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PSEUDODIFFERENTIAL PARAMETRICES OF INFINITE

ORDER FOR SG-HYPERBOLIC PROBLEMS

Abstract. In this paper we consider a class of symbols of infinite order
and develop a global calculus for the related pseudodifferential operators
in the functional frame of the Gelfand-Shilov spaces of type S. As an ap-
plication, we construct a parametrix for the Cauchy problem associated to
an operator with principal part Dm

t and lower order terms given by SG-
operators, cf. Introduction. We do not assume here Levi conditions on the
lower order terms. Giving initial data in Gelfand-Shilov spaces, we are
able to prove the well-posedness for the problem and to give an explicit
expression of the solution.

1. Introduction

In this work, we study a class of pseudodifferential operators of infinite order, namely
with symbol p(x, ξ) satisfying, for every ε > 0, exponential estimates of the form

(1) sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|(α!)−µ(β!)−ν〈ξ 〉|α|〈x〉|β|·

· exp
[
−ε(|x | 1

θ + |ξ | 1
θ )
] ∣∣∣Dα

ξ Dβ
x p(x, ξ)

∣∣∣ < +∞

where 〈ξ 〉 = (1+|ξ |2) 1
2 , 〈x〉 = (1+|x |2) 1

2 , for someµ, ν, θ ∈ R such thatµ > 1, ν >
1, θ ≥ µ + ν − 1 and C positive constant independent of α, β. Operators of infinite
order were studied by L. Boutet de Monvel [2] in the analytic class and by L. Zanghirati
[32] in the Gevrey classes Gθ (�),� ⊂ R

n, θ > 1. In our work we develop a global
calculus for the symbols defined in (1). The functional frame is given by the Gelfand-
Shilov space Sθ (Rn), θ > 1 (denoted by Sθθ (R

n) in [10]). This space makes part of a
larger class of spaces of functions denoted by Sνµ(R

n), µ > 0, ν > 0, µ+ ν ≥ 1.More
precisely, Sνµ(R

n) is defined as the space of all functions u ∈ C∞(Rn) satisfying the
following condition: there exist positive constants A, B such that

sup
α,β∈Nn

sup
x∈Rn

A−|α|B−|β|(α!)−µ(β!)−ν
∣∣∣xαu(β)(x)

∣∣∣ < +∞.

Such spaces and the corresponding spaces of ultradistributions have been recently stud-
ied in different contexts by A. Avantaggiati [1], by S. Pilipovic [24] following the ap-
proach applied by H. Komatsu [17], [18] to the theory of ultradistributions and by S.
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Pilipovic and N. Teofanov [25], [26] in the theory of modulation spaces. The space
Sθ (Rn) which we will consider in the paper corresponds to the case µ = ν = θ and
it can be regarded as a global version of the Gevrey classes Gθ (Rn), θ > 1. Sections
2,3 are devoted to the presentation of the calculus. In Section 4, as an application we
construct a parametrix for the Cauchy problem

(2)

{
P(t, x, Dt , Dx )u = f (t, x) (t, x) ∈ [0, T ] × Rn

Dk
t u(s, x) = gk(x) x ∈ Rn, k = 0, ...,m − 1

T > 0, s ∈ [0, T ], where P(t, x, Dt , Dx ) is a weakly hyperbolic operator with one
constant multiple characteristic of the form

(3) P(t, x, Dt , Dx ) = Dm
t +

m∑

j=1

a j (t, x, Dx )D
m− j
t .

For every fixed t ∈ [0, T ], we assume a j (t, x, Dx), j = 1, ...,m are SG-
pseudodifferential operators of order (pj, q j), with p, q ∈ [0, 1[, p + q < 1 i.e. their
symbols a j (t, x, ξ) satisfy estimates of the form

(4) sup
t∈[0,T ]

