over fields of analytic elements K{t}. In case the residue field
of K is algebraically closed, we are able to additionally solve the non-connected
inverse Galois problem. Further we study the behaviour of ID-modules by reduction
of constants.

Résumé(Modules différentiels p-adiques bornés). — Un D-module local borné est un
module différentiel sur un anneau local différentiel R qui posséde des bases sur R
pour les solutions de congruence. Si R est muni d’une dérivation itérative, un tel
D-module en plus est un module différentiel itératif (ID-module) sur R. Dans ce
texte nous présentons une solution du probléme inverse de Galois connexe pour les
D-modules bornés sur des corps d’éléments analytiques K {t}. Dans le cas ol le corps
résiduel de K est algébriquement clos nous donnons en plus une solution du probleme
inverse pour les groupes linéaires non connexes. Finalement nous étudions la relation
entre les ID-modules locaux et leurs réductions.

0. Introduction

Integral (or bounded) p-adic differential modules are D-modules over a p-adic D-
ring having congruence solution bases over the base ring. By [Chr83], Theorem 4.8.7,
these are solvable in the ring of analytic functions over the open generic disc. Our
interest in this special class of p-adic D-modules comes from the fact that they ap-
pear as lifts of (iterative) D-modules in characteristic p (see [MvdP03b], [Mat01]).
This property sometimes allows to solve problems using techniques developed for the
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264 B. H. MATZAT

characteristic p theory. Further, this class also contains the category of integral Frobe-
nius modules over a p-adic differential ring (category of integral DF-modules) studied
in [Mat03].

In §1, from every integral p-adic D-module we derive a projective system of congru-
ence solution modules and obtain an equivalence of categories between the category
DModp of integral D-modules over a p-adic D-ring O and the corresponding cate-
gory of projective systems DProj,. As in positive characteristic, the related system
of base change matrices (D;);en determines the derivation. The formula is given
in Theorem 1.7.

In the next §2, the differential Galois group of an integral p-adic D-module is
studied. It is a reduced linear algebraic group over the field of constants K and hence
a p-adic analytic group. If the matrices D; belong to a connected group, this group
is an upper bound for the differential Galois group, as in the characteristic p case.

In Theorem 3.4 and Theorem 3.6, the inverse problem of differential Galois theory is
solved for split connected groups over the field of analytic elements K {t} and its finite
extensions. At least over K{t} this implies an analogue of the Abhyankar conjecture
as stated in Corollary 3.5, which again coincides with the characteristic p case.

In §4 embedding problems with connected kernel and finite cokernel are solved
over K{t} via equivariant realization of (not necessarily split) connected groups. The
proof combines techniques from the solution of the inverse problem over rational
function fields with algebraically closed field of constants in characteristic zero by J.
Hartmann [Har02| and in positive characteristic [Mat01]. In case the residue field
of K is algebraically closed this leads to the solution of the general inverse problem
over K{t} (for non-connected groups), see Theorem 4.6. This result can be seen as
a differential analogue of Harbater’s solution of the finite inverse problem over p-adic
function fields [Har87].

In the last §5, we study reduction of constants. The main result (Theorem 5.4)
is that the reduced module of an integral p-adic D-module is an iterative D-module
(ID-module) in characteristic p with a related differential Galois group. This answers
Conjecture 8.5 in [MvdPO03b] by the affirmative.

Acknowledgements. 1 would like to thank G. Christol, D. Harbater, J. Hartmann,
M. Jarden and A. Réscheisen for helpful discussions on topics of the paper.

1. Integral Local Differential Modules

1.1. Local Differential Rings. — Let F' be a field with a nonarchimedean val-

uation | - |, valuation ring Op, valuation ideal Pp and residue field F := Op/Pp.
Assume F has a nontrivial continuous derivation
(1.1) Op : F — F with 0p(Op) C Op,0r(Pr) C Pr

and field of constants K = Kp with Pk := PrNK # (0). Then Op with OF restricted
to Op is called a local differential ring. By definition dr induces a derivation on F.
Note that in case the value groups |F*| and | K *| coincide, the assumption 0p(OF) C
Or in (1.1) already implies Op(Pr) C Pr. Now we fix an element 0 # r € Pk, for
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INTEGRAL p-ADIC DIFFERENTIAL MODULES 265

example a prime element of Pk in the case of a discrete valuation. With respect to r
we define congruence constant rings

(1.2) O, := {a € OF|8F((1) € TZOF} for [ e€N.

Obviously the intersection of all these rings is the valuation ring Ok of K with respect
to the restricted valuation, i.e.,

(1.3) Ok =[O0

leN

To explain a standard example, let K be a complete p-adic field, i.e., a complete
subfield of the p-adic universe C,. The field K (¢) of rational functions over K with
the Gaufl valuation (extending the maximum norm on K[t]) and with the derivation

—

9y == 4 is a nonarchimedean differential field. Its completion F' = K{t} = K(t)
with respect to the GauBl valuation with the continuously extended derivation dy is
a complete nonarchimedean differential field, sometimes called the field of analytic
elements over K (compare [Chr83], Def. 21.3). By definition the valuation ring Op
is a local differential ring. It contains the Tate algebra

(1.4) K(t) = {Z ait'|a; € K, lim |a;] = o}

leN 1— 00
which coincides with the ring of analytic functions on the closed unit disc. The residue
field F of Op is the field of rational functions over the residue field K := O /Px of
K,ie.,

(1.5) F = Or/Pr = (Ok/Px)(t) = K(t).
In the case r = p we obtain
(1.6) Fi=0/(OnPr) = K{t*)

for the residue fields of the higher congruence constant rings O; of Op.

Now let L/F be a finite extension of F' = K{t}. Then the valuation of O extends
uniquely to a valuation of O, and the derivation J; has a unique extension Jr, to L.
If we assume

(17) 8L((’)L) - OL and 8L(7>L) - PL,

Op, becomes a local D-ring. Such a ring will be called a p-adic differential ring in the
following, and Or,/OF is an extension of p-adic D-rings. Unfortunately the assumption
(1.7) is not vacuous, as the example L = F(s), s? = t shows. Here s belongs to Oy,
but Jr(s) = ~ & Or. The following proposition gives a sufficient condition for (L.7).
Proposition 1.1 — Let (O, dr) be a local D-ring in a discretely valued D-field F, let
L/F be a finite field extension and Or/Op an extension of valuation rings. Assume
that the corresponding extension of residue fields L/F is separable and the different
Drr of L/F is trivial. Then Or, is a local D-ring evtending OF .
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266 B. H. MATZAT

Proof. — By the assumptions above there exists an element y € Or, with O, = Op[y]

([Ser62], § 6, Prop. 12). Let f(X) = > a; X’ € Op[X] be the minimal polynomial
i=0

of y. Then the derivative of y is given by

(1.8) 1 (y) = 76F(f)(y)

ox(f)(y)’
with the partial derivations dr and dx, respectively. Because of D, /p = Ox (f)(y)OL
([Ser62], § 6, Cor. 2), our assumptions give dx(f)(y) € O;F. But this entails
0(0Or) C O and in the case y € Of additionally 9(Pr) € Pr. In the case
y € Pr we have ap € Pr. But this implies Or(ag) € Pr, thus dp(f)(y) € Pr and
arL, (y) € Pr, showing 8L(PL) CPr. O

In the following an extension L/F of valued D-fields is called an integral extension
if O /OpF is an extension of local D-rings.

1.2. Local Differential Modules. — Now let (Op, Or) be a local D-ring as defined
above. Then a free Op-module M of finite rank m together with a map Oy : M — M,
which is additive and has the defining property

(1.9) Om(ar) = Op(a)r +ady(z) for a€ F,x e M

is called a local differential module (local D-module) over Op. The pair (M, Oyr)
is called an integral local D-module here (instead of bounded local D-module as in
[Mat01], [vdPO01]) if for every [ € N there exists an Op-basis B; = {bi1,...,bim}
such that 0y (B;) C r' M. Then the submodules

m
(1.10) M, = EB Oby; CM

i=1
are congruence solution modules of M (with respect to r). Obviously these are char-
acterized by the property

(1.11) M, = {z € M|dy(z) € r'M}.

At first glance the defining property of an integral local D-module looks very strong.
However, it generalizes the notion of an integral p-adic differential module with Frobe-
nius structure (DF-module) as studied in [Mat03]. There, (F,dr, /) is a complete
p-adic field with derivation Jr and Frobenius endomorphism (bf which are related by
the formula

Ir (¢ (1))
1.12 Opo ¢l =2p¢l 00p with zp= ——1 "L cP
(1.12) PO ¢, =zrdy o0F F T (0r (1)) P
for some nonconstant ¢ € F ([Mat03], § 7.1 or [Col03], § 0.2). Assume (Op,dF)
is a local D-ring for r € Pg with |r| = |z|. Let (Mg, ®[) be an integral (or étale)

Frobenius module over F' with associated derivation dps (as introduced in [Mat03],
§ 7.3). Then a Frobenius lattice M inside Mp (compare [Mat03], § 6.3) together
with 9y restricted to M defines an integral local D-module over Op (with Frobenius
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INTEGRAL p-ADIC DIFFERENTIAL MODULES 267

structure). Moreover, the image ®! (M) of the I-th power of the Frobenius endomor-
phism &, = @5 on M is contained in the congruence solution module M;, and the
derivation dy; on M is uniquely determined by this property ([Mat03], Thm. 7.2).

