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VARIATION OF PARABOLIC COHOMOLOGY AND
POINCARE DUALITY

by

Michael Dettweiler & Stefan Wewers

Abstract — We continue our study of the variation of parabolic cohomology ([DW])
and derive an exact formula for the underlying Poincaré duality. As an illustration
of our methods, we compute the monodromy of the Picard-Euler system and its
invariant Hermitian form, reproving a classical theorem of Picard.

RésuméVariation de la cohomologie parabolique et dualité de Poiparé). — On continue
I’étude de la variation de la cohomologie parabolique commencée dans [DW]. En
particulier, on donne des formules pour ’accouplement de Poincaré sur la cohomologie
parabolique, et on calcule la monodromie du systéme de Picard-Euler, confirmant un
résultat classique de Picard.

Introduction

Let x1,...,2, be pairwise distinct points on the Riemann sphere P!(C) and
set U = PYC) — {x1,...,2,}. The Riemann-Hilbert correspondence [Del70]
is an equivalence between the category of ordinary differential equations with
polynomial coefficients and at most regular singularities at the points x; and the
category of local systems of C-vectorspaces on U. The latter are essentially given
by an r-tuple of matrices g¢1,...,9, € GL,(C) satisfying the relation [[,¢; = 1.
The Riemann—Hilbert correspondence associates to a differential equation the
tuple (g;), where g; is the monodromy of a full set of solutions at the singular
point x;.

In [DW] the authors investigated the following situation. Suppose that the set of
points {z1,...,2,} C P}(C) and a local system V with singularities at the z; depend
on a parameter s which varies over the points of a complex manifold S. More precisely,
we consider a relative divisor D C P} of degree r such that for all s € S the fibre
D, C PY(C) consists of r distinct points. Let U := Pk — D denote the complement
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146 M. DETTWEILER & STEFAN WEWERS

and let V be a local system on U. We call V a variation of local systems over the base
space S. The parabolic cohomology of the variation V is the local system on S

W= R'7.(4.)),

where j : U < PL denotes the natural injection and 7 : P{ — S the natural pro-
jection. The fibre of W at a point sg € S is the parabolic cohomology of the local
system V, the restriction of V to the fibre Uy = U N7~ (sp).

A special case of this construction is the middle convolution functor defined by
Katz [Kat97]. Here S = U and so this functor transforms one local system Vg
on S into another one, W. Katz shows that all rigid local systems on S arise
from one-dimensional systems by successive application of middle convolution. This
was further investigated by Dettweiler and Reiter [DRO3]. Another special case
are the generalized hypergeometric systems studied by Lauricella [Lau93], Terada
[Ter73] and Deligne-Mostow [DM86]. Here S is the set of ordered tuples of
pairwise distinct points on P*(C) of the form s = (0,1,00,74,...,7,) and V is a
one-dimensional system on P} with regular singularities at the (moving) points
0,1,00,24,...,2,. In [DW] we gave another example where S is a 17-punctured
Riemann sphere and the local system V has finite monodromy. The resulting local
system W on S does not have finite monodromy and is highly non-rigid. Still, by the
comparison theorem between singular and étale cohomology, W gives rise to ¢-adic
Galois representations, with interesting applications to the regular inverse Galois
problem.

In all these examples, it is a significant fact that the monodromy of the local sys-
tem W (i.e. the action of 71(S) on a fibre of W) can be computed explicitly, i.e. one
can write down matrices g1, ..., g, € GL, which are the images of certain generators
a1,...,a. of m1(S). In the case of the middle convolution this was discovered by
Dettweiler-Reiter [DR00] and Volklein [VO1]. In [DW] it is extended to the more
general situation sketched above. In all earlier papers, the computation of the mon-
odromy is either not explicit (like in [Kat97]) or uses ad hoc methods. In contrast,
the method presented in [DW] is very general and can easily be implemented on a
computer.

It is one matter to compute the monodromy of W explicitly (i.e. to compute the
matrices g;) and another matter to determine its image (i.e. the group generated
by the ¢;). In many cases the image of monodromy is contained in a proper alge-
braic subgroup of GL,,, because W carries an invariant bilinear form induced from
Poincaré duality. To compute the image of monodromy, it is often helpful to know
this form explictly. After a review of the relevant results of [DW] in Section 1,
we give a formula for the Poincaré duality pairing on W in Section 2. Finally, in
Section 3 we illustrate our method in a very classical example: the Picard—Fuler
system.
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VARIATION OF PARABOLIC COHOMOLOGY AND POINCARE DUALITY 147

1. Variation of parabolic cohomology revisited

1.1. Let X be a compact Riemann surface of genus 0 and D C X a subset of
cardinality » > 3. We set U := X — D. There exists a homeomorphism x : X =
P!(C) between X and the Riemann sphere which maps the set D to the real line
PY(R) c P!(C). Such a homeomorphism is called a marking of (X, D).

Having chosen a marking k, we may assume that X = PY(C) and D C P!(R).
Choose a base point x¢g € U lying in the upper half plane. Write D = {z1,...,2,}
with 1 <29 <--- <z, <o0. Fori=1,...,7 — 1 we let 7; denote the open interval
(i, 2541) C UNPLYR); for i = r we set v = v, := (2, 71) (which may include co).
Fori=1,...,r, we let a; € m1(U) be the element represented by a closed loop based
at zo which first intersects v;—1 and then ;. We obtain the following well known
presentation

(1) 7T1(U,!E0)1<041,---,06r|Hai:1>,

which only depends on the marking «.