∣∣∣Dα
ξ Dβ

x a j(t, x, ξ)
∣∣∣ ≤ C |α|+|β|+1(α!)µ(β!)ν〈ξ 〉pj−|α|〈x〉q j−|β|

for all (x, ξ) ∈ R2n, with µ, ν,C as in (1). We also assume continuity of a j(t, x, ξ)
with respect to t ∈ [0, T ]. SG-operators were studied by H.O. Cordes [7], C. Parenti
[23], E. Schrohe [29] and applied in different contexts to PDEs. Recently, S. Coriasco
and L. Rodino [9] treated their application to the solution of a global Cauchy problem
for hyperbolic systems or equations with constant multiplicities; under assumptions
of Levi type, namely p = 0, q = 0 for (3), (4), they obtained well-posedness in
the Schwartz spaces S(Rn),S ′(Rn). In our paper, arguing under the weaker assump-
tion 0 ≤ p + q < 1, we follow a different approach based on the construction of a
parametrix of infinite order. This method has been applied by L. Cattabriga and D.
Mari [4], L. Cattabriga and L. Zanghirati [6] to the solution of a similar problem in the
local context of the Gevrey spaces Gθ (�),� ⊂ Rn . In Section 5 of our work we start
from initial data in Sθ (Rn), and find a global solution in Cm ([0, T ], Sθ (Rn)) , with
p + q < 1

θ
≤ 1

µ+ν−1 . Analogous results are obtained replacing Sθ (Rn) with its dual.
We emphasize that our pseudodifferential approach, beside giving well-posedness, pro-
vides an explicit expression for the solution. Moreover, it seems possible to extend the
present techniques to global Fourier integral operators, which would allow to treat gen-
eral SG-hyperbolic equations with constant multiplicities. Let us give an example rep-
resentative of our results in the Cauchy problem, showing the sharpness of the bound
1
θ
> p + q in the frame of the Gelfand-Shilov spaces.

EXAMPLE 1. Let p, q ∈ [0, 1[ such that p + q < 1 and consider the problem

(5)





Dm
t u − xqm D pm

x u = 0 (t, x) ∈ [0, T ] × R

u(0, x) = c0(x) x ∈ R

D j
t u(0, x) = 0 j = 1, ...,m − 1
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where pm, qm are assumed to be positive integers, c0(x) ∈ C∞(R) and it satisfies the
estimate

(6) sup
x∈R

∣∣xαDβ
x c0(x)

∣∣ ≤ Cα+β+1(α!β!)θ ,
1

θ
> p + q,

i.e. c0(x) ∈ Sθ (R).
Under these hypotheses, it is easy to verify that the solution of the problem (5) is given
by

u(t, x) =
∞∑

j=0

(xqm D pm
x ) j c0(x)

( jm)!
t jm

which is well defined thanks to the condition (6) and belongs to Sθ (R) for every fixed
t . We remark that in the critical case 1

θ
= p + q the solution is defined only for t

belonging to a bounded interval depending on the initial datum c0 ∈ S 1
(p+q)

(R). We

also emphasize that from the expression of the solution we have that the solvability of
the problem is guaranteed when c0(x) satisfies the weaker condition

sup
x∈R

∣∣∣(xqm D pm
x ) j c0(x)

∣∣∣ ≤ C j+1( j !)(p+q)m,

which would characterize a function space larger than Sθ (R),
1
θ

≥ p + q. In the sequel
we shall prefer to keep data in the Gelfand spaces Sθ (Rn), because well established
in literature and particularly suitable to construct a global pseudo-differential calculus.
Let us recall some basic results concerning the space Sθ (Rn).We refer to [10],[11],[20]
for proofs and details.

Let θ > 1 and A, B be positive integers and denote by Sθ,A,B(Rn) the space of all
functions u in C∞(Rn) such that

sup
α,β∈Nn

sup
x∈Rn

A−|α|B−|β|(α!β!)−θ
∣∣∣xαu(β)(x)

∣∣∣ < +∞.

We may write
Sθ (R

n) =
⋃

A,B∈Z+

Sθ,A,B(R
n).

PROPOSITION 1. Sθ,A,B(Rn) is a Banach space endowed with the norm

(7) ‖u‖A,B = sup
α,β∈Nn

sup
x∈Rn

A−|α|B−|β|(α!β!)−θ |xαu(β)(x)|.

By Proposition 1, we can give to Sθ (Rn) the topology of inductive limit of an
increasing sequence of Banach spaces. We remark that this topology is equivalent to the
one given in [10] and that all the statements of this section hold in both the frames. Let
us give a characterization of the space Sθ (Rn), providing another equivalent topology
to Sθ (Rn), cf. the proof of Theorem 2 below.
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PROPOSITION 2. Sθ (Rn) is the space of all functions u ∈ C∞(Rn) such that

sup
β∈Nn

sup
x∈Rn

B−|β|(β!)−θea|x |
1
θ |Dβ

x u(x)| < +∞

for some positive a, B.