Now let (M, dp) and (N, On) be two integral local D-modules over a local D-ring
(Op,0r). Then an Op-linear map 0 : M — N is called a D-homomorphism if and
only if 0 9y = Oy 00. The integral local D-modules over O = Op together with the
D-homomorphisms form a category which will be denoted by DMod in the sequel.

Proposition 1.2 — Let (Op,0r) be a local D-ring. Then the category DModo of
integral local D-modules over O = Op is a tensor category over the ring Ok of
differential constants in O.

Proof. — Obviously DModp is an abelian category of O-modules. For (M, dar),
(N,0n) € DModo, the tensor product in DModp is given by M @ N := M ®¢ N.
It becomes a local D-module over O via

(1.13) Omen(T®@y) = 0m(r) @y + 2@ IN(Y).
This module is integral because
(1.14) M, ® N, C (M ®N),.

Further the dual module M* := Homp (M, O) is a D-module with
(1.15) (On+ (N))(x) = 0r(f(2)) — f(Om(x)) for [feM* zeM.
The evaluation ¢ : M@ M* — 1pmod, = O sends z® f to f(x), and the coevaluation
0: 0 — M*®M is defined by the map 1 +— i by ®b;, where B = {b1,..., by} denotes

i=1
a basis of M and B* = {b7,...,b},} the corresponding dual basis of M*. (Note that
the definition of § does not depend on the basis chosen.) By immediate calculations it
follows (compare, for example, [Mat01], Ch. 2.1) that ¢ and § are D-homomorphisms
with
(116) (E ® idk[) o (id[y[ ®5) =idy and (ldM* ®€) o (5 (%9 idk[*) =idp~ .
Thus by definition DModp is a tensor category defined over Ok because of

(117) EndDModo (]-DModo) = EndDModo (O) = OK. D

1.3. The Projective System of Congruence Solution Modules. — In anal-
ogy to the differential modules in positive characteristic with respect to an iterative
derivation, the so-called ID-modules (see [MvdP03b| or [Mat01]), to any integral
local D-module we can associate a projective system of congruence solution modules.

Proposition 1.3 — Let (O, 0) be a local D-ring and (M, 0nr), (N, On) € DMode with
congruence solution modules M; or N; over Oy, respectively.

(a) Let ¢ : Mjy1 — M be the O41-linear embedding. Then (M, p1)ien forms a
projective system.
(b) In (a) any ¢; can be extended to an O-isomorphism

(1.18) G1: M =00, My, — O @0, M; = M.
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268 B. H. MATZAT

(c) Let @ : M — N be a morphism in DMode and let (N, ¢;)ien be the projective
system associated to N. Then the restrictions 0; : M; — N; are O;-linear D-
homomorphisms with the property

(119) 9[ oY = ’l/)l (e} 9[+1.

Proof. — The assertions (a) and (b) immediately follow from the fact that by defini-
tion ¢; maps an O-basis Bj41 of M (inside M;y1) to an O-basis B; of M (inside M;).
Assertion (c) finally is a consequence of 6 o 9y = Oy 0 6. O

Obviously the projective systems of congruence solution modules (M, ¢;)ien to-
gether with the systems © = (6;);en of O;-linear D-homomorphisms 6; form a (tensor)
category. In the following, the category of all projective systems M = (M, ¢1)ien
of Oj-modules M; with (1.18) and systems © = (0;);en of O-linear homomorphisms
with (1.19) is denoted by DProj,. We want to show that in case O is complete, any
M € DProj is isomorphic in DProj, to a system of congruence solution modules
of some M € DModg. This can be expressed in the following way:

Theorem 1.4 — Let (O, 0) be a complete local D-ring. Then the category DProj, is
equivalent to the category DModep as a tensor category over Ok .

Proof. — By Proposition 1.3 any (M,0y) € DModp defines an object M =
(My,¢1)iey € DProj, and any morphism ¢ in DModp leads to a morphism
o = (Gl)leN in DPI‘OjO.

Now let N = (N}, ¢)1en be an object in DProje with dimp (Ng) = m. We want to
show that there exists a unique derivation 0y on M := Ny with congruence solution
modules M; := tg o -+ o_1(N;). Obviously the modules M; are O;-submodules of
M containing an O-basis B; = {bj1,...,bim} of M by property (1.18). Defining base
change matrices D; € GL,,,(O;) by Bj+1 = B;D; we obtain By = BDy--- D;_1 with
B = By. Now let y = (y1,...,¥ym)"" be the coordinate vector of z € M with respect

to the basis B, i.e., z = Y bjy; = By. Then in view of 9y (B;) C r'M we define
j=1

(1.20) 61(z) :== Bior(y,) := BDo--- D;_10p(D;"}, - Dy'y) € M.
Because of 9p(D; ') € r'O]"*™, the coefficients of §;(x) converge in O, hence

(1.21) Om(z) := llglolo(él(z)) eM

is well defined. It is easy to verify that O is additive with Oa(az) = Op(a)x +
ady(z) for F = Quot(0), i.e., dy is a derivation of M. Further from 9y (z) =
8(z) (mod r' M) it follows that Oy (B;) C r'M. Hence the O;-modules M, are the
congruence solution modules of (M, dy). Moreover, 9y is uniquely determined by
this property because of

(1.22) aM(:C) = 8M(Blyl) = 8M(Bl)yl + 51(:6) O

In the following the system of base change matrices (Dj)jen from the proof of
Theorem 1.4 is referred to as a system of representing matrices of M or (M;)en,
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respectively. For later use we state the explicit congruence formula for dy; found in
the proof as a corollary.

Corollary 1.5 — Let (O, 0) be a complete local D-ring, (M,0r) € DMode and let
(D))ien be a system of representing matrices of M. Then the Opr-derivative of x =
By € M has the property

(1.23) Oum(z) = BDy - Dj—19r(D Y, -+~ Dy''y)  (mod r'M).
1.4. The Solution Space of an Integral Local D-Module. — As usual, the
solution space of (M,0y) € DMode over O = Op is defined by
(1.24) SOlo( ) = {ac S M|8M = 0} = ﬂ M.
leN

Now let E/F be an 1ntegra1 extension of valued D-fields and O := OF its valuation

ring. Then Mg = = O ®p M is an integral local D-module over @. By abuse of
notation the solutlon space of M5 is denoted by
(1.25) SOl@(M) = SO]@(M@) = ﬂ(M@)l

leN

The module M is called trivial over O if Sols (M) contains an O-basis of M.

Proposition 1.6 — Let (O,9) be a local D-ring and (M,0n) € DMode. Then for
every extension O/O of local D-rings the solution space Sols(M) is a free O-module
over the ring K5 of differential constants of O with

(1.26) dimg , (Sols(M)) < dims(Mg) = dime (M).

The proof is the standard one and follows from the fact that K s-linearly inde-
pendent solutions in Sols (M) remain linearly independent over O. Further, with the
same arguments as in [Mat03], Prop. 7.4, we obtain the following characterization of
solutions of M over extension rings of O:

Theorem 1.7 — Let (O,9) be a complete local D-ring and let (M,dp) € DModo
with basis B and system of representing matrices (Dy)en. Then for every extension
@/O of local D-rings the following statements are equivalent:

(a) * = By e Sols(M),

(b) 9p(y) = Aty (mod r'*1)  for 1 €N with A, :=0r(Dy---D;)(Do-- D)7 !,

(c) 95(y) = Ay with A := lliTo(A’) e Qmxm,

In Theorem 1.7 the completeness of O is only needed for the existence of A € O™*™
in (c).

Now let Mp := F ®» M be the extended D-module over the quotient field F' of
O = Op. Then from the general theory of Picard-Vessiot extensions we know that
there exists a Picard—Vessiot ring R and a Picard-Vessiot field £ := Quot(R) after
a finite extension of constants F'/F (see [Mat03], Prop. 8.1). Thus in the following,
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among other things we have to deal with the question under which conditions a PV-
extension E/F of M exists (without introducing new constants) and which linear
groups are realizable by integral D-modules as differential Galois groups, for example,
over the field of analytic elements F' = K{t}.

2. The Galois Group of a p-adic D-Module

2.1. Solution Fields. — Let (Op,0r) be a p-adic D-ring as introduced in Sec-
tion 1.1 and let (M, dpr) be an integral D-module over O with system of represent-
ing matrices (D;);en. Then by Theorem 1.7 the solutions of M in a D-ring extension
Opg > Op are solutions of a linear differential equation

(2.1) Op(y) = Ay, where Ae Op*™

and A can be computed from the matrices D;. Hence U := Op[GL,] =
Oplzj, det(zi;) ']} —; becomes a D-ring by defining

(2.2) Ou(X):=A-X for X = (z45){"%_1

The quotient ring Rjs of U by a maximal differential ideal P<U with PNOr = (0)
is a simple D-ring called a Picard—Vessiot ring of M over Op. As in the case of fields,
Ry is an integral domain and its quotient field Fy; is called a Picard—Vessiot field of
M. Unfortunately, in case the field of constants K of F' is not algebraically closed, Ry
and F)j; may contain new constants and moreover may be not uniquely determined

by M.

