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VARIATION OF PARABOLIC COHOMOLOGY AND

POINCARÉ DUALITY

by

Michael Dettweiler & Stefan Wewers

Abstract. — We continue our study of the variation of parabolic cohomology ([DW])
and derive an exact formula for the underlying Poincaré duality. As an illustration
of our methods, we compute the monodromy of the Picard-Euler system and its
invariant Hermitian form, reproving a classical theorem of Picard.

Résumé(Variation de la cohomologie parabolique et dualité de Poincaré). — On continue
l’étude de la variation de la cohomologie parabolique commencée dans [DW]. En
particulier, on donne des formules pour l’accouplement de Poincaré sur la cohomologie
parabolique, et on calcule la monodromie du système de Picard-Euler, confirmant un
résultat classique de Picard.

Introduction

Let x1, . . . , xr be pairwise distinct points on the Riemann sphere P1(C) and

set U := P1(C) − {x1, . . . , xr}. The Riemann–Hilbert correspondence [Del70]

is an equivalence between the category of ordinary differential equations with

polynomial coefficients and at most regular singularities at the points xi and the

category of local systems of C-vectorspaces on U . The latter are essentially given

by an r-tuple of matrices g1, . . . , gr ∈ GLn(C) satisfying the relation
∏

i gi = 1.

The Riemann–Hilbert correspondence associates to a differential equation the

tuple (gi), where gi is the monodromy of a full set of solutions at the singular

point xi.

In [DW] the authors investigated the following situation. Suppose that the set of

points {x1, . . . , xr} ⊂ P1(C) and a local system V with singularities at the xi depend

on a parameter s which varies over the points of a complex manifold S. More precisely,

we consider a relative divisor D ⊂ P1
S of degree r such that for all s ∈ S the fibre

Ds ⊂ P1(C) consists of r distinct points. Let U := P1
S −D denote the complement
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and let V be a local system on U . We call V a variation of local systems over the base

space S. The parabolic cohomology of the variation V is the local system on S

W := R1π∗(j∗V),

where j : U ↪→ P1
S denotes the natural injection and π : P1

S → S the natural pro-

jection. The fibre of W at a point s0 ∈ S is the parabolic cohomology of the local

system V0, the restriction of V to the fibre U0 = U ∩ π−1(s0).

A special case of this construction is the middle convolution functor defined by

Katz [Kat97]. Here S = U0 and so this functor transforms one local system V0

on S into another one, W . Katz shows that all rigid local systems on S arise

from one-dimensional systems by successive application of middle convolution. This

was further investigated by Dettweiler and Reiter [DR03]. Another special case

are the generalized hypergeometric systems studied by Lauricella [Lau93], Terada

[Ter73] and Deligne–Mostow [DM86]. Here S is the set of ordered tuples of

pairwise distinct points on P1(C) of the form s = (0, 1,∞, x4, . . . , xr) and V is a

one-dimensional system on P1
S with regular singularities at the (moving) points

0, 1,∞, x4, . . . , xr. In [DW] we gave another example where S is a 17-punctured

Riemann sphere and the local system V has finite monodromy. The resulting local

system W on S does not have finite monodromy and is highly non-rigid. Still, by the

comparison theorem between singular and étale cohomology, W gives rise to `-adic

Galois representations, with interesting applications to the regular inverse Galois

problem.

In all these examples, it is a significant fact that the monodromy of the local sys-

tem W (i.e. the action of π1(S) on a fibre of W) can be computed explicitly, i.e. one

can write down matrices g1, . . . , gr ∈ GLn which are the images of certain generators

α1, . . . , αr of π1(S). In the case of the middle convolution this was discovered by

Dettweiler–Reiter [DR00] and Völklein [V0̈1]. In [DW] it is extended to the more

general situation sketched above. In all earlier papers, the computation of the mon-

odromy is either not explicit (like in [Kat97]) or uses ad hoc methods. In contrast,

the method presented in [DW] is very general and can easily be implemented on a

computer.

It is one matter to compute the monodromy of W explicitly (i.e. to compute the

matrices gi) and another matter to determine its image (i.e. the group generated

by the gi). In many cases the image of monodromy is contained in a proper alge-

braic subgroup of GLn, because W carries an invariant bilinear form induced from

Poincaré duality. To compute the image of monodromy, it is often helpful to know

this form explictly. After a review of the relevant results of [DW] in Section 1,

we give a formula for the Poincaré duality pairing on W in Section 2. Finally, in

Section 3 we illustrate our method in a very classical example: the Picard–Euler

system.
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1. Variation of parabolic cohomology revisited

1.1. Let X be a compact Riemann surface of genus 0 and D ⊂ X a subset of

cardinality r ≥ 3. We set U := X − D. There exists a homeomorphism κ : X
∼
→

P1(C) between X and the Riemann sphere which maps the set D to the real line

P1(R) ⊂ P1(C). Such a homeomorphism is called a marking of (X,D).

Having chosen a marking κ, we may assume that X = P1(C) and D ⊂ P1(R).

Choose a base point x0 ∈ U lying in the upper half plane. Write D = {x1, . . . , xr}

with x1 < x2 < · · · < xr ≤ ∞. For i = 1, . . . , r − 1 we let γi denote the open interval

(xi, xi+1) ⊂ U ∩ P1(R); for i = r we set γ0 = γr := (xr, x1) (which may include ∞).

For i = 1, . . . , r, we let αi ∈ π1(U) be the element represented by a closed loop based

at x0 which first intersects γi−1 and then γi. We obtain the following well known

presentation

(1) π1(U, x0) =
〈

α1, . . . , αr |
∏

i

αi = 1
〉

,

which only depends on the marking κ.

Let R be a (commutative) ring. A local system of R-modules on U is a locally

constant sheaf V on U with values in the category of free R-modules of finite rank.