Let R be a (commutative) ring. A local system of R-modules on U is a locally
constant sheaf ¥V on U with values in the category of free R-modules of finite rank.
Such a local system corresponds to a representation p : m (U,x9) — GL(V'), where
V 1=V, is the stalk of V at z¢ (note that V is a free R-module of finite rank). For
i=1,...,7, set g; := p(e;) € GL(V). Then we have

r
Hgi =1,
i1

and V can also be given by a tuple g = (¢1,...,9-) € GL(V)" satisfying the above
product-one-relation.

Convention 1.1 — Let «, 3 be two elements of 7 (U, x¢), represented by closed path
based at xg. The composition af is (the homotopy class of) the closed path obtained
by first walking along « and then along 3. Moreover, we let GL(V) act on V' from
the right.

1.2. Fix a local system of R-modules V on U as above. Let j : U — X denote
the inclusion. The parabolic cohomology of V is defined as the sheaf cohomology
of j.V, and is written as H'(U,V) = H"(X,j.V). We have natural morphisms
H}(U,V) — Hp(U,V) and H}(U,V) — H"(U,V) (H. denotes cohomology with
compact support). Moreover, the group H"(U,V) is canonically isomorphic to the
group cohomology H"(m1(U,x0),V) and H}(U,V) is the image of the cohomology
with compact support in H'(U,V), see [DW, Prop. 1.1]. Thus, there is a natural
inclusion

Hy(U,V) — H'(m1(U,x0), V).

SOCIETE MATHEMATIQUE DE FRANCE 2006



148 M. DETTWEILER & STEFAN WEWERS

Let 6 : m(U) — V be a cocycle, i.e. we have §(af) = d(a) - p(B) + §(5) (see
Convention 1.1). Set v; := d(ay). It is clear that the tuple (v;) is subject to the
relation

(2) Ul.gQ...gT+U2.gs...gT+...+’UT:0.

By definition, § gives rise to an element in H!(w(U,10),V). We say that § is a
parabolic cocycle if the class of ¢ in H' (w1 (U), V) lies in H}(U,V). By [DW, Lemma
1.2], the cocycle § is parabolic if and only if v; lies in the image of g; — 1, for all i.

Thus, the assignment ¢ — (6(a1),...,d(a)) yields an isomorphism
) HI(U, V) = Wy 1= Hy/ By,

where

(4) Hg :={(v1,...,v;) | v; € Im(g; — 1), relation (2) holds}
and

5) Bgi={(v (g1~ (gr—1)) |0 E V}.

1.3. Let S be a connected complex manifold, and » > 3. An r-configuration over S
consists of a smooth and proper morphism 7 : X — S of complex manifolds together
with a smooth relative divisor D C X such that the following holds. For all s € S the
fiber X, := 771(s) is a compact Riemann surface of genus 0. Moreover, the natural
map D — S is an unramified covering of degree r. Then for all s € S the divisor
D N X consists of r pairwise distinct points x1, ..., z, € Xj;.

Let us fix an r-configuration (X, D) over S. We set U := X — D and denote
by j : U — X the natural inclusion. Also, we write 7 : U — S for the natural
projection. Choose a base point sg € S and set Xg := 7~ 1(s¢) and Do := XqND. Set
Up := Xo— Do = 7 !(s0) and choose a base point xy € Uy. The projection 7 : U — S
is a topological fibration and yields a short exact sequence

(6) 1 — 7T1(UQ,.T0) —_— 771(U,$0) — 7T1(S,SO) — 1.

Let Vy be a local system of R-modules on Uy. A wariation of Vy over S is a
local system V of R-modules on U whose restriction to Uj is identified with Vy. The
parabolic cohomology of a variation V is the higher direct image sheaf

W = R'7.(5.V).
By construction, W is a local system with fibre
W = H,(Uo, Vo).

(Since an r-configuration is locally trivial relative to S, it follows that the formation
of W commutes with arbitrary basechange S’ — S.) Thus W corresponds to a
representation n : w1 (S, so) — GL(W). We call p the monodromy representation on
the parabolic cohomology of Vy (with respect to the variation V).
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VARIATION OF PARABOLIC COHOMOLOGY AND POINCARE DUALITY 149

1.4. Under a mild assumption, the monodromy representation 1 has a very explicit
description in terms of the Artin braid group. We first have to introduce some more
notation. Define

Op_1:={D' cC||D|=r—-1}={DCPC)||D|=r,c0€ D}.

The fundamental group A,_1 := 71 (Or_1, Do) is the Artin braid group on r — 1
strands. Let (1,...,0,—2 be the standard generators, see e.g. [DW, § 2.2.] (The
element (; switches the position of the two points z; and z;y1; the point z; walks
through the lower half plane and x;11 through the upper half plane.) The generators
0; satisfy the following well known relations:

(7) BiBit18i = Bit18:iBi+t1, Bifj = B;B: (for |i —j| > 1).

Let R be a commutative ring and V a free R-module of finite rank. Set

EWV):={g=(g1,---,9-) | g € GL(V), ng. ~1}.