Now let M7, be the field of meromorphic functions on the generic disc with coeffi-
cients in F. This is defined as the quotient field of the ring of analytic functions on
the generic disc

(2.3) Dp:={ue F{z}| |[u—t] <1}
where z is transcendental over F and ¢t € F with dp(t) = 1. Then the Taylor map
y 1
(2.4) mF: F — M5, fHZHGF(f)(z—t)k
keN

identifies the valued D-field (F,0r) with the subfield (F™*,0p«) = (7r(F), d,) of M}
where the D-structure is translated by

(2.5) 7 (0r(f)) = 0.(1r(f))

(compare [Chr83], Prop. 2.5.1). Now [Chr83], Thm. 4.8.7, or MvdP03b], Thm. 6.3,
respectively, immediately give

Theorem 2.1 — Let (Op,dF) be a p-adic D-ring and (M,dpr) an integral D-module
over Op. Assume there exists an element t € Op with Op(t) = 1. Then (M, )
possesses a Picard—Vessiot field inside the field M7, of meromorphic functions on the
generic disc (by identifying F with F*).
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Unfortunately the field Mj}. contains many new constants. In order to obtain a
Picard—Vessiot field of (M, dy) over F without new constants, we have to specialize
the result above, for example to an ordinary disc. An open disc Dk(c) = {a €
K| |a—c| < 1} is called an ordinary disc with center ¢ for (M, 0pr) if M has a basis
B such that 0y defines a matrix A € F™*™ with entries a;; belonging to the subring
F. < F of analytic functions on Dg(c) (compare [Chr83], 2.2.1). Now [Chr83],
Prop. 5.1.7, shows

Corollary 2.2 — Assume in addition that the open disc Di(c) with center ¢ is or-
dinary for (M,0n). Then the integral p-adic D-module has a Picard—Vessiot field
inside the field M (c) of meromorphic functions on Dk (c).

By Theorem 1.7, in the case (F,dr) = (K{t},d;) the assumption in Corollary 2.2
is satisfied with ¢ = 0 if the representing matrices D; belong to GL, (K <tpl>) where
K (') is the Tate algebra introduced in (1.4).

2.2. Differential Automorphisms. — As above, (M, 0ps) is an integral D-module
over a p-adic D-ring (Op, Op) with quotient field F'. After a finite extension of con-
stants F /F, there exists a Picard—Vessiot extension E / F (without new constants).
Let us assume for the moment that ' = F, i.e., the existence of a Picard—Vessiot
extension E/F for M. If in addition we normalize the fundamental solution matrix
Y € GL,,(F) to have initial value Y(c) € GL,,(Ok) for some ¢ € O, the field
FE and the Picard-Vessiot ring R = Rj); inside F are uniquely determined up to
D-isomorphisms over F' or Op, respectively. Then the group of D-automorphisms

(26) AutD(M) = AutD(RM/OF)

is called the differential automorphism group over Op of M (or Ry, respectively).
In the following K denotes an algebraic closure of the field K of constants of F' and

F := K ®k F the corresponding extension by constants.

Proposition 2.3 — Let (M,0y) be an integral D-module over a p-adic D-ring
(Op,0r) of rank m and Rp/Op a Picard-Vessiot ring of M over Op and let
Mp = F ®0, M.
(a) There exists a reduced linear algebraic group G < GL,,,(K) defined over K such
that

(27) AutD(MF) = Q(K) and AutD(M) = Q(OK)

(b) In case G is connected we further have R?}“D(M) = Op.

Proof. — Since the field K of constants of F is algebraically closed, general Picard—
Vessiot theory shows the existence of a Picard—Vessiot extension E/F for Mp :=
F®pMFp and a linear algebraic group G defined over K such that Autp (E/F) = G(K).
The Picard-Vessiot ring I? inside F' is D-isomorphic to F'[GLy]/ P, where P denotes

a maximal D-ideal P < F[GL,]. Since by assumption the ring R and thus the D-ideal
P are defined over K, the same holds for the defining equations of G because of

(2.8) G(K)={C eGL,(K)|g(X-C)e P for ¢q(X)e P}
with X = (z;;)"_;. This shows (a).
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In case G is connected, the group G(K) is Zariski-dense in G(K) by [PR94],
Thm. 2.2 and [Spr98|, Cor. 13.3.10, respectively. Moreover, its p-adic open subgroup
of integral points G(Og) := G(K) N GLy,(Ok) which coincides with Autp (M) is
Zariski—dense in G(K) by [PR94], Lemma 3.2. Hence the subring of Rj; of Autp (M)-

invariant elements equals Ry; N F = Op. O
In case RﬁfutD(M) = Op, the group Autp (M) is called the differential Galois group

of M or Ry, respectively, and is denoted by Galp (M) or Galp (R /OF), respectively.
From the proof we obtain in addition:

Corollary 2.4 — If in Proposition 2.3 the field K is a finite extension of Q,, then the
differential automorphism group Autp(MFp) is a locally compact p-adic analytic group
and Autp (M) is a Zariski-dense compact subgroup of Autp(MFp).

Unfortunately the connectedness assumption on G in Proposition 2.3 (b) can not be
omitted, as the following example shows. Let E/F be the finite extension F = F(z)
defined by 2 = t over (F,8p) = (K{t},d,). Then E is a Picard-Vessiot field over F
for the 1-dimensional D-module M = Fz with 0y (z) = - x. Obviously M is integral
if p does not divide n. But the subfield of E of Autp(Mp)-invariant elements only
equals F' if K contains a primitive n-th root of unity.

2.3. An Upper Bound. — As in positive characteristic ((MvdP03b], Prop. 5.3 or
[Mat01], Thm. 5.1) a system of representing matrices of an integral D-module gives
an upper bound on the D-Galois group. However, before proving the corresponding
theorem, we state the following useful triviality criterion:

Proposition 2.5 — Let (M,0n) be an integral D-module over a p-adic D-ring
(Op,0Fr). Assume M has a system of representing matrices (Dj)ien converging to
the identity matriz. Then M is a trivial D-module, i.e., F' contains a full system of
solutions.

l
Proof. — Under the assumptions above the matrices Y; := [[ D, converge to a ma-
k=0
trix Y € F™>*™ which by Theorem 1.7 is a fundamental solution matrix of M. O

Theorem 2.6 — Let (M,0n) be an integral p-adic D-module over a p-adic D-ring
(Op,0r) and let G be a reduced connected linear group defined over the field of con-
stants K of F = Quot(Op). Assume that there exist bases of the congruence solution

modules M; over O; such that the corresponding representing matrices D; of M belong
to the groups G(O;) of O;-rational points of G, then

(29) GalD(MF) S Q(K) and GalD(M) S Q(OK)

Proof. — The matrices A; = 9p(Dyg -+ D;)(Dyg -+ D;)~! in Theorem 1.7 belong to the
Lie algebra Lier(G) of G over F since they are images of the logarithmic derivative

(2.10) A :G(F) — Lier(G), D + 0p (D)D"
Then from the validity of the congruences
(2.11) A=A, (mod rOF)
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and the completeness of Lier(G) we conclude that A = llim (A;) € Liep(G). But

this implies Galp(Mr) < G(K) according to [vdPS03], Prop. 1.31, and therefore
Galp (M) < G(Ox). O

An easy example is given by F' = Q,{t} and the 1-dimensional Op-module M =
Opb with D; = (t%?") and ¢; € {0,...,p — 1}. Then

(2.12) A= (%) with a =Y ap' €z,
leN
A solution y € Mg, of d(y) = Ay is given by

!
(2.13) y=1* where t*= lim (H tajpj>_
j=0

l—o00

Obviously Galp(M) < G (Zy) = Z,; and equality holds if and only if a ¢ Q.

In the following an integral p-adic D-module (M, d)) over Op or its extension
Mp over F with Galp(M) = G(Ok) or Galp(Mp) = G(K), respectively, is called
an effective D-module if, with respect to a suitable basis, djs is given by a matrix
A € Liep(G). Obviously only a D-module with connected D-Galois group can be
effective.

2.4. Effective D-Modules. — The following well known criterion gives a sufficient
condition for a D-module over a field F' to be effective.

Theorem 2.7 — Let F' be a D-field with field of constants K and M € DModpr with
connected D-Galois group Galp(M) = G(K). Assume H'(Gp,G(F*°P)) =0, then M
1s effective.

A proof can be found in [vdPS03], Prop. 1.31 in the case of an algebraically closed
field of constants and in [Kol76], Ch. VI 9, Cor. 1, in the general case. In order to
apply this theorem to p-adic D-fields F' we recall the following fact which immediately
follows from [Ser97], II § 4.3, Prop. 12:

Proposition 2.8 — Let K be a complete p-adic field with respect to a discrete valuation
and let F be a finite extension of the field of analytic elements K{t}.