Such a local system corresponds to a representation ρ : π1(U, x0) → GL(V ), where

V := Vx0 is the stalk of V at x0 (note that V is a free R-module of finite rank). For

i = 1, . . . , r, set gi := ρ(αi) ∈ GL(V ). Then we have

r∏

i=1

gi = 1,

and V can also be given by a tuple g = (g1, . . . , gr) ∈ GL(V )r satisfying the above

product-one-relation.

Convention 1.1. — Let α, β be two elements of π1(U, x0), represented by closed path

based at x0. The composition αβ is (the homotopy class of) the closed path obtained

by first walking along α and then along β. Moreover, we let GL(V ) act on V from

the right.

1.2. Fix a local system of R-modules V on U as above. Let j : U ↪→ X denote

the inclusion. The parabolic cohomology of V is defined as the sheaf cohomology

of j∗V , and is written as Hn
p (U,V) := Hn(X, j∗V). We have natural morphisms

Hn
c (U,V) → Hn

p (U,V) and Hn
p (U,V) → Hn(U,V) (Hc denotes cohomology with

compact support). Moreover, the group Hn(U,V) is canonically isomorphic to the

group cohomology Hn(π1(U, x0), V ) and H1
p (U,V) is the image of the cohomology

with compact support in H1(U,V), see [DW, Prop. 1.1]. Thus, there is a natural

inclusion

H1
p (U,V) ↪→ H1(π1(U, x0), V ).
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Let δ : π1(U) → V be a cocycle, i.e. we have δ(αβ) = δ(α) · ρ(β) + δ(β) (see

Convention 1.1). Set vi := δ(αi). It is clear that the tuple (vi) is subject to the

relation

(2) v1 · g2 · · · gr + v2 · g3 · · · gr + · · · + vr = 0.

By definition, δ gives rise to an element in H1(π1(U, x0), V ). We say that δ is a

parabolic cocycle if the class of δ in H1(π1(U), V ) lies in H1
p (U,V). By [DW, Lemma

1.2], the cocycle δ is parabolic if and only if vi lies in the image of gi − 1, for all i.

Thus, the assignment δ 7→ (δ(α1), . . . , δ(αr)) yields an isomorphism

(3) H1
p (U,V) ∼= Wg := Hg/Eg,

where

(4) Hg := { (v1, . . . , vr) | vi ∈ Im(gi − 1), relation (2) holds}

and

(5) Eg := { ( v · (g1 − 1), . . . , v · (gr − 1) ) | v ∈ V }.

1.3. Let S be a connected complex manifold, and r ≥ 3. An r-configuration over S

consists of a smooth and proper morphism π̄ : X → S of complex manifolds together

with a smooth relative divisor D ⊂ X such that the following holds. For all s ∈ S the

fiber Xs := π̄−1(s) is a compact Riemann surface of genus 0. Moreover, the natural

map D → S is an unramified covering of degree r. Then for all s ∈ S the divisor

D ∩Xs consists of r pairwise distinct points x1, . . . , xr ∈ Xs.

Let us fix an r-configuration (X,D) over S. We set U := X − D and denote

by j : U ↪→ X the natural inclusion. Also, we write π : U → S for the natural

projection. Choose a base point s0 ∈ S and set X0 := π̄−1(s0) and D0 := X0∩D. Set

U0 := X0−D0 = π−1(s0) and choose a base point x0 ∈ U0. The projection π : U → S

is a topological fibration and yields a short exact sequence

(6) 1 −→ π1(U0, x0) −→ π1(U, x0) −→ π1(S, s0) −→ 1.

Let V0 be a local system of R-modules on U0. A variation of V0 over S is a

local system V of R-modules on U whose restriction to U0 is identified with V0. The

parabolic cohomology of a variation V is the higher direct image sheaf

W := R1π̄∗(j∗V).

By construction, W is a local system with fibre

W := H1
p (U0,V0).

(Since an r-configuration is locally trivial relative to S, it follows that the formation

of W commutes with arbitrary basechange S′ → S.) Thus W corresponds to a

representation η : π1(S, s0) → GL(W ). We call ρ the monodromy representation on

the parabolic cohomology of V0 (with respect to the variation V).

SÉMINAIRES & CONGRÈS 13
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1.4. Under a mild assumption, the monodromy representation η has a very explicit

description in terms of the Artin braid group. We first have to introduce some more

notation. Define

Or−1 := {D′ ⊂ C | |D′| = r − 1 } = {D ⊂ P1(C) | |D| = r, ∞ ∈ D }.

The fundamental group Ar−1 := π1(Or−1, D0) is the Artin braid group on r − 1

strands. Let β1, . . . , βr−2 be the standard generators, see e.g. [DW, § 2.2.] (The

element βi switches the position of the two points xi and xi+1; the point xi walks

through the lower half plane and xi+1 through the upper half plane.) The generators

βi satisfy the following well known relations:

(7) βiβi+1βi = βi+1βiβi+1, βiβj = βjβi (for |i− j| > 1).

Let R be a commutative ring and V a free R-module of finite rank. Set

Er(V ) := { g = (g1, . . . , gr) | gi ∈ GL(V ),
∏

i

gi = 1 }.

We define a right action of the Artin braid group Ar−1 on the set Er(V ) by the

following formula:

(8) gβi := (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr).

One easily checks that this definition is compatible with the relations (7). For g ∈

Er(V ), let Hg be as in (4). For all β ∈ Ar−1, we define an R-linear isomorphism

Φ(g, β) : Hg
∼
−→ Hgβ ,

as follows. For the generators βi we set

(9) (v1, . . . , vr)
Φ(g,βi) := (v1, . . . , vi+1, vi+1(1 − g−1

i+1gigi+1) + vigi+1
︸ ︷︷ ︸

(i + 1)th entry

, . . . , vr).

For an arbitrary word β in the generators βi, we define Φ(g, β) using (9) and the

‘cocycle rule’

(10) Φ(g, β) · Φ(gβ , β′) = Φ(g, ββ′).

(Our convention is to let linear maps act from the right; therefore, the left hand side

of (9) is the linear map obtained from first applying Φ(g, β) and then Φ(gβ , β′).) It is

easy to see that Φ(g, β) is well defined and respects the submodule Eg ⊂ Hg defined

by (5). Let

Φ̄(g, β) : Wg
∼
−→ Wgβ

denote the induced map on the quotient Wg = Hg/Eg.