We define a right action of the Artin braid group A,_; on the set &£.(V) by the
following formula:

(8) gﬁi = (g1, ,gi+1a9;r119igi+1, ey Gr)-

One easily checks that this definition is compatible with the relations (7). For g €
Er(V), let Hg be as in (4). For all 5 € A,_1, we define an R-linear isomorphism

®(g,B): Hg — Hgp,
as follows. For the generators 3; we set

(9) (’Ul, ey ’l)r)@(gﬂi) = (1}1, ey UiJrl, ’UiJrl(l — g;_llgigzqu) + vigi+1, ey ’UT).

(i + 1)th entry

For an arbitrary word S in the generators 3;, we define ®(g, 5) using (9) and the
‘cocycle rule’

(10) o(g,0) - ©(g”,0) = (g, 55").
(Our convention is to let linear maps act from the right; therefore, the left hand side
of (9) is the linear map obtained from first applying ®(g, 3) and then ®(g?, 3).) It is
easy to see that ®(g, 3) is well defined and respects the submodule Eg C Hg defined
by (5). Let
P(g,B) : Wy — Wys

denote the induced map on the quotient Wy = Hg/Ej.

Given g € £,(V) and h € GL(V), we define the isomorphism

H, = H,
U(g,h) : ¢ & ,
(v1,...,v.) +—  (v1-h,...,v.-h).

SOCIETE MATHEMATIQUE DE FRANCE 2006



150 M. DETTWEILER & STEFAN WEWERS

where g" := (h7'g1h,...,h7 g,h). It is clear that ¥(g,h) maps Egn to Eg and
therefore induces an isomorphism ¥(g, h) : Wen 5 We.

Note that the computation of the maps ®(g,3) and ¥(g, h) can easily be imple-
mented on a computer.

1.5. Let S be a connected complex manifold, sy € S a base point and (X, D) an -
configuration over S. As before we set U := X — D, Dy := DNX,, and Uy := UNXj,.
Let Vg be a local system of R-modules on Uy and V a variation of Vy over S. Let W
be the parabolic cohomology of the variation V and let 5 : 71 (S, s9) — GL(W) be the
corresponding monodromy representation. In order to describe 7 explicitly, we find it
convenient to make the following assumption on (X, D):

Assumption 1.2

1. X = P4 is the relative projective line over S.

2. The divisor D contains the section oo x S C P§.

3. There exists a point sg € S such that Dy := D N7~ 1(sp) is contained in the
real line P}(R) C P1(C) = 7~ !(s0).

In practise, this assumption is not a big restriction. See [DW] for a more general
setup.

By Assumption 1.2, we can consider Dy as an element of O,_;. Moreover, the
divisor D C P} gives rise to an analytic map S — O,_; which sends sy € S to
Dy € Op_1. We let ¢ : m1(S,80) — Ar—1 denote the induced group homomorphism
and call it the braiding map induced by (X, D).

Forte Rt let Q:={2€C | |2] >t, 2 & (—00,0) }. Since ; is contractible, the
fundamental group m (Up, ;) is well defined for ¢ > 0 and independent of ¢, up to
canonical isomorphism. We write 71 (Up, 00) := m1(Up, Qt). We can define 7 (U, 00)
in a similar fashion, and obtain a short exact sequence

(11) 1 — 1 (Ug,00) — m(U,00) — m1(9,80) — 1.

It is easy to see that the projection 7 : U — S has a continuous section ¢ : S — U
with the following property. For all s € S there exists ¢t > 0 such that the region )
is contained in the fibre U := 771(s) C P}(C) and such that ((s) € €. The section
¢ induces a splitting of the sequence (11), which is actually independent of (. We will
use this splitting to consider 71 (.S, so) as a subgroup of 7 (U, 00).

The variation V corresponds to a group homomorphism p : 71 (U, o0) — GL(V),
where V is a free R-module. Let py denote the restriction of p to m (Up, 00) and x the
restriction to 71 (S, sp). By Part (iii) of Assumption 1.2 and the discussion in § 1.1 we
have a natural ordering x; < --- < z, = oo of the points in Dy, and a natural choice
of a presentation 71 (Up, 00) = (aq,...,a, | [[; i = 1). Therefore, the local system
Vo corresponds to a tuple g = (g1,...,9,) € E(V), with ¢; := po(a;). One checks
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that the homomorphism x : 71(5, so) — GL(V) satisfies the condition
(12) g?() = gx(M "

for all v € m1(S, s9). Conversely, given g € £.(V) and a homomorphism x : 71 (.5, so)
such that (12) holds then there exists a unique variation V which induces the pair

(8 x)-
With these notations one has the following result (see [DW, Thm. 2.5]):

Theorem 1.3 — Let W be the parabolic cohomology of V and 1 : m1(S, so) — GL(Wg)
the corresponding monodromy representation. For all v € m1(S, s9) we have

n(y) = ®(g, (7)) - ¥(g, x(7))-

Thus, in order to compute the monodromy action on the parabolic cohomology of
a local system V, corresponding to a tuple g € &,.(V), we need to know the braiding
map ¢ : (S5, sg) — Ar—1 and the homomorphism x : 71 (5, sg) — GL(V).

Remark 1.4 — Suppose that R is a field and that the local system V is irreducible,
i.e. the subgroup of GL(V') generated by the elements g; acts irreducibly on V. Then
the homomorphism Yy is determined, modulo the scalar action of R* on V', by g and ¢
(via (12)). It follows from Theorem 1.3 that the projective representation (.S, sg) —
PGL(V) associated to the monodromy representation 7 is already determined by (and
can be computed from) g and the braiding map .