(a) For the cohomological dimension cd(F) we have cd(F) < 3.

(b) In case the residue field of K is algebraically closed, we obtain cd(F) < 2.

Thus by a theorem of Bayer and Parimala ([BP99] or [Ser97], III § 3.1, respec-
tively) concerning the cohomological triviality of linear groups over fields F with
cd(F) <2, we finally obtain

Corollary 2.9 — Let K be a complete p-adic field with respect to a discrete valuation
and with algebraically closed residue field. Let G be a simply connected semisimple
linear algebraic group over K of classical type (possibly except the triality group Dy).
Then any M € DModp over a finite extension F/K{t} with Galp(M) = G(K) is
effective.
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Under the assumptions of Corollary 2.9 the Bayer—Parimala theorem shows
HY(GF,G(F*P)) = 0 such that Theorem 2.7 applies.

3. The Connected Inverse Problem

3.1. A Criterion for Effective D-Modules. — The following existence theorem
for effective PV-extensions over the field of analytic elements (K{t},d;) is a variant
obtained by p-adic approximation of the corresponding theorem for iterative PV-
extensions in positive characteristic presented in [Mat01], Thm. 7.14.

Theorem 3.1 — Let (F,0r) = (K{t},0:) be the field of analytic elements over a
complete p-adic field K with discrete valuation, O = Op its valuation ring and P =
Pr = rOp the valuation ideal. Let A be either G, or G,,, set S} = (’)K[tpl] or
S = Ok [tpl,tfpl], respectively, and let G < GL,,(K) be a reduced connected linear
algebraic group defined over Ok . Suppose M € DModp is an integral local D-module
whose system of representing matrices Dy € G(O;) satisfies the following properties:

(1) For alll € N there exists a v, € Morg (A, G) such that

D, = ’yl(tpl) S Q(Sl) and ’yl(l) = 1Q(K)'

(2) For all n € N the set {v(A(K))|l > n} generates G(K) as an algebraic group
over K.
(3) There exists a number d € N such that the (divisor) degree of i in F is bounded
by d-p' for alll € N.
(4) If lo < 1y < ... is the sequence of natural numbers l; for which ~;, # 1, then
_lim (li—i-l — lz) = Q.
Then M is an effective D-module with Galp(M) = G(Ok).

Proof. — In order to simplify the notation we first assume r = p, ie., K/Q, is
unramified.

We start with introducing some notation. Let M := F ® o M € DModp be the
D-module over F' generated by M with dimp(M) = m. Let Ux := K[GL,,] and
Qx < Uk be the defining radical ideal of Gx. The extended ideal Qr := QrUr <
Ur := F[GL,,] is a D-ideal according to [vdPS03], proof of Prop. 1.31. Therefore
R:= F[G] = Ur/QF is a D-ring, and it is an integral domain since G is connected.
Set E := Quot(R) and denote by K its field of constants. Let Pr < Up be a maximal
D-ideal containing Q r, so that R := Ur/Pp is a PV-ring with PV-field F := Quot(R),
and let k : R — R denote the canonical epimorphism. The D-module M := E ®@p M
contains a fundamental solution system and thus is trivial. Hence the solution space
V := Solz (M) is an m-dimensional K-vector space and a G(K)-module by definition.

First we show that any one-dimensional D-submodule N € DModn of M or

Np := F ®o N < Mp, respectively, defines a G(K)-stable line W < V. Write

M = @ b;0 with basis B = {b1,...,bn}. Then B, = BDy---D;_; is a basis of the

i=1
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congruence solution module M; with respect to p'. The corresponding congruence
solution module N; = Nrp N M; has a generator Bjh; with the basis B; written as a
row and h; € O". Let

(3.1) hy =Y hMpk
keN

be the p-adic expansion of h; with respect to a given system of residues R of O modulo
P (including 0). Without loss of generality we may assume that hl(o) € Ok|t]™ and

that the coordinates of hl(o) modulo p are relatively prime. Then the h; are unique
up to a factor belonging to Oj.

By assumption (1) all representing matrices D; belong to G(Ok [tpl,t_pl]). They
satisfy Bjy1hip1 = BiDjhiy1 € N, so there exist elements uw; € O] such that

(0)
I+1

relatively prime modulo p, so in fact u; is a unit in Ok [tpl,t_pl]. Without loss of

Dihiy1 = wh;. By construction the coefficients of h and hl(o) are polynomials

generality we may therefore assume u; = tar' where a; € Z is bounded by property
(3). (Observe that in the case D; € G(Ox [tpl]), the factor u; is a unit in Ok [tpl] and
hence a; = 0). Then

-1
(3.2) h, = hl(o) =t"D;t - Do_lhéo) (mod p) with a; := Z a;p’.
=0

From h; € O; we obtain by induction hl(o) € Ok [tpl] modulo p. The degree of hl(o)

is bounded by the maximum degree of the polynomial coefficients of hgo)’ the a;,, and
the degrees deg(Dl_il) < plid* for I; < I, where d* only depends on d. Thus, for I

large enough, we get a contradiction in case hl(o) has a nonconstant coefficient. Hence
there exists an i; € N such that

(3.3) h = hl(o) = hl(o)(O) = hi(0) € O (mod p) for [>1;,.

Specializing the congruences h;11 = wD; 'h; (mod p) at t = 1 by (1) we obtain
further

(3.4) hi+1(0) = hl(?r)l(O) = hl(o)(O) = hy(0) (mod p) for I>1;
and thus
(3.5) hi =h;, (0) (modp) for [>1;.

Now we proceed by induction. Assume there exists an i, € N such that

(3.6) h; = hy, (0) (mod pF) for 1>1;,.
Then we find an ftl(k) € Ok (t)™ with

= (k)
(3.7) hi = hy, (0)+p*h (mod p**1).
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~(k _
As in the first step we obtain by induction hl( = Ok (tpl k)m modulo p which for [
large enough, for [ > [ say, leads to

G410
(3.8) hi = he, (0)+phy" (0) = Ri(0) € O (mod pH+1).

By specializing at ¢ = 1 as above this proves the next induction step

(3.9) hi=hy,  (0) (mod PPy for 1>,
Thus the limit
(3.10) h = lim (hy,, (0)) = lim (hy(0)) € OF

is well defined and has the property
(3.11) Dih = t9%' b (mod p*) for 1>1;,.

Now by specializing the last congruence at t = ¢ for ¢ € K, property (2) shows that
h is an eigenvector for G(K).

Since the integers a; € Z are bounded, o := > a;p' is a p-adic integer and
leN

(3.12) y =t = [t

leN

describes a solution of N in E and E, respectively (compare to the example in Sec-
tion 2.3). Hence w := yByh is an element of V', which can easily be verified, and

(3.13) d(w) = Bo(d(y) — Aiy)h =0 (mod p'*t) for €N,

using A; = Or(Dq -+ - D;)(Dyg - - - D;)~! from Theorem 1.7. The vector space W= Ko
spanned by @ is a one-dimensional subspace of V. It is Galp(E/F)-stable with
Calp(E/F) < G(K) and G(K)-stable (under the action on y and h, respectively), and
both actions coincide when restricted to Galp(E/F). (Note that Galp(E/F) < G(K)
by Theorem 2.6).

Next we show that any Galp (E/F)-stable line W < V is in fact G(K)-stable. Using
the characterization of Galp(E/F') in the proof of [vdPS03], Thm. 1.27, we see that
Qr is a Galp (E/F)-stable ideal, and so the canonical map  : R — R is Galp (E/F)-
equivariant. The image W of W under this map is then Galp(E/F)-stable in V.
Hence W defines a one-dimensional D-submodule N of M, and by the considerations
above, this yields the G(K )-stable line W < V.

Finally we need to show that E/F is an effective extension with Galois group G(K).
By Chevalley’s theorem ([Spr98], Thm. 5.5.3), there exists a faithful representation
0:G — GL(V) over K and a line W < V such that Galp(E/F) is exactly the
stabilizer of W in G(K). The matrices D} = D(po ) = o(n(t?)) € (0(6))(S)
define a D-module M?¢ with system of representing matrices (D});en, which again
satisfies conditions (1) to (4) (possibly with a different degree bound). The vector
space W2 < Solg(M?) associated to W by the considerations above is Galp (E/F)-
stable, and by the above, it is also G(K)-stable. Consequently, Galp(E/F) = G(K).
This ends the proof in the case r = p.
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The general case follows from the special case r = p by substituting O; by O,
where |p| = |r¢|. O

In the special case of the 1-dimensional D-module M at the end of Section 2.3, con-
dition (4) of Theorem 3.1 forces « to be a (p-adic) Liouvillean transcendental number.
In particular, the solution y = ¢ is not algebraic over F' and hence Galp (M) = Z,.

In the next corollary F; < F' denotes the subring of analytic functions on Dk (1)
and Mg (1) the field of meromorphic functions on Dk (1) (which contains Quot(F}),
see [Chr83], 2.4.11).