Given g ∈ Er(V ) and h ∈ GL(V ), we define the isomorphism

Ψ(g, h) :







Hgh

∼
−→ Hg

(v1, . . . , vr) 7−→ (v1 · h, . . . , vr · h).
,
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where gh := (h−1g1h, . . . , h
−1grh). It is clear that Ψ(g, h) maps Egh to Eg and

therefore induces an isomorphism Ψ̄(g, h) : Wgh

∼
→Wg.

Note that the computation of the maps Φ̄(g, β) and Ψ̄(g, h) can easily be imple-

mented on a computer.

1.5. Let S be a connected complex manifold, s0 ∈ S a base point and (X,D) an r-

configuration over S. As before we set U := X−D, D0 := D∩Xs0 and U0 := U∩Xs0 .

Let V0 be a local system of R-modules on U0 and V a variation of V0 over S. Let W

be the parabolic cohomology of the variation V and let η : π1(S, s0) → GL(W ) be the

corresponding monodromy representation. In order to describe η explicitly, we find it

convenient to make the following assumption on (X,D):

Assumption 1.2

1. X = P1
S is the relative projective line over S.

2. The divisor D contains the section ∞× S ⊂ P1
S .

3. There exists a point s0 ∈ S such that D0 := D ∩ π̄−1(s0) is contained in the

real line P1(R) ⊂ P1(C) = π̄−1(s0).

In practise, this assumption is not a big restriction. See [DW] for a more general

setup.

By Assumption 1.2, we can consider D0 as an element of Or−1. Moreover, the

divisor D ⊂ P1
S gives rise to an analytic map S → Or−1 which sends s0 ∈ S to

D0 ∈ Or−1. We let ϕ : π1(S, s0) → Ar−1 denote the induced group homomorphism

and call it the braiding map induced by (X,D).

For t ∈ R+ let Ωt := { z ∈ C | |z| > t, z 6∈ (−∞, 0) }. Since Ωt is contractible, the

fundamental group π1(U0,Ωt) is well defined for t � 0 and independent of t, up to

canonical isomorphism. We write π1(U0,∞) := π1(U0,Ωt). We can define π1(U,∞)

in a similar fashion, and obtain a short exact sequence

(11) 1 → π1(U0,∞) −→ π1(U,∞) −→ π1(S, s0) → 1.

It is easy to see that the projection π : U → S has a continuous section ζ : S → U

with the following property. For all s ∈ S there exists t � 0 such that the region Ωt

is contained in the fibre Us := π−1(s) ⊂ P1(C) and such that ζ(s) ∈ Ωt. The section

ζ induces a splitting of the sequence (11), which is actually independent of ζ. We will

use this splitting to consider π1(S, s0) as a subgroup of π1(U,∞).

The variation V corresponds to a group homomorphism ρ : π1(U,∞) → GL(V ),

where V is a free R-module. Let ρ0 denote the restriction of ρ to π1(U0,∞) and χ the

restriction to π1(S, s0). By Part (iii) of Assumption 1.2 and the discussion in § 1.1 we

have a natural ordering x1 < · · · < xr = ∞ of the points in D0, and a natural choice

of a presentation π1(U0,∞) ∼= 〈α1, . . . , αr |
∏

i αi = 1〉. Therefore, the local system

V0 corresponds to a tuple g = (g1, . . . , gr) ∈ Er(V ), with gi := ρ0(αi). One checks
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that the homomorphism χ : π1(S, s0) → GL(V ) satisfies the condition

(12) gϕ(γ) = gχ(γ)−1

,

for all γ ∈ π1(S, s0). Conversely, given g ∈ Er(V ) and a homomorphism χ : π1(S, s0)

such that (12) holds then there exists a unique variation V which induces the pair

(g, χ).

With these notations one has the following result (see [DW, Thm. 2.5]):

Theorem 1.3. — Let W be the parabolic cohomology of V and η : π1(S, s0) → GL(Wg)

the corresponding monodromy representation. For all γ ∈ π1(S, s0) we have

η(γ) = Φ̄(g, ϕ(γ)) · Ψ̄(g, χ(γ)).

Thus, in order to compute the monodromy action on the parabolic cohomology of

a local system V0 corresponding to a tuple g ∈ Er(V ), we need to know the braiding

map ϕ : π1(S, s0) → Ar−1 and the homomorphism χ : π1(S, s0) → GL(V ).

Remark 1.4. — Suppose that R is a field and that the local system V0 is irreducible,

i.e. the subgroup of GL(V ) generated by the elements gi acts irreducibly on V . Then

the homomorphism χ is determined, modulo the scalar action of R× on V , by g and ϕ

(via (12)). It follows from Theorem 1.3 that the projective representation π1(S, s0) →

PGL(V ) associated to the monodromy representation η is already determined by (and

can be computed from) g and the braiding map ϕ.

The above result is crucial for recent work of the first author [Det05] on the

middle convolution, where the above methods are used to realize special linear groups

as Galois groups over Q(t).

2. Poincaré duality

Let V be a local system of R-modules on the punctured Riemann sphere U . If V

carries a non-degenerate symmetric (resp. alternating) form, then Poincaré duality

induces on the parabolic cohomology group H1
p (U,V) a non-degenerate alternating

(resp. symmetric) form. Similarly, if R = C and V carries a Hermitian form, then we

get a Hermitian form on H1
p (U,V). In this section we derive an explicit expression for

this induced form.

2.1. Let us briefly recall the definition of singular (co)homology with coefficients in

a local system. See e.g. [Spa93] for more details. For q ≥ 0 let ∆q = |y0, . . . , yq|

denote the standard q-simplex with vertices y0, . . . , yq. We will sometimes identify

∆1 with the closed unit interval [0, 1]. Let X be a connected and locally contractible

topological space and V a local system of R-modules on X . For a continuous map

f : Y → X we denote by Vf the group of global sections of f∗V .