PROPOSITION 3. The following statements hold:
(i) Sθ (Rn) is closed under the differentiation;
(ii) Gθ

0(R
n) ⊂ Sθ (Rn) ⊂ Gθ (Rn),

where Gθ (Rn) is the space of the Gevrey functions of order θ and Gθ
0(R

n) is the space
of all functions of Gθ (Rn) with compact support.

We shall denote by S′
θ (R

n) the dual space, i.e. the space of all linear continuous
forms on Sθ (Rn). From (ii) of Proposition 3, we deduce the following important result.

THEOREM 1. There exists an isomorphism between L(Sθ (Rn), S′
θ (R

n)), space of
all linear continuous maps from Sθ (Rn) to S′

θ (R
n), and S′

θ (R
2n), which associates to

every T ∈ L(Sθ (Rn), S′
θ (R

n)) a distribution KT ∈ S′
θ (R

2n) such that

〈T u, v〉 = 〈KT , v ⊗ u〉

for every u, v ∈ Sθ (Rn). The distribution KT is called the kernel of T .

Finally we give a result concerning the action of the Fourier transformation on
Sθ (Rn).

PROPOSITION 4. The Fourier transformation is an automorphism of Sθ (Rn) and
it extends to an automorphism of S′

θ (R
n).

2. Symbol classes and operators.

Let µ, ν, θ be real numbers such that µ > 1, ν > 1, θ ≥ max{µ, ν}.

DEFINITION 1. For every C > 0 we denote by 0∞
µνθ (R

2n; C) the Fréchet space of

all functions p(x, ξ) ∈ C∞(R2n) satisfying the following condition: for every ε > 0

‖p‖ε,C = sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|(α!)−µ(β!)−ν〈ξ 〉|α|〈x〉|β|·

· exp
[
−ε(|x | 1

θ + |ξ | 1
θ )
] ∣∣∣Dα

ξ Dβ
x p(x, ξ)

∣∣∣ < +∞

endowed with the topology defined by the seminorms ‖ · ‖ε,C , for ε > 0. We set

0∞
µνθ (R

2n) = lim
−→

C→+∞
0∞
µνθ (R

2n; C)

with the topology of inductive limit of an increasing sequence of Fréchet spaces.
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It is easy to verify that 0∞
µνθ (R

2n) is closed under the differentiation and the sum
and the product of its elements. In the sequel, we will also consider SG-symbols of
finite order which are defined as follows, cf. Introduction.
Let m1,m2 ∈ R and let µ, ν be positive real numbers such that µ > 1, ν > 1.

DEFINITION 2. For C > 0, we denote by 0m1,m2
µν (R2n; C) the Banach space of all

functions p ∈ C∞(R2n) such that

‖p‖C = sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|(α!)−µ(β!)−ν〈ξ 〉−m1+|α|〈x〉−m2+|β|·

·
∣∣∣Dα

ξ Dβ
x p(x, ξ)

∣∣∣ < +∞

endowed with the norm ‖ · ‖C and define

0m1,m2
µν (R2n) = lim

−→
C→+∞

0m1,m2
µν (R2n; C).

We have obviously
0m1,m2
µν (R2n) ⊂ 0∞

µνθ (R
2n)

for all θ ≥ max{µ, ν} and for all m1,m2 ∈ R.

Given a symbol p ∈ 0∞
µνθ (R

2n), we consider the associated pseudodifferential
operator

(8) Pu(x) = (2π)−n
∫

Rn
ei〈x,ξ 〉 p(x, ξ)û(ξ)dξ, u ∈ Sθ (R

n).

The integral (8) is absolutely convergent in view of Propositions 2 and 4.

LEMMA 1. Given t > 0, let

mt(η) =
∞∑

j=0

η j

( j !)t
, η ≥ 0.

Then, for every ε > 0 there exists a constant C = C(t, ε) > 0 such that

(9) C−1e(t−ε)η
1
t ≤ mt (η) ≤ Ce(t+ε)η

1
t

for every η ≥ 0.

See [16] for the proof.