The above result is crucial for recent work of the first author [Det05] on the
middle convolution, where the above methods are used to realize special linear groups
as Galois groups over Q(¢).

2. Poincaré duality

Let V be a local system of R-modules on the punctured Riemann sphere U. If V
carries a non-degenerate symmetric (resp. alternating) form, then Poincaré duality
induces on the parabolic cohomology group H;(U, V) a non-degenerate alternating
(resp. symmetric) form. Similarly, if R = C and V carries a Hermitian form, then we
get a Hermitian form on H; (U, V). In this section we derive an explicit expression for
this induced form.

2.1. Let us briefly recall the definition of singular (co)homology with coefficients in
a local system. See e.g. [Spa93| for more details. For ¢ > 0 let A? = |yo,...,y,l
denote the standard g-simplex with vertices yo,...,yq. We will sometimes identify
A with the closed unit interval [0, 1]. Let X be a connected and locally contractible
topological space and V a local system of R-modules on X. For a continuous map
f Y — X we denote by V; the group of global sections of f*V.

In the following discussion, a g-chain will be a function ¢ which assigns to each
singular g-simplex ¢ : A? — X a section ¢(0) € V,. Let AY(X,V) denote the
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152 M. DETTWEILER & STEFAN WEWERS

set of all g-chains, which is made into an R-module in the obvious way. A g-chain
@ is said to have compact support if there exists a compact subset A C X such
that ¢, = 0 whenever supp(c) C X — A. The corresponding R-module is denoted
by AY(X,V). We define coboundary operators d : A4(X,V) — AITY(X,V) and
d:AY(X,V) — AZT(X,V) through the formula

(de)(o) = > (=1)"-p(c®).

0<:i<gq

Here (" is the ith face of o (see [Spa66]) and (c(?)) denotes the unique exten-
sion of ¢(c(?) to an element of V,. Tt is proved in [Spa93] that we have canonical
isomorphisms

(13)  H"(X, V)= H"(A*(X,V),d),  HXX,V)= H"(ALX,V), d),

i.e. singular cohomology agrees with sheaf cohomology. Let xg € X be a base point
and V the fibre of V at zy. Then we also have an isomorphism

(14) HY X, V)= H' (m (X, 20), V).

Let ¢ be a 1-chain with dp = 0. Let « : [0,1] — X be a closed path with base point
xo. By definition, ¢(a) is a global section of a*V. Then a — §(a) := ¢(a)(1) defines
a cocycle § : m1(X,m9) — V, and this cocycle represents the image of ¢ in H*(X,V).

A g-chain ¢ is called finite if ¢(o) = 0 for all but finitely many simplexes o. It is
called locally finite if every point in X has a neighborhood U C X such that (o) =0
for all but finitely many simplexes o contained in U. We denote by A,(X,V) (resp.
by Aéf (X,V)) the R-module of all finite (resp. locally finite) g-chains. For a fixed ¢-
simplex ¢ and a section v € V,, the symbol v® o will denote the g-chain which assigns
v to o and 0 to all ¢’ # 0. Obviously, every finite (resp. locally finite) g-chain can
be written as a finite (resp. possibly infinite) sum > U ® 0. We define boundary
operators 0 : Ag(X,V) — Ay_1(X,V) and 9 : A/ (X, V) — Aflf_l(X, V) through the
formula

I(v®o):= Z (1) v, @ .
0<i<q

We define homology (resp. locally finite homology) with coefficients in V as follows:

Hy(X,V) = Hy(Ad(X,V)), HY (X, V) = H(AY (X, V)).

2.2. Let X :=P!(C) be the Riemann sphere and D = {1, ...,z,} C P}(R) a subset
of r > 3 points lying on the real line, with z1 < --- < x, < oco. Let V be a local
system of R-modules on U = X — D. Choose a base point xg lying in the upper
half plane. Then V corresponds to a tuple g = (g1,...,9,) in GL(V) with [], g; = 1,
where V' := V,,. See § 1.1. Let V* := Hom(V, R) denote the local system dual to V.
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It corresponds to the tuple g* = (g7,...,g}) in GL(V*), where V* is the dual of V
and for each g € GL(V) we let g* € GL(V*) be the unique element such that

(w-g",v-g) = (w,0)

for all w € V* and v € V. Note that V** =V because V is free of finite rank over R.
Let ¢ be a 1-chain with compact support and with coefficients in V*. Let a =
Z# v, ® oy, be a locally finite 1-chain with coefficients in V. By abuse of notation,

we will also write ¢ (resp. a) for its class in H!(U, V*) (resp. in HY (U, V)). The cap
product

phNa:= Z (o), vu)

©w

induces a bilinear pairing
(15) n: H (U V) e HY (U, V) — R.

It is easy to see from the definition that H(l)f (U,V) = 0. Therefore, it follows from
the Universal Coefficient Theorem for cohomology (see e.g. [Spa66, Thm. 5.5.3])
that the pairing (15) is nonsingular on the left, i.e. identifies H!(U,V*) with
Hom (H (U, V), R). The cap product also induces a pairing

(16) Nn:HY U, V) H,(U,V) — R.
(This last pairing may not be non-singular on the left. The reason is that

may not be a free R-module, and so Ext'(Hy(U, V), R) may be nontrivial.) Let
L HY(U,V*) — HY(U,V*) and fy : Hy(U,V) — HY(U,V) denote the canonical
maps. Going back to the definition, one can easily verify the rule

(17) fllo)na=en fi(a).