In the following discussion, a q-chain will be a function ϕ which assigns to each

singular q-simplex σ : ∆q → X a section ϕ(σ) ∈ Vσ. Let ∆q(X,V) denote the
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set of all q-chains, which is made into an R-module in the obvious way. A q-chain

ϕ is said to have compact support if there exists a compact subset A ⊂ X such

that ϕσ = 0 whenever supp(σ) ⊂ X − A. The corresponding R-module is denoted

by ∆q
c(X,V). We define coboundary operators d : ∆q(X,V) → ∆q+1(X,V) and

d : ∆q
c(X,V) → ∆q+1

c (X,V) through the formula

(dϕ)(σ) :=
∑

0≤i≤q

(−1)i · ϕ(σ(i)).

Here σ(i) is the ith face of σ (see [Spa66]) and ϕ(σ(i)) denotes the unique exten-

sion of ϕ(σ(i)) to an element of Vσ. It is proved in [Spa93] that we have canonical

isomorphisms

(13) Hn(X,V) ∼= Hn(∆•(X,V), d), Hn
c (X,V) ∼= Hn(∆•

c(X,V), d),

i.e. singular cohomology agrees with sheaf cohomology. Let x0 ∈ X be a base point

and V the fibre of V at x0. Then we also have an isomorphism

(14) H1(X,V) ∼= H1(π1(X,x0), V ).

Let ϕ be a 1-chain with dϕ = 0. Let α : [0, 1] → X be a closed path with base point

x0. By definition, ϕ(α) is a global section of α∗V . Then α 7→ δ(α) := ϕ(α)(1) defines

a cocycle δ : π1(X,x0) → V , and this cocycle represents the image of ϕ in H1(X,V).

A q-chain ϕ is called finite if ϕ(σ) = 0 for all but finitely many simplexes σ. It is

called locally finite if every point in X has a neighborhood U ⊂ X such that ϕ(σ) = 0

for all but finitely many simplexes σ contained in U . We denote by ∆q(X,V) (resp.

by ∆lf
q (X,V)) the R-module of all finite (resp. locally finite) q-chains. For a fixed q-

simplex σ and a section v ∈ Vσ, the symbol v⊗σ will denote the q-chain which assigns

v to σ and 0 to all σ′ 6= σ. Obviously, every finite (resp. locally finite) q-chain can

be written as a finite (resp. possibly infinite) sum
∑

µ vµ ⊗ σµ. We define boundary

operators ∂ : ∆q(X,V) → ∆q−1(X,V) and ∂ : ∆lf
q (X,V) → ∆lf

q−1(X,V) through the

formula

∂(v ⊗ σ) :=
∑

0≤i≤q

(−1)i · v|σ(i) ⊗ σ(i).

We define homology (resp. locally finite homology) with coefficients in V as follows:

Hq(X,V) := Hq(∆•(X,V)), H lf
q (X,V) := Hq(∆

lf
• (X,V)).

2.2. Let X := P1(C) be the Riemann sphere and D = {x1, . . . , xr} ⊂ P1(R) a subset

of r ≥ 3 points lying on the real line, with x1 < · · · < xr ≤ ∞. Let V be a local

system of R-modules on U = X − D. Choose a base point x0 lying in the upper

half plane. Then V corresponds to a tuple g = (g1, . . . , gr) in GL(V ) with
∏

i gi = 1,

where V := Vx0 . See § 1.1. Let V∗ := Hom(V , R) denote the local system dual to V .
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It corresponds to the tuple g∗ = (g∗1 , . . . , g
∗
r) in GL(V ∗), where V ∗ is the dual of V

and for each g ∈ GL(V ) we let g∗ ∈ GL(V ∗) be the unique element such that

〈w · g∗, v · g〉 = 〈w, v〉

for all w ∈ V ∗ and v ∈ V . Note that V ∗∗ = V because V is free of finite rank over R.

Let ϕ be a 1-chain with compact support and with coefficients in V∗. Let a =
∑

µ vµ ⊗ αµ be a locally finite 1-chain with coefficients in V . By abuse of notation,

we will also write ϕ (resp. a) for its class in H1
c (U,V∗) (resp. in H lf

1 (U,V)). The cap

product

ϕ ∩ a :=
∑

µ

〈ϕ(αµ), vµ〉

induces a bilinear pairing

(15) ∩ : H1
c (U,V∗) ⊗H lf

1 (U,V) −→ R.

It is easy to see from the definition that H lf
0 (U,V) = 0. Therefore, it follows from

the Universal Coefficient Theorem for cohomology (see e.g. [Spa66, Thm. 5.5.3])

that the pairing (15) is nonsingular on the left, i.e. identifies H1
c (U,V∗) with

Hom (H lf
1 (U,V), R). The cap product also induces a pairing

(16) ∩ : H1(U,V∗) ⊗H1(U,V) −→ R.

(This last pairing may not be non-singular on the left. The reason is that

H0(U,V) ∼= V/〈 Im(gi − 1) | i = 1, . . . , r 〉

may not be a free R-module, and so Ext1(H0(U,V), R) may be nontrivial.) Let

f1 : H1
c (U,V∗) → H1(U,V∗) and f1 : H1(U,V) → H lf

1 (U,V) denote the canonical

maps. Going back to the definition, one can easily verify the rule

(17) f1(ϕ) ∩ a = ϕ ∩ f1(a).

Let ϕ ∈ H1
c (U,V∗) and ψ ∈ H1(U,V). The cup product ϕ ∪ ψ is defined as an

element of H2
c (U,R), see [Ste43] or [Spa93]. The standard orientation of U yields an

isomorphism H2
c (U,R) ∼= R. Using this isomorphism, we shall view the cup product

as a bilinear pairing

∪ : H1
c (U,V∗) ⊗H1(U,V) −→ R.