In the following we shall denote for t, ζ > 0, x ∈ R
n,

mt,ζ (x) = mt(ζ 〈x〉2).

THEOREM 2. The map (p, u) → Pu defined by (8) is a bilinear and separately
continuous map from 0∞

µνθ (R
2n) × Sθ (Rn) to Sθ (Rn) and it extends to a bilinear and

separately continuous map from 0∞
µνθ (R

2n)× S′
θ (R

n) to S′
θ (R

n).
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Proof. Let us fix p ∈ 0∞
µνθ (R

2n) and show that u → Pu is continuous from Sθ (Rn) to
itself. Basing on Proposition 2, we fix B ∈ Z+, a > 0 and consider the bounded set F
determined by C1 > 0

sup
x∈Rn

ea|x |
1
θ |u(β)(x)| ≤ C1 B |β|(β!)θ

for all u ∈ F, β ∈ Nn . To prove the continuity with respect to u, we need to show that
there exist A1, B1 ∈ N \ {0} and a positive constant C2 such that

sup
x∈Rn

∣∣xαDβ
x Pu(x)

∣∣ ≤ C2 A|α|
1 B |β|

1 (α!β!)θ

for all α, β ∈ Nn and for all u ∈ F. We observe that for every ζ ∈ R+,

1

m2θ,ζ (x)

∞∑

j=0

ζ j

( j !)2θ
(1 −1ξ )

j ei〈x,ξ 〉 = ei〈x,ξ 〉.

Thus, fixed α, β ∈ Nn, we have

xαDβ
x Pu(x) = (2π)−nxα

∑

β1+β2=β

β!

β1!β2!

∫

Rn
ei〈x,ξ 〉ξβ1 Dβ2

x p(x, ξ)û(ξ)dξ =

(2π)−n xα

m2θ,ζ (x)

∑

β1+β2=β

β!

β1!β2!

∞∑

j=0

ζ j

( j !)2θ

∫

Rn
ei〈x,ξ 〉(1−1ξ ) j [ξβ1 Dβ2

x p(x, ξ)û(ξ)
]

dξ.

By Proposition 4, there exist a, B,C > 0 independent of u ∈ F and for all ε > 0 there
exists Cε > 0 such that, for ζ < 1

C

∣∣xαDβ
x Pu(x)

∣∣ ≤ Cε
|x ||α|

m2θ,ζ (x)
eε|x |

1
θ

∞∑

j=0

(Cζ ) j ·

·
∑

β1+β2=β

β!

β1!β2!
B

|β2|
(β2!)ν

∫

Rn
|ξ ||β1|e−(a−ε)|ξ |

1
θ dξ.

Hence, for ε sufficiently small,using Lemma 1 and standard estimates for binomial and
factorial coefficients, we conclude that there exist C2, A1, B1 > 0 depending only on
ζ, θ, ε such that

sup
x∈Rn

∣∣xαDβ
x Pu(x)

∣∣ ≤ C2 A|α|
1 B |β|

1 (α!β!)θ .

This concludes the first part of the proof. To prove the second part we observe that, for
u, v ∈ Sθ (Rn), ∫

Rn
Pu(x)v(x)dx =

∫

Rn
û(ξ)pv(ξ)dξ
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where

pv(ξ) = (2π)−n
∫

Rn
ei〈x,ξ 〉 p(x, ξ)v(x)dx

Furthermore, by the same argument of the first part of the proof, it follows that the map
v → pv is linear and continuous from Sθ (Rn) to itself. Then, by Proposition 4 we can
define, for u ∈ S′

θ (R
n),

Pu(v) = û(pv), v ∈ Sθ (R
n).

This is a linear continuous map from S′
θ (R

n) to itself and it extends P. The same
argument used before allows to prove the continuity of the map

p → Pu

for a fixed u in Sθ (Rn) or in its dual.

We denote by O PS∞
µνθ (R

n) the space of all operators of the form (8) defined by a

symbol of 0∞
µνθ (R

2n).

As a consequence of Theorems 1 and 2, there exists a unique distribution K in S ′
θ (R

2n)

such that

〈K , v ⊗ u〉 = (2π)−n
∫ ∫ ∫

ei〈x−y,ξ 〉 p(x, ξ)u(y)v(x)dydξdx, u, v ∈ Sθ (R
n).