Let ¢ € HYU,V*) and ¢ € HY(U,V). The cup product ¢ U1 is defined as an
element of H2(U, R), see [Ste43] or [Spa93]. The standard orientation of U yields an
isomorphism H2(U, R) = R. Using this isomorphism, we shall view the cup product
as a bilinear pairing

u:HNUV)® H (U V) — R.

Similarly, one can define the cup product ¢ U v, where ¢ € H*(U,V*) and ¢ €
HY(U,V). Given p € HX(U,V*) and ¢ € H}(U,V), one checks that

(18) FHlo)Up=eU i)
Proposition 2.1(Poincaré duality). — There exist unique isomorphisms of R-modules

p: Hi(U,V) = HNU,V), p: HIU,V) = HY(U,V)
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such that the following holds. If ¢ € HX(U,V*) and a € Hif(U, V) orif p € HY(U,V*)
and a € Hi(U,V) then we have

pNa=pUp(a).
These isomorphisms are compatible with the canonical maps fi and f1, i.e. we have
pofi=flop.
Proof. — See [Ste43] or [Spa93]. O
Corollary 2.2 — The cup product induces a non-degenerate bilinear pairing
. 1 * 1
U:Hy(UV)® H,(UV) — R.

Proof. — Let ¢ € Hy(U,V*) and ¢ € Hy(U,V). Choose ¢ € HL(U,V*) and ¢/ €
HY(U,V) with ¢ = f1(¢') and ¢ = f1(1'). By (18) we have ¢’ Ut = oUy). Therefore,
the expression U1 := ¢’ U1 does not depend on the choice of the lift ¢’ and defines
a bilinear pairing between H}(U,V*) and H}(U,V). By Proposition 2.1 and since the
cap product (15) is non-degenerate on the left, this pairing is also non-degenerate on
the left. But the cup product is alternating (i.e. we have ¢ Uy = —¢ U ¢, where
the right hand side is defined using the identification V** = V), so our pairing is also
non-degenerate on the right. O

For a € HY (U, V*) and b € H,(U, V), the expression

(a,b) == p(a) Up(d)

defines another bilinear pairing H-/ (U, V*) @ H,(U,V) — R. It is shown in [Ste43]
that this pairing can be computed as an ‘intersection product of loaded cycles’, gen-
eralizing the usual intersection product for constant coefficients, as follows. We may
assume that a is represented by a locally finite chain > u vy, ® o, and that b is rep-
resented by a finite chain ) v, ® £, such that for all y, v the 1-simplexes o, and
B, are smooth and intersect each other transversally, in at most finitely many points.
Suppose z is a point where v, intersects (,. Then there exists ¢ty € [0, 1] such that
z = alty) = Blto) and (22, %ho) is a basis of the tangent space of U at z. We
set o(a, B,x) := 1 (resp. (e, B,x) := —1) if this basis is positively (resp. negatively)
oriented. Furthermore, we let cy, » (resp. B,.,) be the restriction of a (resp. of ) to
the interval [0,¢o]. Then we have

(19) (@,8) = 3" alap, Bur) - ((v7) 0 ).

I

2.3. Let V®V — R be a non-degenerate symmetric (resp. alternating) bilinear
form, corresponding to an injective homomorphism « : V — V* with k* = k (resp.
K* = —k). We denote the induced map H}(U,V) — H,(U,V*) by & as well. Then

(0, 9) = r(p) U

defines a non-degenerate alternating (resp. symmetric) form on H} (U, V).
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Similarly, suppose that R = C and let V be equipped with a non-degenerate Her-
mitian form, corresponding to an isomorphism & : V = V*. Then the pairing

(20) (0, 9) = =i~ (k(P) U )

is a nondegenerate Hermitian form on Hj (U, V) (we identify H} (U, V) with the com-
plex conjugate of the vector space H;(U, V) in the obvious way).

Suppose that the Hermitian form on V is positive definite. Then we can express
the signature of the form (20) in terms of the tuple g, as follows. For i =1,...,r, let

(21) gi ~
(6 7R

be a diagonalization of g; € GL(V). Since the g; are unitary, the eigenvalues «; ; have
absolute value one and can be uniquely written in the form «; ; = exp(2mip; ;), with
0<p; <1l Set fi;; :=1— p;;if p;; > 0 and fi; ; := 0 otherwise.

Theorem 2.3 — Suppose that V is equipped with a positive definite Hermitian form
and that H°(U,V) = 0. Then the Hermitian form (20) on H}(U,V) has signature

( (Z ,um) —dim¢ V, (Z ﬂ@j) — dim¢ V)
i,j 0,J

Proof. — If dim¢ V' = 1, this formula is proved in [DM86, § 2]. The general case is
proved in a similar manner. We will therefore only sketch the argument.

Let Q*(V) : O(V) — Q'(V) be the holomorphic V-valued de Rham complex on
U (|[DMS86, § 2.7]). Let j7"Q*(V) denote the subcomplex of 7,.2*(V) consisting of
sections which are meromorphic at all the singular points. Then we have

H'Y(U,V) = H'(X,5/"Q*(V)) = H'D(X,j"Q%(V)).