Corollary 3.2 — Under the assumptions of Theorem 3.1

(3.14) Y= [ D € Mg ()"
leN

is a fundamental solution matriz for (M,0p) over F.

Proof. — By the assumptions of Theorem 3.1 the representing matrix D;(¢) is an
element of G(O[t?,t~7']) with Dy(1) = 1g(k). This implies Di(1 + ) — lg(x) €
PR*™ for ¢ € Px. Hence Dy(t), D;(t™') and 9r(D;(t)) belong to F/"*™. Thus
the same holds for 4, = Op(Do---D;)(Do---D;)"! and A = llir?o(Al)’ since F}

is complete. Now the result follows from Corollary 2.2 (or [Chr83], Prop. 5.1.7,
respectively). O

3.2. Realization of Split Connected Groups. — In the following a connected
linear group G over a perfect field K is called K-split if its maximal K-tori are K-split,
i.e., are products of multiplicative groups over K. In order to apply Theorem 2.1 we
need the following result:

Proposition 3.3 — Let G be a reduced connected linear group over a complete p-adic
field K which is K-split and defined over Ok .
(a) G is generated as an algebraic group by finitely many maximal K-split tori and
finitely many K -split unipotent groups.
(b) Each torus T is generated as an algebraic group by an element T(t) €
T(Oklt, t71]) with T(1) = 17, i.e.,

(3.15) T(K)=(T(c)|c € K)alg-

(¢) Each unipotent group U is generated as an algebraic group by an element U(T) €
U(Ok[t]) with U(1) = 1y, i.e.,
(3.16) UK) = (U(c)|c € K)alg.
Proof. — By [Spr98|, Thm. 13.3.6, G is generated by Cartan subgroups C = 7 x U
belonging to the maximal K-tori 7 of G. Since K is perfect, the unipotent part U
of C is K-split, too (by [Spr98], Thm. 14.3.8). Finally, the finiteness of the number

of necessary tori and unipotent subgroups follows from the finiteness of dim(G). This
proves (a).
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Since 7 and U are K-split, the proof of (b) and (c) can now be copied from
the proof of [MvdP03b], Thm. 7.3 and Lemma 7.5, respectively (using [Spr98],
Cor. 14.3.9). O

Theorem 3.4 — Let (F,0r) = (K{t},0:) be the field of analytic elements over a
complete p-adic field K with discrete valuation and G a K-split reduced connected
linear group over K which is defined over Ok . Then G(Ok) can effectively be realized
as differential Galois group of an integral local D-module M € DModp,, :

(317) GalD(M) = Q(OK)

Proof. — We want to apply Theorem 3.1. By Proposition 3.3, G is generated by
finitely many K-split tori and finitely many K-split unipotent groups. For each torus
T and each unipotent group U we find D; = T(t?') € G(O [t? ,t=P']) or D, = U(t?') €
G(Ok [tpl]), respectively, with the properties (1) and (3) of Theorem 3.1 according to
Proposition 3.3, (b) and (c). Combining these D; with large gaps as assumed in
Theorem 3.1(4), we can still fulfill property (2) of the theorem. Now Theorem 3.1
gives the result. O

Corollary 3.5

(a) In case the group G in Theorem 3.4 is generated by unipotent subgroups, G(Ok)
can be realized with at most one singular point in oo.
(b) In the general case, G(Ok) can be realized with singular points at most in {0, 00}.

Proof. — For (a) note that for the proof of Theorem 3.4 we only need D; € Q(O[tpl]).
In the general case it is sufficient to choose D; € g((’)[tpl ) t‘pl]), so that the singular
locus is contained in {0, co}. O

The last corollary proves a p-adic variant of the differential Abhyankar conjecture
for connected groups over the affine line which is similar to the characteristic p case
(compare [MvdP03b], Thm. 7.3). However, it is in contrast to the archimedean case
where by a theorem of Ramis over the affine line at most groups generated by tori
can be realized without singular points (see [vdPS03], Thm. 11.21).

3.3. Connected Groups over Curves. — The result of Theorem 3.4 implies
the solution of the connected inverse problem over finite extensions F//K{t} in the
following form.

Theorem 3.6 — Let F/K{t} be a finite extension of D-fields with Kp = K and G a
K -split reduced connected linear algebraic group over K. Then G(K) can be realized
as D-Galois group of a Picard—Vessiot extension E/F.

Proof. — Any n-dimensional representation of G over K defines an Og-form of G
by G(Ok) = G(K) N GL,(Ok) (compare [PR94], Ch. 3.3), where G(Ok) is Zariski-
dense in G(K) by Proposition 2.3(b). Now Theorem 3.4 proves the existence of an
integral local D-module M € DMode over O = Oy with Galp(M) = G(Ok).
Then Mgy := K{t} ®o M has D-Galois group G(K') and its solution space gener-
ates a Picard—Vessiot extension F/K{t} with Galp(E/K{t}| = G(K) (without new
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constants by Corollary 3.2). By tensoring with F' we finally obtain a PV-extension
with

(318) GalD(F®K{t} E/F)%Q(K) O

4. Embedding Problems with Finite Cokernel

4.1. Split Embedding Problems with Finite Cokernel. — Unfortunately, up
to now in general it is not known if every finite group appears as Galois group of a
PV-extension over F' (generated by an integral local D-module). Ounly in case the
residue field of F' is algebraically closed, we have a positive answer yet. This special
case will be discussed in Section 4.4. First we try to solve differential embedding
problems with connected kernel and finite cokernel. Before treating the general case
we study the case of split embedding problems. This is the case when the D-Galois
group G is a semidirect product G = G° x H of the connected component G° of G and
a finite group H.

Proposition 4.1 — Let G = G° x H be a linear algebraic group defined over a p-adic
field K with reqular homomorphic section

(4.1) x:H— GK),n—C,.

Let further (Op,0r) be a p-adic D-ring with ring of constants Ok and let L/F be
an ntegral finite Picard—Vessiot extension with D-Galois group H. Suppose M €
DModo, defines a PV-extension E/L with D-Galois group G°(K) (and no new con-
stants). Assume M has a system of representing matrices D; € G°(Or) which satisfy
the equivariance condition

(4.2) n(D;) = C’;lDlCn forall 1eN,neH.

Then E/F is a PV-extension with D-Galois group G(K).

Proof. — We fix a representation of G as a closed subgroup of GL,,(K). By Hilbert’s
Theorem 90 ([Ser97], II1.1, Lemma 1) there exists an element Z € GL,, (L) with
(4.3) nZ)=2-C, forall neH;

in particular, Z is a fundamental solution matrix for the PV-extension L/F'. Since the
representing matrices D; of M or My, := L ®0, M, respectively, belong to G°(Op),
M, is an effective D-module with D-Galois group G°(K) by Theorem 2.6. Further,
by [vdPS03], Prop. 1.31(2) there exists a fundamental solution matrix Y € G°(E) of
M or Mi, respectively, with 0g(Y) = A-Y for some A € O™ and

(4.4) eY)=Y -C. forall ee€ Galp(FE/L),

where C. denotes the matrix of £ in G°(K).

Now let (U,dy) be the differential ring U = L[GLy| = Lz, det(zi;) 74—,
with derivation dy(X) = A- X for X = (;;)]"_,. Since Y € G°(E), the Picard-
Vessiot ring R of Mj, has the simple form R = L[G°] = L @k K[GY]. First we lift
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1 € Galp(L/F) to an automorphism 77 = 7z of R and E by setting

n(f):=n(f) for feL and

(45) W(9(D)) = 9(C;'DC,) for g€ K[G)

and then similarly further to an automorphism 7y of U = L ® x K[GL,,]. Using
Theorem 1.7 and the equivariance, we obtain

n(A) = lim (n(A;)) = lim (0 9)(Do - Di)n(Do -+ Di)™")
(4.6) = Jim (91,(Cy " Do+ DiCy) O (Do -+ Di) ™ Cy)

= lli%lo(C;lAlO") = C‘;lAC,7

which leads to
(47) (v 0 O )(X) = iju (AX) = n(A)C, ' XC, = C P AXC,y
=C,0y(X)Cy = 0y (Ct X Cy) = (Bu oy )(X).

Hence 7y is a differential automorphism of U/K and in fact of U/F. Let k : U —
R, X — Y denote the canonical epimorphism. Then & is a D-homomorphism which
by construction commutes with 7, i.e., we obtain

(4.8) Orok=kody and frok=kKofy.
Thus 7 : R — R is a D-automorphism of R/F by
(4.9) Nodrok=kKkofpody =Kkodyofy =0roNok
with 7| = n and
(4.10) i(Y) = k(iju(X)) = k(C, ' XCp) = C 'Y Cy.
Next we define Y := ZY. Then F(Y) is a subfield of E and we obtain
(4.11) Op(Y)=0p(2Y) = 00(2)Z27 + ZAZ71 )Y = AY
with A € L"™*™. Because of
(4.12) n(A) = 0L(Z2Cy)C 27 + ZCyn(A)C, ' Z7 = A forall neH,

A has entries in F, which implies that F (}7) /F is a differential field extension. Further
for all v = (¢,n) € G° x H we find

(4.13)  y(Y)=ei(ZY) =e(ZC, - C'YCy) = Ze(Y)Cy = ZYC.C,y =Y C,y.