We may write formally

(10) K (x, y) = (2π)−n
∫

Rn
ei〈x−y,ξ 〉 p(x, ξ)dξ.

THEOREM 3. Let p ∈ 0∞
µνθ (R

2n). For k ∈ (0, 1), define:

�k = {(x, y) ∈ R
2n : |x − y| > k〈x〉}.

Then the kernel K of P defined by (10) is in C∞(�k) and there exist positive constants
C, a depending on k such that

(11)
∣∣Dβ

x Dγ
y K (x, y)

∣∣ ≤ C |β|+|γ |+1(β!γ !)θ exp
[
−a(|x | 1

θ + |y| 1
θ )
]

for every (x, y) ∈ �k and for every β, γ ∈ N
n .

LEMMA 2. For any given R > 0, we may find a sequence ψN (ξ) ∈ C∞
0 (R

n),

N = 0, 1, 2, ... such that
∞∑

N=0
ψN = 1 in R

n,

suppψ0 ⊂ {ξ : 〈ξ 〉 ≤ 3R}

suppψN ⊂ {ξ : 2RNµ ≤ 〈ξ 〉 ≤ 3R(N + 1)µ}, N = 1, 2, ...
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and ∣∣∣Dα
ξ ψN (ξ)

∣∣∣ ≤ C |α|+1(α!)µ
[
R sup(Nµ, 1)

]−|α|

for every α ∈ Nn and for every ξ ∈ Rn.

Proof. Let φ ∈ C∞
0 (R

n) such that φ(ξ) = 1 if 〈ξ 〉 ≤ 2, φ(ξ) = 0 if 〈ξ 〉 ≥ 3 and
∣∣∣Dα

ξ φ(ξ)

∣∣∣ ≤ C |α|+1(α!)µ

for all α ∈ Nn and for all ξ ∈ Rn. We may then define

ψ0(ξ) = φ

(
ξ

R

)

ψN (ξ) = φ

(
ξ

R(N + 1)µ

)
− φ

(
ξ

RNµ

)
, N ≥ 1.

Proof of Theorem 3. Let us consider a sequence {ψN }N≥0 as in Lemma 2. We
observe that, by the condition θ ≥ µ,

∞∑

N=0

∫

Rn

∣∣∣ei〈x,ξ 〉ψN (ξ)p(x, ξ)û(ξ)
∣∣∣ dξ < +∞

for every x ∈ Rn. Then we have, for u, v ∈ Sθ (Rn),

〈K , v ⊗ u〉 =
∞∑

N=0

〈KN , v ⊗ u〉

with

KN (x, y) = (2π)−n
∫

Rn
ei〈x−y,ξ 〉 p(x, ξ)ψN (ξ)dξ

so we may decompose

K =
∞∑

N=0

KN .

Let k ∈ (0, 1) and (x, y) ∈ �k . Let h ∈ {1, ..., n} such that |xh − yh| ≥ k
n 〈x〉. Then,

for every α, γ ∈ Nn,

Dα
x Dγ

y KN (x, y) = (−1)|γ |

(2π)n
∑

β≤α

(
α

β

)∫

Rn
ei〈x−y,ξ 〉ξβ+γψN (ξ)D

α−β
x p(x, ξ)dξ =

(−1)|γ |+N

(2π)n
∑

β≤α

(
α

β

)
(xh − yh)

−N
∫

Rn
ei〈x−y,ξ 〉DN

ξh

[
ξβ+γψN (ξ)D

α−β
x p(x, ξ)

]
dξ =
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(−1)|γ |+N

(2π)n
· (xh − yh)

−N

m2θ,ζ (x − y)

∑

β≤α

(
α

β

) ∞∑

j=0

ζ j

( j !)2θ

∫

Rn
ei〈x−y,ξ 〉λhj Nαβγ (x, ξ)dξ

with

(12) λhj Nαβγ (x, ξ) = (1 −1ξ )
j DN

ξh

[
ξβ+γψN (ξ)D

α−β
x p(x, ξ)

]
.

Let eh be the h-th vector of the canonical basis of Rn and βh = 〈β, eh〉, γh = 〈γ, eh〉.
Developing in the right-hand side of (12) we obtain that

λhj Nαβγ (x, ξ) =
∑

N1+N2+N3=N
N1≤βh+γh

(−i)N1
N!