Similarly, one can define the cup product ϕ ∪ ψ, where ϕ ∈ H1(U,V∗) and ψ ∈

H1
c (U,V). Given ϕ ∈ H1

c (U,V∗) and ψ ∈ H1
c (U,V), one checks that

(18) f1(ϕ) ∪ ψ = ϕ ∪ f1(ψ).

Proposition 2.1(Poincaré duality). — There exist unique isomorphisms of R-modules

p : H1(U,V)
∼
−→ H1

c (U,V), p : H lf
1 (U,V)

∼
−→ H1(U,V)
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such that the following holds. If ϕ ∈ H1
c (U,V∗) and a ∈ H lf

1 (U,V) or if ϕ ∈ H1(U,V∗)

and a ∈ H1(U,V) then we have

ϕ ∩ a = ϕ ∪ p(a).

These isomorphisms are compatible with the canonical maps f1 and f1, i.e. we have

p ◦ f1 = f1 ◦ p.

Proof. — See [Ste43] or [Spa93].

Corollary 2.2. — The cup product induces a non-degenerate bilinear pairing

∪ : H1
p (U,V∗) ⊗H1

p (U,V) −→ R.

Proof. — Let ϕ ∈ H1
p (U,V∗) and ψ ∈ H1

p (U,V). Choose ϕ′ ∈ H1
c (U,V∗) and ψ′ ∈

H1
c (U,V) with ϕ = f1(ϕ′) and ψ = f1(ψ′). By (18) we have ϕ′∪ψ = ϕ∪ψ′. Therefore,

the expression ϕ∪ψ := ϕ′∪ψ does not depend on the choice of the lift ϕ′ and defines

a bilinear pairing between H1
p (U,V∗) and H1

p (U,V). By Proposition 2.1 and since the

cap product (15) is non-degenerate on the left, this pairing is also non-degenerate on

the left. But the cup product is alternating (i.e. we have ϕ ∪ ψ = −ψ ∪ ϕ, where

the right hand side is defined using the identification V∗∗ = V), so our pairing is also

non-degenerate on the right.

For a ∈ H lf
1 (U,V∗) and b ∈ H1(U,V), the expression

(a, b) := p(a) ∪ p(b)

defines another bilinear pairing H lf
1 (U,V∗) ⊗H1(U,V) → R. It is shown in [Ste43]

that this pairing can be computed as an ‘intersection product of loaded cycles’, gen-

eralizing the usual intersection product for constant coefficients, as follows. We may

assume that a is represented by a locally finite chain
∑

µ v
∗
µ ⊗ αµ and that b is rep-

resented by a finite chain
∑

ν vν ⊗ βν such that for all µ, ν the 1-simplexes αµ and

βν are smooth and intersect each other transversally, in at most finitely many points.

Suppose x is a point where αµ intersects βν . Then there exists t0 ∈ [0, 1] such that

x = α(t0) = β(t0) and (∂α
∂t
|t0 ,

∂β
∂t
|t0) is a basis of the tangent space of U at x. We

set ı(α, β, x) := 1 (resp. ı(α, β, x) := −1) if this basis is positively (resp. negatively)

oriented. Furthermore, we let αµ,x (resp. βν,x) be the restriction of α (resp. of β) to

the interval [0, t0]. Then we have

(19) (a, b) =
∑

µ,ν,x

ı(αµ, βν , x) · 〈 (v∗)αµ,x , vβν,x 〉.

2.3. Let V ⊗ V → R be a non-degenerate symmetric (resp. alternating) bilinear

form, corresponding to an injective homomorphism κ : V ↪→ V∗ with κ∗ = κ (resp.

κ∗ = −κ). We denote the induced map H1
p (U,V) → H1

p (U,V∗) by κ as well. Then

〈ϕ, ψ〉 := κ(ϕ) ∪ ψ

defines a non-degenerate alternating (resp. symmetric) form on H1
p (U,V).
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Similarly, suppose that R = C and let V be equipped with a non-degenerate Her-

mitian form, corresponding to an isomorphism κ : V̄
∼
→ V∗. Then the pairing

(20) (ϕ, ψ) := −i · (κ(ϕ̄) ∪ ψ)

is a nondegenerate Hermitian form on H1
p (U,V) (we identify H1

p (U, V̄) with the com-

plex conjugate of the vector space H1
p (U,V) in the obvious way).

Suppose that the Hermitian form on V is positive definite. Then we can express

the signature of the form (20) in terms of the tuple g, as follows. For i = 1, . . . , r, let

(21) gi ∼









αi,1

. . .

αi,n









be a diagonalization of gi ∈ GL(V ). Since the gi are unitary, the eigenvalues αi,j have

absolute value one and can be uniquely written in the form αi,j = exp(2πiµi,j), with

0 ≤ µi,j < 1. Set µ̄i,j := 1 − µi,j if µi,j > 0 and µ̄i,j := 0 otherwise.

Theorem 2.3. — Suppose that V is equipped with a positive definite Hermitian form

and that H0(U,V) = 0. Then the Hermitian form (20) on H1
p (U,V) has signature

(
(
∑

i,j

µi,j) − dimC V, (
∑

i,j

µ̄i,j) − dimC V
)
.

Proof. — If dimC V = 1, this formula is proved in [DM86, § 2]. The general case is

proved in a similar manner. We will therefore only sketch the argument.

Let Ω•(V) : O(V) → Ω1(V) be the holomorphic V-valued de Rham complex on

U ([DM86, § 2.7]). Let jm
∗ Ω•(V) denote the subcomplex of j∗Ω

•(V) consisting of

sections which are meromorphic at all the singular points. Then we have

H1(U,V) = H1(X, jm
∗ Ω•(V)) = H1Γ(X, jm

∗ Ω•(V)).

We define a subbundle E of jm
∗ O(V) as follows. Fix an index i and let Ui ⊂ X be

a disk-like neighborhood of xi which does not contain any other singular point. Set

U∗
i := Ui − {xi}. We obtain a decomposition

V|U∗

i
= ⊕jLj

into local systems of rank one, corresponding to the diagonalization (21) of the mon-

odromy matrix gi. In the notation of [DM86, § 2.11], we set

E|Ui
:= ⊕jO(µi,j · xi)(Lj).