We define a subbundle £ of j7*O(V) as follows. Fix an index i and let U; C X be
a disk-like neighborhood of x; which does not contain any other singular point. Set
Uy :=U; — {z;}. We obtain a decomposition

vV

up = ;L

into local systems of rank one, corresponding to the diagonalization (21) of the mon-
odromy matrix g;. In the notation of [DM86, § 2.11], we set

Elv, = @;O0(pi g - i) (Lj).

In other words: a holomorphic section of £ on U; can be written as ;27 fjv;,
where z is a local parameter on U; vanishing at x;, f; is a holomorphic function and
vj is a (multivalued) section of L; on (the universal cover of) Uf. It is clear that
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€ is a vectorbundle of rank dim¢ V. Moreover, it is easy to see (compare [DM86],
Proposition 2.11.1) that

(22) deg€ = 3 iy
4,7

In the same manner we define a subbundle & of jmQ! (V). It is clear that
(23) degé’ = Zﬂi,j,
23

where [i; ; is defined as above.
We define the subspace H0(U, V) of H'(U,V) as the image of the map

HY(X,E® Q) — HY(X,j7Q°(V)) = H' (U, V).
A local computation shows that H'O(U,V) is actually contained in H}(U,V) =
H'(X,j.V). Let w be a global section of £ ® Q1 and let [w] denote the corresponding
class in H19(U,V). The pairing (20) applied to [w] is then given by the following
integral

(), [w]) = —i-/me,

see [DM86, § 2.18]. Here the integrand is defined as follows: if we write locally w =

va, where v is a section of V and « is a holomorphic one-form, then wA® := ||v||?aAda.

The definition of £ ensures that the above integral converges. It follows that the
pairing (20) is positive definite on H**(U, V) and that H'°(U,V) = H(X, € ® Q%).
By Riemann—Roch and (22) we have
dim H'(U,V) > deg(€ ® Q%) + rank(€ ® Q%)
(24) > Z Hij — dim V.
0,

We define H%!(U, V) as the complex conjugate of H1:°(U, V), considered as a sub-
space of H}(U,V). Note that the latter space is the image of H*(X,& ® QY), and
we can represent an element in H%!(U, V) as an antiholomorphic form with values in
&’. The same reasoning as above shows that the pairing (20) is negative definite on
H%Y(U,V) and that H%(U,V) is equal to the complex conjugate of H°(X, &’ @ QY).
Furthermore, we have

(25) dim H*' (U, V) = deg(€' @ Q%) + rank(&’ @ Q%) > > fi;; — dim V.
i,J

Together with (24) we get the inequality
dim H) (U, V) > dim H"°(U,V) + dim H*"(U, V)
> (i + fiiy) — 2dim V
2]
=(r—2)dimV — ZdimKer(gi —1).

K2

SEMINAIRES & CONGRES 13



VARIATION OF PARABOLIC COHOMOLOGY AND POINCARE DUALITY 157

But according to [DW, Remark 1.3], this inequality is an equality. It follows that
(24) and (25) are equalities as well. The theorem is now a consequence of the fact
pointed out before that the pairing (20) is positive definite on H°(U, V) and negative
definite on H%*(U, V). O

Remark 2.4 — The authors expect several applications of the above results, such as
the construction of totally real Galois representations of classical groups (in combina-
tion with the results of [Det05]). Another possible application would be to find new
examples of differential equations with a full set of algebraic solutions, in the spirit of
the work of Beukers and Heckman [BH&9].

2.4. We are interested in an explicit expression for the pairing of Corollary 2.2. We
use the notation introduced at the beginning of § 2.2, with the following modification.
By ~; we now denote a homeomorphism between the open unit interval (0,1) and the
open interval (z;,x;11). We assume that v; extends to a path ¥; : [0,1] — P}(R) from
z; to r;41. We denote by Ut C PY(C) (resp. U™) the upper (resp. the lower) half
plane and by U™ (resp. U™) its closure inside U = P1(C) — {z1,...,x,}. Since U™ is
simply connected and contains the base point xg, an element of V extends uniquely
to a section of V over UT. We may therefore identify V with V(U™T) and with the
stalk of V at any point € U™.

Choose a sequence of numbers ¢,, n € Z, with 0 < e, < ept1 < 1 such that
€, — 0 forn — —oco and ¢, — 1 for n — oo. Let ’yi(") : [0,1] — U be the path
an)(t) = vi(ent + €n—1(1 —t)). Let wi,...,w, € V. Since supp(vy;) C U*, it makes
sense to define

Wi @i 1= Z wy ®%-(n)-

This is a locally finite 1-chain. Set

r
c:= Z w; @ Y;-
i=1

Note that 8(c) = 0, so ¢ represents a class in H. (U, V).

Lemma 2.5

1. The image of ¢ under the Poincaré isomorphism Hif(U, V)= HYU,V) is rep-
resented by the unique cocycle § : 71 (U, z¢) — V with

6(a;) = w; — w1 - gi-

2. The cocycle ¢ in (i) is parabolic if and only if there exist elements u; € V with
W; — Wi—1 = U; * (gl - 1), fOT all 1.

Proof. — For a path «: [0,1] — U in U, consider the following conditions:

(a) The support of « is contained either in Ut or in U~.
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o
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77777 Yi—1 Vi o
T U i1
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FI1GURE 1.