N1!N2!N3!
· (βh + γh)!

(βh + γh − N1)!
·

·(1 −1ξ )
j
[
ξβ+γ−N1eh DN2

ξh
ψN (ξ)D

N3
ξh

Dα−β
x p(x, ξ)

]
.

Hence, for ε > 0,

∣∣λhj Nαβγ (x, ξ)
∣∣ ≤ Cε

∑

N1+N2+N3=N
N1≤βh+γh

N!

N1!N2!N3!
· (βh + γh)!

(βh + γh − N1)!
C |α−β|+N2+N3

1 ·

·(N2!N3!)µ [(α − β)!]ν C j
2 ( j !)2θ

(
1

RNµ

)N2

〈ξ 〉|β|+|γ |−N1−N3 exp
[
ε(|x | 1

θ + |ξ | 1
θ )
]
.

We observe that on the support of ψN , 2RNµ ≤ 〈ξ 〉 ≤ 3R(N + 1)µ. Thus, from
standard factorial inequalities,since θ ≥ max{µ, ν}, it follows that

∣∣λhj Nαβγ (x, ξ)
∣∣ ≤ CεC

|α|+|γ |
1 (α!γ !)θC j

2 ( j !)2θ
(

C3

R

)N

eε|x |
1
θ exp

[
ε(3R)

1
θ (N + 1)

µ
θ

]

with C3 independent of R. From these estimates, choosing ζ < 1
C2
, we deduce that

∣∣Dα
x Dγ

y KN (x, y)
∣∣ ≤ C ′

εC
|α|+|γ |
1 (α!γ !)θ

(
C4

R

)N

exp
[
ε|x | 1

θ − cζ
1
θ |x − y| 1

θ

]

with C4 = C4(k) independent of R. Finally, the condition θ ≥ ν implies that there
exists ak > 0 such that

sup
(x,y)∈�k

exp
[
ak(|x | 1

θ + |y| 1
θ )− cζ

1
ν |x − y| 1

ν

]
≤ 1.

Then, choosing R sufficiently large, we obtain the estimates (11).

DEFINITION 3. A linear continuous operator T from Sθ (Rn) to itself is said to be
θ−regularizing if it extends to a linear continuous map from S ′

θ (R
n) to Sθ (Rn).

By Theorem 1 it follows that an operator T is θ−regularizing if and only if its
kernel belongs to Sθ (R2n).
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3. Symbolic calculus and composition formula

In this section, we develop a symbolic calculus for operators of the form (8) defined by
symbols from 0∞

µνθ (R
2n). From now on we will assume the more restrictive condition

(13) µ > 1, ν > 1, θ ≥ µ+ ν − 1.

which will be crucial for the composition of our operators.
We emphasize that the condition (13) appears also in the local theory of pseudodiffer-
ential operators in Gevrey classes and it is necessary to avoid a loss of Gevrey regularity
occurring in the composition formula, see [3], [4], [13], [15], [32] where µ = 1, ν = θ

and in the stationary phase method, see [12].
To simplify the notations, we set, for t ≥ 0

Qt =
{
(x, ξ) ∈ R

2n : 〈x〉 < t, 〈ξ 〉 < t
}

Qe
t = R

2n \ Qt .

DEFINITION 4. Let B,C > 0. We shall denote by FS∞
µνθ (R

2n; B,C) the space

of all formal sums
∑
j≥0

p j (x, ξ) such that p j(x, ξ) ∈ C∞(R2n) for all j ≥ 0 and for

every ε > 0

(14) sup
j≥0

sup
α,β∈Nn

sup
(x,ξ)∈Qe

B jµ+ν−1

C−|α|−|β|−2 j (α!)−µ(β!)−ν( j !)−µ−ν+1·

·〈ξ 〉|α|+ j 〈x〉|β|+ j exp
[
−ε(|x | 1

θ + |ξ | 1
θ )
] ∣∣∣Dα

ξ Dβ
x p j (x, ξ)

∣∣∣ < +∞.

Consider the space FS∞
µνθ (R

2n; B,C) obtained from FS∞
µνθ (R

2n; B,C) by quoti-
enting by the subspace

E =




∑

j≥0

p j(x, ξ) ∈ FS∞
µνθ (R

2n; B,C) : supp(p j ) ⊂ Q B jµ+ν−1 ∀ j ≥ 0



 .