In other words: a holomorphic section of E on Ui can be written as
∑

j z
−µi,jfjvj ,

where z is a local parameter on Ui vanishing at xi, fj is a holomorphic function and

vj is a (multivalued) section of Lj on (the universal cover of) U∗
i . It is clear that

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



156 M. DETTWEILER & STEFAN WEWERS

E is a vectorbundle of rank dimC V . Moreover, it is easy to see (compare [DM86],

Proposition 2.11.1) that

(22) deg E =
∑

i,j

µi,j .

In the same manner we define a subbundle E ′ of jm
∗ Ω1(V̄). It is clear that

(23) deg E ′ =
∑

i,j

µ̄i,j ,

where µ̄i,j is defined as above.

We define the subspace H1,0(U,V) of H1(U,V) as the image of the map

H0(X, E ⊗ Ω1
X) → H1(X, jm

∗ Ω•(V)) = H1(U,V).

A local computation shows that H1,0(U,V) is actually contained in H1
p (U,V) =

H1(X, j∗V). Let ω be a global section of E ⊗Ω1
X and let [ω] denote the corresponding

class in H1,0(U,V). The pairing (20) applied to [ω] is then given by the following

integral

([ω], [ω]) = −i ·

∫

U

ω ∧ ω̄,

see [DM86, § 2.18]. Here the integrand is defined as follows: if we write locally ω =

vα, where v is a section of V and α is a holomorphic one-form, then ω∧ω̄ := ||v||2α∧ᾱ.

The definition of E ensures that the above integral converges. It follows that the

pairing (20) is positive definite on H1,0(U,V) and that H1,0(U,V) = H0(X, E ⊗Ω1
X).

By Riemann–Roch and (22) we have

dimH1,0(U,V) ≥ deg(E ⊗ Ω1
X) + rank(E ⊗ Ω1

X)

≥
∑

i,j

µi,j − dimV.(24)

We define H0,1(U,V) as the complex conjugate of H1,0(U, V̄), considered as a sub-

space of H1
p (U,V). Note that the latter space is the image of H0(X, E ′ ⊗ Ω1

X), and

we can represent an element in H0,1(U,V) as an antiholomorphic form with values in

E ′. The same reasoning as above shows that the pairing (20) is negative definite on

H0,1(U,V) and that H0,1(U,V) is equal to the complex conjugate of H0(X, E ′ ⊗Ω1
X).

Furthermore, we have

(25) dimH0,1(U,V) = deg(E ′ ⊗ Ω1
X) + rank(E ′ ⊗ Ω1

X) ≥
∑

i,j

µ̄i,j − dimV.

Together with (24) we get the inequality

dimH1
p (U,V) ≥ dimH1,0(U,V) + dimH0,1(U,V)

≥
∑

i,j

(µi,j + µ̄i,j) − 2 dimV

= (r − 2) dimV −
∑

i

dimKer(gi − 1).
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But according to [DW, Remark 1.3], this inequality is an equality. It follows that

(24) and (25) are equalities as well. The theorem is now a consequence of the fact

pointed out before that the pairing (20) is positive definite on H1,0(U,V) and negative

definite on H0,1(U,V).

Remark 2.4. — The authors expect several applications of the above results, such as

the construction of totally real Galois representations of classical groups (in combina-

tion with the results of [Det05]). Another possible application would be to find new

examples of differential equations with a full set of algebraic solutions, in the spirit of

the work of Beukers and Heckman [BH89].

2.4. We are interested in an explicit expression for the pairing of Corollary 2.2. We

use the notation introduced at the beginning of § 2.2, with the following modification.

By γi we now denote a homeomorphism between the open unit interval (0, 1) and the

open interval (xi, xi+1). We assume that γi extends to a path γ̄i : [0, 1] → P1(R) from

xi to xi+1. We denote by U+ ⊂ P1(C) (resp. U−) the upper (resp. the lower) half

plane and by Ū+ (resp. Ū−) its closure inside U = P1(C)−{x1, . . . , xr}. Since Ū+ is

simply connected and contains the base point x0, an element of V extends uniquely

to a section of V over Ū+. We may therefore identify V with V(Ū+) and with the

stalk of V at any point x ∈ Ū+.

Choose a sequence of numbers εn, n ∈ Z, with 0 < en < en+1 < 1 such that

εn → 0 for n → −∞ and εn → 1 for n → ∞. Let γ
(n)
i : [0, 1] → U be the path

γ
(n)
i (t) := γi(εnt+ εn−1(1 − t)). Let w1, . . . , wr ∈ V . Since supp(γi) ⊂ Ū+, it makes

sense to define

wi ⊗ γi :=
∑

n

wi ⊗ γ
(n)
i .

This is a locally finite 1-chain. Set

c :=

r∑

i=1

wi ⊗ γi.

Note that ∂(c) = 0, so c represents a class in H lf
1 (U,V).

Lemma 2.5

1. The image of c under the Poincaré isomorphism H lf
1 (U,V) ∼= H1(U,V) is rep-

resented by the unique cocycle δ : π1(U, x0) → V with

δ(αi) = wi − wi−1 · gi.

2. The cocycle δ in (i) is parabolic if and only if there exist elements ui ∈ V with

wi − wi−1 = ui · (gi − 1), for all i.

Proof. — For a path α : [0, 1] → U in U , consider the following conditions:

(a) The support of α is contained either in U+ or in U−.
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Figure 1.

(b) We have α(0) ∈ U+, α(1) ∈ U− and α intersects γi transversally in a unique

point.

(c) We have α(0) ∈ U−, α(1) ∈ U+ and α intersects γi transversally in a unique

point.

In Case (b) (resp. in Case (c)) we identify Vα with V via the stalk Vα(0) (resp. via

Vα(1). Let ϕ ∈ C1(U,V) be the unique cocycle such that

ϕ(α) =







0, if α is as in Case (a)

−wi, if α is as in Case (b)

wα−1

i , if α is as in Case (c).