(b) We have a(0) € U™, a(1) € U~ and « intersects ~; transversally in a unique
point.
(c) We have a(0) € U™, a(l) € U and « intersects v; transversally in a unique
point.
In Case (b) (resp. in Case (c)) we identify V, with V' via the stalk V() (resp. via
Va@)- Let ¢ € C1(U,V) be the unique cocycle such that

0, if o is as in Case (a)
ola) = —w;, if ais as in Case (b)
we , if ais as in Case (c).

(To show the existence and uniqueness of ¢, choose a triangulation of U in which all
edges satisfy Condition (a), (b) or (c¢). Then use simplicial approximation.) We claim
that ¢ represents the image of the cycle ¢ under the Poincaré isomorphism. Indeed,
this follows from the definition of the Poincaré isomorphism, as it is given in [Ste43].
Write a; = oo/, with (1) = o (0) € U~. Using the fact that ¢ is a cocycle we get

271
r—1
plai) = p(og) + p(af)™ = —wi1 +wi-g; .

Therefore we have 6(c;) = ¢(;) - gi = w; — w;—1 - g;. See Figure 1. This proves (i).
By Section 1.1, the cocycle 4 is parabolic if and only if v; lies in the image of g; — 1.
So (ii) follows from (i) by a simple manipulation. O

Theorem 2.6 — Let ¢ € H)(U,V*) and ¢ € H}(U,V), represented by cocycles 6* :
m(U,x0) = V* and § : m (U, x0) — V. Set v; :=d(a;) and v} = §*(a;). If we choose
v €V such that v} - (g; — 1) = v; (see Lemma 2.5), then we have

T i—1
U= ({00l + Y (0G5 gioa(gr —1),00)).
i=1 j=1
Proof. — Let wy := vy, w] :=v] and
w; = v; + Wi—1 + Gi, wi =vf +wi_q - gf
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By
FIGURE 2.
fori=2,...,r. By Lemma 2.5, we can choose u; € V with w; — w;—1 = u; - (g; — 1),
for i =1,...,r. The claim will follow from the following formula:
(26) U =D (W] —w_y,ui—wi_1).

i=1
To prove Equation (26), suppose § is parabolic, and choose u; € V such that w; —
wi—1 =u; - (g —1). Let D; C X be a closed disk containing x; but none of the other
points x;, j # i. We may assume that the boundary of D; intersects v;—; in the point
%-(2)1(1) but nowhere else, and that D; intersects ~; in the point 71-(0)(0) but nowhere
else. Set Di+ =D, NU* and D :=D;n U~. Let uj‘ = u; — w;_1, considered as
a section of V over Dj via extension over the whole upper half plane U™T. It makes
sense to define the locally finite chain

u?‘@D;" ::Zu;"@)o,
o

where o runs over all 2-simplexes of a triangulation of D;". (Note that x; ¢ D;, so
this triangulation cannot be finite.) Similarly, let u; € V- denote the section of V
over D obtained from u; € V' by continuation along a palth which enters U~ from
U™ by crossing the path ;_1; define u; ® D; as before. Let

d:=c+0uf ®Df +u; ®D;).
It is easy to check that ¢’ is homologous to the cocycle

=Y (w o +uf @B uy @B,

3

where 3/ (resp. 3;) is the path from 71-(0)(0) to %-(9)1(1) (resp. from 71-(9)1(1) to 7.(0)(0))
running along the upper (resp. lower) part of the boundary of D;. See Figure 2. Note
that ¢” is finite and that, by construction, the image of ¢” under the canonical map
fi s Hy(U,V) — HY (U, V) is equal to the class of ¢. Let ¢/ € HY(U,V) denote
the image of ¢ under the Poincaré isomorphism H;(U,V) = H(U,V). The last
statement of Proposition 2.1 shows that ¢’ is a lift of ¢ € H} (U, V).

Let ¢* := ), w; ® v; € C1(U,V*). By (i) and the choice of wy, the image of c¢*
under the Poincaré isomorphism H{f(U, V*) =2 HY(U,V*) is equal to . By definition,
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we have p Uy = (¢*, ). To compute this intersection number, we have to replace ¢*
by a homologous cycle which intersects the support of ¢’ at most transversally. For
instance, we can deform the open paths «; into open paths ; which lie entirely in the
upper half plane. See Figure 2. It follows from (19) that
(C*acu) = Z <w;’ll’u:r> - <w:<au;r> = Z (Wi —wi_y,u; — wi-1).
i i

This finishes the proof of (26). The formula in (iv) follows from (26) from a straight-
forward computation, expressing w; and w; in terms of v; and v;. o

Remark 2.7 — In the somewhat different setup, a similar formula as in Theorem 2.6
can be found in [VO1, § 1.2.3].

3. The monodromy of the Picard—Euler system

Let
S:={(s,t)€C? | 5,t #0,1, s #t},
and let X := P} denote the relative projective line over S. The equation
(27) yP=a(r —1)(z —s)(z —1)

defines a finite Galois cover f : Y — X of smooth projective curves over S, tamely
ramified along the divisor D := {0,1,s,t,00} C X. The curve Y is called the Picard
curve. Let G denote the Galois group of f, which is cyclic of order 3. The equation
o*y = x(o) -y for o € G defines an injective character x : G — C*. As we will see
below, the x-eigenspace of the cohomology of Y gives rise to a local system on S whose
associated system of differential equations is known as the Picard—FEuler system.