Thus Y does not belong to a proper differential subfield of E containing F, i.e.,
F(Y) = E. Hence E/F is a PV-extension with Galois group Galp(E/F) = G°(K) x
H = G(K). The latter can be verified explicitly by

(414) (51, 771)(€2a 772)(}7) = (517771)(}7682 0772) = }70610771 CEz C772
= VC., CeyCi2Cry = Y Ciey ) (ermy- O
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Corollary 4.2 — If the field L in Proposition 4.1 in addition is the solution field
of an integral local D-module over O, then the differential module (M,0;;) with
the representing matriz A € OF™™ of Oy again is an integral local D-module, i.e.,

M € DModo,..

Proof. — Let (C))1en denote a system of representing matrices of the integral local
D-module over Op generating L/F with fundamental solution matrix Z € GL,,(Op).

Then with Zy := Z we obtain Z;,1 := Clel € GL;(OL 141). Hence by the equivari-

—1

ance condition the matrices Dl = D7 belong to GL,,(Op,;). Now we want

I+1
to show that (D;)ien is a system of representing matrices of M. For this pur-
pose let B be a basis of M with 0,;;(BY) = 0. Using By, := BDy---Dj_1 and
Yy = ZyY), = D; ', -+ Dy'Y we obtain

(4.15) 0= dn(BY) = dn(BY)) = (Om(By) + BLAD)Y;

with

(4.16) AD = kggo(aF(bl - Dg)(Dy--- Dy)7t) € fopxm,

But this implies 9,7 (B;) =0 (mod 7' M). O

By Proposition 4.1, in order to solve a split differential embedding problem over
F with connected kernel G°(K) and finite cokernel H = Galp(L/F), it is enough
to construct a module M € DModp, with Galp(M) = G°(K) and representing
matrices D; satisfying the equivariance condition. The latter can be translated into
a simpler form. For this purpose we define a new Galois action of n € Galp(L/F) on
GY(L) via
(4.17) n* D= Cyn(D)C; " = x(n)n(D)x(n)~".

Then D; € G(L) is equivariant if and only if n* D = D for all n € H. This means
that D; is an F-point of the inner L-form g?( of G° over F defined by the composed
homomorphism of Proposition 4.1.

(4.18) x:H — G(K) — Aut(G(K)),n — x(n) — Int(x(n))
(compare [Spr98], 12.3.7).

4.2. Equivariant Realization of Connected Groups. — In this section, L is
an integral finite Galois extension over the D-field F = K{t} of analytic elements
with Op = 0 and Galp(L/F) = Gal(L/F) =: H. Obviously, dr uniquely extends to
L. We suppose that L is equipped with a Frobenius endomorphism qﬁqL extending the
Frobenius endomorphism qﬁf of F where qﬁf |K is a lift of the Frobenius automorphism

of K= Ok /Pk and qﬁqF (t) = t?. Moreover, we assume that 9z, and ¢5 are related by
formula (1.12), i.e., (L, 0, ¢qL)/(F, or, ¢qF) is a finite Galois extension of DF-fields in
the sense of [Mat03], Ch. 7. By Krasner’s Lemma, L/F is generated by the roots of
a polynomial f(X) € K(¢)[X]. Thus L/F is defined over Fy := K(t), i.e., there exists
a finite extension Lo/ Fy (not necessarily Galois) with L & Lo ® g, F'. The Frobenius
endomorphism gqu restricted to Lo maps Lo onto a subfield L; of L with K (t?) < L;.
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Proposition 4.3 — Let (L,8L7¢5) be an integral finite DF-Galois extension of the
DF-field (F, 8F,¢5) of analytic elements F = K{t} over K with (bg(t) = t7 and
Galois group H := Gal(L/F). By the above L/F is defined as a Galois extension over
Fy = K(t) via Lo = K(s,t). Denote by C; an affine model of gbf](Lo)/K(tql), where we
assume without loss of generality that o = (0,0) is a regular point. Let G = G° x H be
a reduced linear algebraic group over K with reqular homomorphic section x : H — G
and let G be the corresponding L-form of G° over F with GY(F) < G°(L).

Suppose M € DModp, is an integral local D-module over O with system of
representing matrices D) € G°(Or) satisfying the following conditions:

(1) For all I € N there exists a rational map v, : C — gg such that D; =
1 1
(@ (s),t7) € GUOK (7)) and n(0) = lg(x). )
(2) For alln € N the algebraic group over L generated by {7 (Ci(K))|l > n} contains
Go(K).
(3) There exists a number d € N such that deg(vy;) < dq* for all | € N, where deg
denotes the mazximum divisor degree of the matriz entries of D; with respect to
Lo (or K(t), respectively).
(4) If lo < 13 < ... is the sequence of natural numbers l; for which ~;, # 1, then
Then M is an effective H -equivariant D-module over O with
(4.19) Galp (M) = G°(0Ok)
and the corresponding PV-extension E/L defines a PV-extension over F with

(4.20) Galp(E/F) = G(K).

Proof. — As in the proof of Theorem 3.1, we assume for simplicity » = p = q. We
start with fixing some notation. Let My := L ® » M € DMod} be the D-module
generated by M over L with m := dimz(M). Let Ux := K[GL,,] and Qx < Uk be
the defining ideal of G%. Then the extended ideal Q, := QxUy < Uy := L|GL,,] is
a D-ideal (compare Thm. 3.1). Therefore R = L[G°] = Ur/Qr is a D-ring and in
addition an integral domain. Set E := Quot(R) and let K denote its field of constants.
Let P;, < Uy, be a maximal D-ideal containing Qr,, then R := Uy /Py, is a PV-ring
with PV-field F := Quot(R), and let & : R — R denote the canonical epimorphism.
Obviously, the D-module M:=E® . M contains a fundamental solution system and
thus is trivial. Hence the solution space V := Sol B (M) is an m-dimensional K-vector
space and a G°(K)-module by definition.

Again, we first have to show that any one-dimensional D-submodule N € DModp

of M (or N := L ®o N, respectively) defines a GO(K)-stable line W < V. For
this purpose let B := {by,...,b,} be a basis of M, ie., M = @ b;0. Then B, :=

i=1

BDq---D;_1 is a basis of the congruence submodule M; or its submodule Mld) =

b; Oy, respectively, where O; = Op, with L; = (bfl (Lo). Analogously, we define the
i=1

1=
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one-dimensional O;-submodule Nﬁ =NNM ld). Then

(4.21) ]\7;;s = BhO, = Z blﬁihl,iOl for suitable h; € Oim

i=1
(and B; = {by1,-.-,bi,m}), where for every [ at least one of the coeflicients h; ; belongs
to O). It follows from condition (1) that Mld_)H < Mld) and Nld_)H < Nl¢. Thus there
exists an element u; € OZX such that
(4.22) Biyih11 = Bilyu, = BH_lDl_lhlul.

Together with (4.21) this identity implies that if any non-zero component of an O;-
multiple of Dflhl is in 041, then so must be all others.

We want to show that we may assume h;; = 1 for some fixed k£ and all [ € N.
By construction there exists an index k for which hg, € O, so by rescaling we may
assume that hgr = 1. Suppose that h;; = 1 for j < [. Then for the k-th component
of D; ' hy we find (D; ' (0)hy(0))s = hyx(0) = 1. This implies that we may choose

(4.23) u = (D )t e OF

since u;(0) = 1 and (Dflhlul)k =1 € Oy41. By the remark above, all components of
the last vector have to belong to O;11. This allows us to replace h;11 by

(4.24) hiy1 = Dy ' hyuy € OF

with hjy1,x = 1 by construction.
Obviously the degree of (the components of) hg is bounded. The recursion formula
(4.24) together with (4.23) then yield bounds on the degree for all h;, namely

(4.25)
deg(hlJrl) Sdeg(ul)+deg(Dl_1)+deg(hl) < {2(deg(Dll)+deg(hl)) for m 7é1

deg(hy) for vy =1.

This implies
i—1

(4.26) deg(h) < 2'deg(ho) + Y 27 deg(D; ") for 1; <1<l
j=0

Using condition (3) and Cramer’s rule, we see that the degree of Dj_1 is bounded
by dp’ P(m) for some polynomial P(m) not depending on j. On the other hand, the
degree of any element in O; is a multiple of p!. So we can use condition (3) to conclude
that there exists an n € N such that h; has constant coefficients for all I > n (compare
to the proof of Theorem 3.1). This implies

(4.27) hi = hy(0) = hy(o) for 1> n.