(To show the existence and uniqueness of ϕ, choose a triangulation of U in which all

edges satisfy Condition (a), (b) or (c). Then use simplicial approximation.) We claim

that ϕ represents the image of the cycle c under the Poincaré isomorphism. Indeed,

this follows from the definition of the Poincaré isomorphism, as it is given in [Ste43].

Write αi = α′
iα

′′
i , with α′

i(1) = α′′
i (0) ∈ U−. Using the fact that ϕ is a cocycle we get

ϕ(αi) = ϕ(α′
i) + ϕ(α′′

i )α′

i
−1

= −wi−1 + wi · g
−1
i .

Therefore we have δ(αi) = ϕ(αi) · gi = wi − wi−1 · gi. See Figure 1. This proves (i).

By Section 1.1, the cocycle δ is parabolic if and only if vi lies in the image of gi−1.

So (ii) follows from (i) by a simple manipulation.

Theorem 2.6. — Let ϕ ∈ H1
p (U,V∗) and ψ ∈ H1

p (U,V), represented by cocycles δ∗ :

π1(U, x0) → V ∗ and δ : π1(U, x0) → V . Set vi := δ(αi) and v∗i = δ∗(αi). If we choose

v′i ∈ V such that v′i · (gi − 1) = vi (see Lemma 2.5), then we have

ϕ ∪ ψ =

r∑

i=1

( 〈v∗i , v
′
i〉 +

i−1∑

j=1

〈v∗j g
∗
j+1 · · · g

∗
i−1(g

∗
i − 1), v′i〉 ).

Proof. — Let w1 := v1, w
∗
1 := v∗1 and

wi := vi + wi−1 · gi, w∗
i := v∗i + w∗

i−1 · g
∗
i
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Figure 2.

for i = 2, . . . , r. By Lemma 2.5, we can choose ui ∈ V with wi −wi−1 = ui · (gi − 1),

for i = 1, . . . , r. The claim will follow from the following formula:

(26) ϕ ∪ ψ =

r∑

i=1

〈w∗
i − w∗

i−1, ui − wi−1〉.

To prove Equation (26), suppose δ is parabolic, and choose ui ∈ V such that wi −

wi−1 = ui · (gi − 1). Let Di ⊂ X be a closed disk containing xi but none of the other

points xj , j 6= i. We may assume that the boundary of Di intersects γi−1 in the point

γ
(0)
i−1(1) but nowhere else, and that Di intersects γi in the point γ

(0)
i (0) but nowhere

else. Set D+
i := Di ∩ Ū

+ and D−
i := Di ∩ Ū

−. Let u+
i := ui − wi−1, considered as

a section of V over D+
i via extension over the whole upper half plane U+. It makes

sense to define the locally finite chain

u+
i ⊗D+

i :=
∑

σ

u+
i ⊗ σ,

where σ runs over all 2-simplexes of a triangulation of D+
i . (Note that xi 6∈ D+

i , so

this triangulation cannot be finite.) Similarly, let u−i ∈ VD−

i
denote the section of V

over D−
i obtained from ui ∈ V by continuation along a path which enters U− from

U+ by crossing the path γi−1; define u−i ⊗D−
i as before. Let

c′ := c+ ∂ (u+
i ⊗D+

i + u−i ⊗D−
i ).

It is easy to check that c′ is homologous to the cocycle

c′′ :=
∑

i

(
wi ⊗ γ

(0)
i + u+

i ⊗ β+
i + u−i ⊗ β−

i

)
,

where β+
i (resp. β−

i ) is the path from γ
(0)
i (0) to γ

(0)
i−1(1) (resp. from γ

(0)
i−1(1) to γ

(0)
i (0))

running along the upper (resp. lower) part of the boundary of Di. See Figure 2. Note

that c′′ is finite and that, by construction, the image of c′′ under the canonical map

f1 : H1(U,V) → H lf
1 (U,V) is equal to the class of c. Let ψ′ ∈ H1

c (U,V) denote

the image of c′′ under the Poincaré isomorphism H1(U,V) ∼= H1
c (U,V). The last

statement of Proposition 2.1 shows that ψ′ is a lift of ψ ∈ H1
p (U,V).

Let c∗ :=
∑

i w
∗
i ⊗ γi ∈ C1(U,V

∗). By (i) and the choice of w∗
i , the image of c∗

under the Poincaré isomorphism H lf
1 (U,V∗) ∼= H1(U,V∗) is equal to ϕ. By definition,
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we have ϕ∪ψ = (c∗, c′′). To compute this intersection number, we have to replace c∗

by a homologous cycle which intersects the support of c′′ at most transversally. For

instance, we can deform the open paths γi into open paths γ′i which lie entirely in the

upper half plane. See Figure 2. It follows from (19) that

(c∗, c′′) =
∑

i

〈w∗
i−1, u

+
i 〉 − 〈w∗

i , u
+
i 〉 =

∑

i

〈w∗
i − w∗

i−1, ui − wi−1〉.

This finishes the proof of (26). The formula in (iv) follows from (26) from a straight-

forward computation, expressing wi and ui in terms of vi and v′i.

Remark 2.7. — In the somewhat different setup, a similar formula as in Theorem 2.6

can be found in [V0̈1, § 1.2.3].

3. The monodromy of the Picard–Euler system

Let

S := { (s, t) ∈ C2 | s, t 6= 0, 1, s 6= t },

and let X := P1
S denote the relative projective line over S. The equation

(27) y3 = x(x − 1)(x− s)(x− t)

defines a finite Galois cover f : Y → X of smooth projective curves over S, tamely

ramified along the divisor D := {0, 1, s, t,∞} ⊂ X . The curve Y is called the Picard

curve. Let G denote the Galois group of f , which is cyclic of order 3. The equation

σ∗y = χ(σ) · y for σ ∈ G defines an injective character χ : G ↪→ C×. As we will see

below, the χ-eigenspace of the cohomology of Y gives rise to a local system on S whose

associated system of differential equations is known as the Picard–Euler system.