We fix a generator o of G and set w := x(0). Let K := Q(w) be the quadratic
extension of Q generated by w and Og = Z[w] its ring of integers. The family of
G-covers f : Y — X together with the character x of G corresponds to a local system
of Og-modules on U := X — D. Set sg := (2,3) € S and let Vy denote the restriction
of V to the fibre Uy = Aé —{0,1,2,3} of U — S over sg. We consider V as a variation
of Vy over S. Let W denote the parabolic cohomology of this variation; it is a local
system of Ox-modules of rank three, see [DW, Rem. 1.4]. Let x’ : G — C* denote
the conjugate character to x and W’ the parabolic cohomology of the variation of
local systems V' corresponding to the G-cover f and the character x’'. We write Wc
for the local system of C-vectorspaces W®C. The maps 7y : Y — Sandnx : X — S
denote the natural projections.

Proposition 3.1 — We have a canonical isomorphism of local systems
R'my .C2We © W

This isomorphism identifies the fibres of Wec with the x-eigenspace of the singular
cohomology of the Picard curves of the family f.
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Proof. — The group G has a natural left action on the sheaf f,C. We have a canonical
isomorphism of sheaves on X

f*g =Co j*V(C S j*vla

which identifies j.Vc, fibre by fibre, with the y-eigenspace of f.C. Now the Leray
spectral sequence for the composition 1y = 7x o f gives isomorphisms of sheaves on S

Rlﬂ.Y,*Q = Rlﬂ-X,*(f*Q) = W(C (&) Wé‘:

Note that R'mx .C = 0 because the genus of X is zero. Since the formation of Rlmry .
commutes with the G-action, the proposition follows. O

The comparison theorem between singular and deRham cohomology identifies
R17TY7*Q with the local system of horizontal sections of the relative deRham co-
homology module RéRﬂy7*Oy, with respect to the Gauss-Manin connection. The
x-eigenspace of RcllRﬂ'y,*Oy gives rise to a Fuchsian system known as the Picard—
Euler system. In more classical terms, the Picard—Euler system is a set of three
explicit partial differential equations in s and ¢ of which the period integrals

B /” da
o Y —1)(z—s)(z—1)
(with a,b € {0,1,s,t,00}) are a solution. See [Pic83], [Hol86], [Hol95]. It follows

from Proposition 3.1 that the monodromy of the Picard—FEuler system can be identified
with the representation 7 : m1(S) — GL3(Ok) corresponding to the local system W.

I(s,t;a,b) :

Theorem 3.2Picard). — For suitable generators v1,...,7s of the fundamental group
m1(S), the matrices n(y1),...,n(ys) are equal to

w? 0 1—-w w? 0 1-—w? 1 0 0
w—w? 1 w?-1],[1-w? 1 w?-1], 0 w wr—1],
0 0 1 0 0 1 0 w?—-1 2w
w? 0 0 wr o w—-w? 0
0 1 0 |- 0 1 0
0 0 1 l-w w?—-1 1

The invariant Hermitian form (induced by Poincaré duality, see Corollary 2.2) is
given by the matriz

a 0 0
0 0 a 9
0 a O
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* g
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FiGURE 3. The braids v1,...,7s

where a = £(w? —w).

Proof. — The divisor D C Pk satisfies Assumption 1.2. Let ¢ : m(S,s0) — A4 be
the associated braiding map. Using standard methods (see e.g. [V01] and [DR00]),
or by staring at Figure 3, one can show that the image of ¢ is generated by the five
braids

Bga 636%53_1’ 53525%@2_1@0,_1; ﬁ%a 626%62_1

It is clear that these five braids can be realized as the image under the map ¢ of
generators 1, ...,7s € m1(S, S0).

Considering the oo-section as a ‘tangential base point’ for the fibration U — S as
in § 1.5, we obtain a section 71(S) — 71 (U). We use this section to identify 7y (.59)
with a subgroup of 71 (U). Let a1, ...,as be the standard generators of m (Up). Let
p:m(U) — K* denote the representation corresponding to the G-cover f : Y — X
and the character x : G — K*, and pg : m1(Uy) — G its restriction to the fibre above
so. Using (27) one checks that pg corresponds to the tuple g = (w,w,w,w,w?), i.e.
that po(c;) = gi- Also, since the leading coefficient of the right hand side of (27) is
one, the restriction of p to m1(S) is trivial. Hence, by Theorem 1.3, we have

n(vi) = (g, »(7i))-

A straightforward computation, using (9) and the cocycle rule (10), gives the value
of n(v;) (in form of a three-by-three matrix depending on the choice of a basis of
Wg). For this computation, it is convenient to take the classes of (1,0,0,0, —w?),
(0,1,0,0,—w) and (0,0,1,0,—1) as a basis. In order to obtain the 5 matrices stated
in the theorem, one has to use a different basis, i.e. conjugate with the matrix

0 —w-1 —w

B=|lw+1 w+1 w+l
1 0 0

The claim on the Hermitian form follows from Theorem 2.6 by another straightforward
computation. O
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Remark 3.3 — Theorem 3.2 is due to Picard, see [Pic83, p. 125] and [Pic84, p. 181].
He obtains exactly the matrices given above, but he does not list all of the correspond-
ing braids. A similar list as above is obtained in [Hol86] using different methods.

Remark 3.4 — It is obvious from Theorem 3.2 that the Hermitian form on W has
signature (1,2) or (2,1), depending on the choice of the character x. This confirms
Theorem 2.3 in this special case.
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