Thus for h := hy(0) we obtain D;h = u;h, i.e., his an eigenvector for D, for all I > n.
From u; € O; and w;(0) = 1 we derive

(4.28) y = ][ w € Mk(0).
1>0
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For w := Bphy we obtain the congruences
(4.29) () = Bo(d(y) — Aiy)h=0 (mod p'*') for leN

by using the formula for A; given in Theorem 1.7. Thus w is an element of V. The
vector space W := K spanned by @ is a one-dimensional subspace of V which is
Calp(E/L)- and G°(K)-stable (under the action on y or h, respectively,) and both
actions coincide when restricted to Galp(E/F).

Next one has to show that any Galp(FE/L)-stable line W < V is G°(K)-stable.
This can be proved using the same arguments as in the proof of Theorem 3.1 as well
as the fact that M is effective, showing (4.19). By condition (1), the H-equivariance
of M follows from Proposition 4.1, which then immediately implies (4.20). O

Proposition 4.3 leads to the following existence theorem for split extensions.

Theorem 4.4 — Let (L, 01, (bg) be an integral finite DF-Galois extension of the DF-
field (F, O, (bi) of analytic elements F' = K{t} with Op = O, gqu(t) =17 and Galois
group H. Let G° be a reduced connected linear algebraic group defined over Oy and
let G = G° x H be a split extension of linear algebraic groups. Then there exists an
effective and H -equivariant PV-extension E/L such that

(4.30) Galp(E/L) = G°(K) and Galp(E/F) = G(K).

Proof. — To prove Theorem 4.4 it is enough to show the existence of a D-module
M € DModp, whose system of representing matrices satisfies conditions (1) — (4)
of Proposition 4.3.

The algebraic F-group gg is generated as an algebraic group by its Cartan sub-
groups, so by finitely many F-tori and finitely many unipotent groups ([Spr98],
Thm. 13.3.6). By [Spr98], Thm. 14.3.8, the unipotent groups are F-split. In the
special case U = G, we can certainly find morphisms v, : ¢ — U < G satisfy-
ing property (1) of Proposition 4.3. The general case of unipotent groups follows
by solving central embedding problems with kernel G, (using [Spr98], Cor. 14.3.9,
compare [MvdPO03b], Lemma 7.5 or [Mat01], Lemma 7.11, respectively). In the
case of a torus 7 by a theorem of Tits ([Tit68], Ch. III, Prop. 1.6.4) there exists
a T(s,t) € T(K(t)) generating a dense subgroup of 7 (K (t)). By the proof of that
theorem we may assume T' € 7 (Ok(t)) and T'(0) = 1. Then the corresponding mor-
phism 7o : Co — 7 as well as its Frobenius images 7; again satisfy condition (1) of
Proposition 4.3.

Since gg is generated by finitely many tori and finitely many unipotent subgroups
and since one morphism for each of these groups suffices to generate gg as an algebraic
group, we can splice the corresponding matrices D; together into a sequence such that
conditions (2), (3), and (4) are also satisfied. O

4.3. Non-Split Extensions. — For the realization of non-split group extensions
with finite cokernel as D-Galois groups we use the following theorem of Borel and
Serre:
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Proposition 4.5 — Let K be a perfect field and G a linear algebraic group over K.
Then there exists a finite subgroup H < G defined over K with G = G- 'H. Moreover
H(K) = H(K) if K contains enough roots of unity.

Proof. — The proof of the first part is given in [BS64], Lemma 5.11 with footnote.
The equality H(K) = H(K), where K denotes an algebraic closure of K, immediately
follows from the representation theory of finite groups. O

This proposition leads to the following generalization of Theorem 4.4.

Theorem 4.6 — Let K be a complete p-adic field and G a reduced linear algebraic
group over K defined over O . Suppose G° has a finite supplement H in G such that
H(K) = H(K) can be realized as a DF-Galois group of an integral evtension over
the DF-field F = K{t} of analytic elements over K. Then G(K) can be realized as
D-Galois group over F.

Proof. — Let G be the split extension of the linear algebraic groups G° and H with
the action of H on G° given by the supplement. Then by Theorem 4.4 there exists a
PV-extension E/F with Galp(E/F) 2 G(K). The group G is a linear quotient group
of G, so there exists a PV-extension E/F inside E/F with Galp(E/F) = G(K). O

An easy application is the following: Let K be a p-adic field containing the n-th
roots of unity, let F' be the field of analytic elements over K and let L/F be a cyclic
extension given by the equation s™ = t. Assume p does not divide n, then O /O is
an extension of p-adic D-rings. Hence every linear algebraic group G over K with a
cyclic supplement H = H(K) of GY of order dividing n can be realized as the D-Galois
group of an integral D-module M over F, i.e.,

4.4. The Non-Connected Inverse Problem. — Now we assume that the field
of differential constants K of the field of analytic elements F' = K{t} contains the
Witt ring W(F,), i.e., K contains E, := Quot(W(F,)). Then the residue field F of F
equals Fp (t). This entails a positive solution of the finite inverse problem over F.

Proposition 4.7 — Let F = K{t} be the field of analytic elements over a complete
p-adic field K with K > E,. Then every finite group H can be realized as D-Galois
group of an integral DF-extension L/F.

Proof. — Let F"*/F be the maximal unramified algebraic extension of F. Then the
derivation dp = 9; as well as the Frobenius endomorphism (bf extend uniquely to
F"" and the D-Galois group Galp(F"/F) coincides with Gal(F"*/F'). By profinite
Galois theory, Gal(F™ /F') is isomorphic to the Galois group of the separable closure
F5eP /| F of the residue field F (see [Nag91], Thm. 6.3.2). Now a theorem of Harbater
[Har95] and Pop [Pop95] (compare [MM99], Thm. V.2.10) shows that the profinite
group Gal(F*P/F) is free of countable rank. In particular, every finite group H
can be realized as the Galois group of a Galois extension £/F and as the DF-Galois
group of a p-adically unramified DF-Galois extension L/F. By the last property and
Proposition 1.1 the extension L/F is integral and does not contain new constants. O
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Combining the result above with Proposition 4.5 and Theorem 4.6 we obtain the
solution of the general inverse problem over F':

Theorem 4.8 — Let F = K{t} be the field of analytic elements over a complete p-adic
field K containing E, and let G be a reduced linear algebraic group defined over O .
Then G(K) can be realized as D-Galois group over F.

5. Reduction of Constants

5.1. Iterative D-Modules. — A local D-ring (O, 0F) is called a local iterative
D-ring or a local ID-ring for short if

(5.1) %aé(oF) C Op and %8’}(7%) CPr for keN.
Here again the second condition follows from the first in case the value group |F*| of
F coincides with the value group |K*| of its field of constants. The family of higher
derivations G}k) = %8}% : O — Op defines an iterative derivation 0% = (G}k))keN
on O as introduced by H. Hasse and F. K. Schmidt [HS37] (compare [MvdP03b],
§ 2.1 or [vdPS03], Ch. 13.3).

Now let (M, dps) be an integral local D-module over O := Op, i.e., M € DModp.
Then (M, 0pr) is called a local iterative D-module or a local ID-module if in addition

1
(5.2) Eafw(M) CM for keN.
Then the family of maps 0, = ((ﬁ?)keN7 where 81(\5) = %81@, is the iterative

derivation on M induced by Ops (compare [MvdPO03b], § 2.2 or [vdPS03], loc.
cit.). Obviously, the local ID-modules over O with D-homomorphisms form a tensor
category denoted by IDModp.

Proposition 5.1 — Let (Op, 9F) be a local ID-ring and (M, 0nr) a local D-module over
O := Op. Then (M, 0y) is integral if and only if it is an ID-module. More precisely,
the tensor categories DModp and IDModp are equivalent.

The proof immediately follows from [MvdP03b], Prop. 8.1.

The ID-structure of M gives rise to a second projective system: For this purpose
we define

1
(5.3) O(o) =0, O(lJrl) = {a S O(l)|6§? )(a) S PF}
and, respectively,

!
(5.4) M(O) =M, M(H—l) ={x e M(l)|8j(\§ )(ZL') € PrM}.

Then in analogy to Proposition 1.3 the submodules M, together with the O 1)-
linear embeddings o) : M1y — M) form a projective system (M), 0())ien of
O(y-modules. The category of all those projective systems with the properties (1.18)
and (1.19) for M), p() instead of M, ; will be denoted by IDProje.
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Corollary 5.2 — Let (Op,0r) be a local ID-ring, (M,0p) € DMode and let
(My, ¢1)ien, (M@, ©u))ien be the induced projective systems in DProj, or IDProj,
respectively.

(a) For alll € N there exists a k(I) € N such that
O(l) Z Ok and M(l) Z Mk fOT’ all kK Z k(l)
(b) Then with a basis By, = {bk1,...,bkm} of M

(5.5) Mqy = Oy ®o, My = @O(l)bk,i-
i=1
Proof. — By the definition of a local integral D-module there exists an Op-basis

By = {bk1,- .., bgm } of M for all k € N with Oy (bg ;) € 7¥ M and thus aﬁ(bm) erkM
for all 7 € N. This implies

N
()

in case k is large enough, say, k > k(I). This proves (a) and also (b), since z =
>~ aibg; € M belongs to M if and only if a; € Oy fori=1,...,m. O
i=1

(5.6) 0 (by) = —— %1 (b;) € PeM forall j<leN

If we let (D;)ien denote a system of representing matrices of (M, Opr) (with respect
to bases B; of M;), we obtain a system of representing matrices of the second projective
system (M(;), ¢q))ien for example by

(5.7) Dy := Dya-1y - Dr@y—1 € GLn(Opq-1y) for €N

(with respect to the bases By(;)) and k(—1) = 0. Moreover, with the base change
matrices (D) )ien from (M, ¢q))ien we can recover the derivation dp which is
characterized by the projective system (M, ¢;)ien according to Theorem 1.4.