We fix a generator σ of G and set ω := χ(σ). Let K := Q(ω) be the quadratic

extension of Q generated by ω and OK = Z[ω] its ring of integers. The family of

G-covers f : Y → X together with the character χ of G corresponds to a local system

of OK -modules on U := X −D. Set s0 := (2, 3) ∈ S and let V0 denote the restriction

of V to the fibre U0 = A1
C
−{0, 1, 2, 3} of U → S over s0. We consider V as a variation

of V0 over S. Let W denote the parabolic cohomology of this variation; it is a local

system of OK-modules of rank three, see [DW, Rem. 1.4]. Let χ′ : G ↪→ C× denote

the conjugate character to χ and W ′ the parabolic cohomology of the variation of

local systems V ′ corresponding to the G-cover f and the character χ′. We write WC

for the local system of C-vectorspaces W⊗C. The maps πY : Y → S and πX : X → S

denote the natural projections.

Proposition 3.1. — We have a canonical isomorphism of local systems

R1πY,∗C ∼= WC ⊕ W ′
C.

This isomorphism identifies the fibres of WC with the χ-eigenspace of the singular

cohomology of the Picard curves of the family f .
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Proof. — The groupG has a natural left action on the sheaf f∗C. We have a canonical

isomorphism of sheaves on X

f∗C ∼= C ⊕ j∗VC ⊕ j∗V
′,

which identifies j∗VC, fibre by fibre, with the χ-eigenspace of f∗C. Now the Leray

spectral sequence for the composition πY = πX ◦f gives isomorphisms of sheaves on S

R1πY,∗C ∼= R1πX,∗(f∗C) ∼= WC ⊕ W ′
C.

Note that R1πX,∗C = 0 because the genus of X is zero. Since the formation of R1πY,∗

commutes with the G-action, the proposition follows.

The comparison theorem between singular and deRham cohomology identifies

R1πY,∗C with the local system of horizontal sections of the relative deRham co-

homology module R1
dRπY,∗OY , with respect to the Gauss-Manin connection. The

χ-eigenspace of R1
dRπY,∗OY gives rise to a Fuchsian system known as the Picard–

Euler system. In more classical terms, the Picard–Euler system is a set of three

explicit partial differential equations in s and t of which the period integrals

I(s, t; a, b) :=

∫ b

a

dx
3
√

x(x − 1)(x− s)(x − t)

(with a, b ∈ {0, 1, s, t,∞}) are a solution. See [Pic83], [Hol86], [Hol95]. It follows

from Proposition 3.1 that the monodromy of the Picard–Euler system can be identified

with the representation η : π1(S) → GL3(OK) corresponding to the local system W .

Theorem 3.2(Picard). — For suitable generators γ1, . . . , γ5 of the fundamental group

π1(S), the matrices η(γ1), . . . , η(γ5) are equal to








ω2 0 1 − ω

ω − ω2 1 ω2 − 1

0 0 1









,









ω2 0 1 − ω2

1 − ω2 1 ω2 − 1

0 0 1









,









1 0 0

0 ω ω2 − 1

0 ω2 − 1 −2ω









,









ω2 0 0

0 1 0

0 0 1









,









ω2 ω − ω2 0

0 1 0

1 − ω ω2 − 1 1









.

The invariant Hermitian form (induced by Poincaré duality, see Corollary 2.2) is

given by the matrix








a 0 0

0 0 a

0 a 0









,
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0 1 ts
Figure 3. The braids γ1, . . . , γ5

where a = i
3 (ω2 − ω).

Proof. — The divisor D ⊂ P1
S satisfies Assumption 1.2. Let ϕ : π1(S, s0) → A4 be

the associated braiding map. Using standard methods (see e.g. [V0̈1] and [DR00]),

or by staring at Figure 3, one can show that the image of ϕ is generated by the five

braids

β2
3 , β3β

2
2β

−1
3 , β3β2β

2
1β

−1
2 β−1

3 , β2
2 , β2β

2
1β

−1
2 .

It is clear that these five braids can be realized as the image under the map ϕ of

generators γ1, . . . , γ5 ∈ π1(S, s0).

Considering the ∞-section as a ‘tangential base point’ for the fibration U → S as

in § 1.5, we obtain a section π1(S) → π1(U). We use this section to identify π1(S)

with a subgroup of π1(U). Let α1, . . . , α5 be the standard generators of π1(U0). Let

ρ : π1(U) → K× denote the representation corresponding to the G-cover f : Y → X

and the character χ : G→ K×, and ρ0 : π1(U0) → G its restriction to the fibre above

s0. Using (27) one checks that ρ0 corresponds to the tuple g = (ω, ω, ω, ω, ω2), i.e.

that ρ0(αi) = gi. Also, since the leading coefficient of the right hand side of (27) is

one, the restriction of ρ to π1(S) is trivial. Hence, by Theorem 1.3, we have

η(γi) = Φ̄(g, ϕ(γi)).

A straightforward computation, using (9) and the cocycle rule (10), gives the value

of η(γi) (in form of a three-by-three matrix depending on the choice of a basis of

Wg). For this computation, it is convenient to take the classes of (1, 0, 0, 0,−ω2),

(0, 1, 0, 0,−ω) and (0, 0, 1, 0,−1) as a basis. In order to obtain the 5 matrices stated

in the theorem, one has to use a different basis, i.e. conjugate with the matrix

B =









0 −ω − 1 −ω

ω + 1 ω + 1 ω + 1

1 0 0









.

The claim on the Hermitian form follows from Theorem 2.6 by another straightforward

computation.
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Remark 3.3. — Theorem 3.2 is due to Picard, see [Pic83, p. 125] and [Pic84, p. 181].

He obtains exactly the matrices given above, but he does not list all of the correspond-

ing braids. A similar list as above is obtained in [Hol86] using different methods.

Remark 3.4. — It is obvious from Theorem 3.2 that the Hermitian form on W has

signature (1, 2) or (2, 1), depending on the choice of the character χ. This confirms

Theorem 2.3 in this special case.
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