5.2. Residue Modules. — The iterative derivation d}. of a local ID-ring O = O
induces an iterative derivation 03 on the residue field F := Ox/Pr by

(5.8) aﬁf)(a + Pr) = a}’”(a) +Pr for a€ O and ke&N.
Analogously any M € DModp = IDModp with O-basis B = {by, ..., by} reduces
to an F-vector space
(5.9) M := M/PpM = P Fb

i=1
with basis B = {I;l, ey l;m} equipped with an iterative derivation 0}4 defined by
(5.10) 00 (x +PpM) =0y (x) + PpM for z€M and keN,

ie., (M, 9d7y,) is an ID-module over F in the sense of [MvdP03b], Ch. 2.2 (compare
[vdPS03],Ch. 13.3). The next proposition shows that the induced projective systems
are compatible with the reduction process.
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Proposition 5.3 — Let (O, 0*) be a local ID-ring with residue field F and (M,0%,) €
IDModo with associated projective system (M), 0 )ien € IDProjeo. Then the pro-

jective system of the reduced ID-module (M, 3}4) e IDMody is given by (M, §1)ien
where

(5.11) Ml = M(l)/(M(l)ﬂ'PFM)

and @y is induced from @) .

Proof. — Let (for each [) By be an arbitrary O(;)-basis of M;y and Dy € GL,,(O)
with By = Bg-1)Dg-1). For x € M there exists y) = (Y1, -, Ym) € O™ with
x = B()Y (o) and thus v = By with y) = D&il) e D&%y(o). Then obviously
for all k < p! we obtain

k
az(v)( )= az(w l)y(l) Z 5 (y(z))
(5.12) l+J k
= B0y (y)) = BoDoy -+ Da—nydp (DGl -+ D} y()  (mod PpM).

Substituting B(g) by the reduced basis B and Dy by the reduced base change matrices

D; the above equation yields the formula for the iterative derivation of an ID-module
over F induced from its projective system (see [Mat01], Prop. 2.10 or [MvdP03a],
Ch. 5.5, respectively). O

If we use the bases By for My, the reduced base change matrices D, of
(]\Zfl, @1)ien are obtained from the representing matrices D; of (M, ¢;)ien by

(5.13) Dl = Dk(lfl) e 'Dk(l)fl (mod Ppoal)xm)

5.3. Behaviour of the Galois Group. — As before, let (Op,0%) be a p-adic
ID-ring with quotient field F and (M, dys) € DMode for O = Op. As in Section 2.2
we assume the quotient field Fj; of a Picard—Vessiot ring Rj; of M over Op does not
contain new constants. Then by Proposition 2.3 there exists a reduced linear algebraic
group G over the field of constants K of F' with Autp(M) = G(Ok). Further, at least
in the case when G is connected, we know RAutD(M) Opr. This fact will be assumed
in the next theorem. Since the group of K- ratlonal points G(K) over a finite field K is
not Zariski dense in G(K), we suppose in addition K > F,, or K > E,, := Quot(W(F,)),
respectively.

Theorem 5.4 — Let (M, 0n) be an integral p-adic D-module over a discretely valued
p-adic ID-ring (O, 0%) with field of constants K > E,. Assume there exists a Picard-

Vessiot ring Ryr of M over F without new constants and with RGdID(M) Op. Then
the residue module (M, 9% 1) of M is an ID-module over the residue field F := Op /Pr
whose ID-Galois group is bounded by

(5.14) Galip (M) < Galp(M)/ Galp (M),

where Galp(M)1 denotes the principal congruence subgroup of the p-adic analytic
group Galp (M).
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Proof. — For the proof we follow the construction of a Picard—Vessiot ring Ry,
of M over Op (compare [Mat03], Thm. 10.2). Let (M, ¢i)ien € DProjy
and (M), pa))ien € IDProj, be the respective projective systems associated
to (M,0n) with systems of representing matrices (Di)ien and (D())ien, where
Dy = Dyg—1) - Di@y—1 according to Corollary 5.2. Then the derivative 9y of M
with respect to the basis B = By = {b1,...,b} of M is given by

(5.15) Oy(B)=-B-A

with the matrix A € OR*™ constructed in Theorem 1.7. Analogously, the higher
derivations on M are given by

1
(5.16) o\(B) = 0% (B) =B AR
with
(5.17) AR = llig(a;“ (Do ---Dy)(Do---D;)~Y) € Opx™,

The ring U := Op|[GLy,] = Op[xi;, det(x5) " ']7%_; becomes an ID-ring via
(5.18) O (X)=ABX for X = (x;)_;.
Now let P QU be a maximal differential ideal with PNOp = (0), which is an ID-ideal
by (5.17). Then the Op-algebra Ry; := U/P is an “integral PV-ring” with quotient
field E := E)j; (up to differential isomorphism) and there exists a fundamental solution

matrix Y = (yi;)7%=1 € GLyn(Ry) with Op(Y) = A-Y. By assumption £ and Ry
do not contain new constants and Galp(M) := Autp(Ra/Op) has the property

RR};ID(M) = Op. A matrix representation of Galp(M) on the solution space is given
by
(5.19) I': Galp(M) — GL(Ok),y — C,

where v(Y) =Y C,.

Now let U := F @0 U = F[#;;,det(i;) 1], and let Ry := F ®o Ras be the
residue ring of Ry over F, i.e., Ryr = Flijij, det(gi;) 7%=y with gi; = 1@y € Ru.
Then the residue matrices D; of D(;y € GLy,,(OF) define an iterative derivation 8}";{M
on Rys by

(5.20) 05 (V) := 0% (Do Dy)(Do--- D)) ~'Y for k< p!

where Y = (gi7j);f;:1, ie., RM is an ID-ring. Hence RM can be obtained as a quotient
of U by an ID-ideal P:

(5.21) Ry =U/P.

The group of iterative differential automorphisms AutID(RM /F) is a linear alge-
braic group over I, = Ok /Px since

(5.22) Autip(Rar/F) = {C € QL (F,)|[p(XC) =0 forall pe P}
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e

Because of v(Y') = }//\C_’; =YC, for v € Galp(M), the restriction map
(5.23) " Galp(M) — Autip (R /F), Cy — C,,

is a group homomorphism with kernel Galp (M); whose image is denoted by G. By

construction we obtain Rfj = F. Thus G is Zariski dense in Autip (RM /F) and the
restriction map is surjective. This proves

(5.24) Autip(Ryr/F) = G = Galp(M)/ Galp(M);.
Now let Q < U be a maxima{ ID-ideal containing P. Then Ry = U/Q is an
iterative Picard-Vessiot ring for M with
Galip(M) = Galip(Ry;/F) = {7 € GLn(F,)[7(Q) € Q}
(5.25) < {7 € GLn(F,)[7(P) € P} = Autip(Rar /F)
>~ Galp(M)/ Galp (M),

since every ID-ideal P < U is left invariant by Galip (M ) (by the correspondence of
ID-ideals and Galip-stable ideals in U, compare [vdPS03], proof of Thm. 1.28). [

The question remains under which conditions equality holds in (5.14) (compare
[MvdPO03b], Conjecture 8.5).

5.4. Example SLo. — As an example, let K be E, = Quot(W(F,)) and let F =
KA{t} be the field of analytic elements over K. Let further (M, d)s) be a 2-dimensional
Or-module with associated projective system (M;, ¢;)ien and system of representing
matrices

i
(1 at? (1 0
(526) Dl = <0 1 > or Dl = (altpl 1>

with a; € O = W(Fp). For the sequence of natural numbers lp < I; < ... with
aj; # 0 we assume hm (lerl —1;) = co. We further assume that there exist infinitely

many [ with D; #£ I Wthh are upper triangular and infinitely many D; # I which are
lower triangular. Then from Theorem 3.1 it follows that

(5.27) Galp (M) = SLy(O) = SLa(W(F,)).

Now let (M, dy;) be the reduced ID-module over F = F,(t) with system of rep-

resenting matrices Dl = D(l) where Dy = D;. In case all a;; # 0 are units in Ok,
i.e., a;, # 0, the properties above for (D;);en entail the corresponding properties for
(D;)ien. Hence we obtain, by [MvdP03b], Lemma 7.4,

(5.28) Galip (M) = SLy(F,),
i.e., in Theorem 5.4 we have equality by
(5.29) Galip(M) = SLy(Fp) = SLo(W(F,))/ SLa(W(F,))1 = Galp(M)/ Galp(M);.
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