By abuse of notation, we shall denote the elements of FS∞
µνθ (R

2n; B,C) by formal
sums of the form

∑
j≥0

p j(x, ξ). The arguments in the following are independent of

the choice of representative. We observe that FS∞
µνθ (R

2n; B,C) is a Fréchet space
endowed with the seminorms given by the left-hand side of (14), for ε > 0. We set

FS∞
µνθ (R

2n) = lim
−→

B,C→+∞
FS∞

µνθ (R
2n, B,C).

A symbol p ∈ 0∞
µνθ (R

2n) can be identified with an element
∑
j≥0

p j of FS∞
µνθ (R

2n),

where p0 = p, p j = 0 ∀ j ≥ 1.
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DEFINITION 5. We say that two sums
∑
j≥0

p j (x, ξ),
∑
j≥0

q j (x, ξ) from FS∞
µνθ (R

2n)

are equivalent

(
we write

∑
j≥0

p j ∼
∑
j≥0

q j

)
if there exist constants B,C > 0 such that

for all ε > 0

sup
N∈Z+

sup
α,β∈Nn

sup
(x,ξ)∈Qe

BNµ+ν−1

C−|α|−|β|−2N (α!)−µ(β!)−ν( j !)−µ−ν+1〈ξ 〉|α|+N 〈x〉|β|+N ·

· exp
[
−ε(|x | 1

θ + |ξ | 1
θ )
]
∣∣∣∣∣∣
Dα
ξ Dβ

x

∑

j<N

(p j − q j)

∣∣∣∣∣∣
< +∞.

THEOREM 4. Given a sum
∑
j≥0

p j ∈ FS∞
µνθ (R

2n), there exists p ∈ 0∞
µνθ (R

2n)

such that

p ∼
∑

j≥0

p j in FS∞
µνθ (R

2n).

Proof. Let ϕ ∈ C∞(R2n), 0 ≤ ϕ ≤ 1 such that ϕ(x, ξ) = 0 if (x, ξ) ∈ Q1, ϕ(x, ξ) =
1 if (x, ξ) ∈ Qe

2 and

(15)
∣∣∣Dδ

x Dγ
ξ ϕ(x, ξ)

∣∣∣ ≤ C |γ |+|δ|+1(γ !)µ(δ!)ν ∀(x, ξ) ∈ R
2n.

We define:

ϕ0(x, ξ) = ϕ

(
2

R
x,

2

R
ξ

)

and

ϕ j (x, ξ) = ϕ

(
1

R jµ+ν−1 x,
1

R jµ+ν−1 ξ

)
, j ≥ 1.

We want to prove that if R is sufficiently large,

(16) p(x, ξ) =
∑

j≥0

ϕ j (x, ξ)p j (x, ξ)

is well defined as an element of 0∞
µνθ (R

2n) and p ∼
∑
j≥0

p j in FSm,∞
µνθ (R

2n).

First of all we observe that the sum (16) is locally finite so it defines a function p ∈
C∞(R2n).

Consider

Dα
ξ Dβ

x p(x, ξ) =
∑

j≥0

∑

γ≤α
δ≤β

(
α

γ

)(
β

δ

)
Dβ−δ

x Dα−γ
ξ p j(x, ξ) · Dδ

x Dγ
ξ ϕ j (x, ξ).
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Choosing R ≥ B where B is the constant in Definition 4, we can apply the estimates
(14) and obtain
∣∣∣Dα

ξ Dβ
x p(x, ξ)

∣∣∣ ≤ C |α|+|β|+1α!β!〈x〉−|β|〈ξ 〉−|α| exp
[
ε(|x | 1

θ + |ξ | 1
θ )
]∑

j≥0

H jαβ(x, ξ)

where

H jαβ(x, ξ) =
∑

γ≤α
δ≤β

[(α − γ )!]µ−1[(β − δ)!]ν−1

γ !δ!
·

·C2 j−|γ |−|δ|( j !)µ+ν−1〈x〉|δ|− j 〈ξ 〉|γ |− j
∣∣∣Dδ

x Dγ
ξ ϕ j (x, ξ)

∣∣∣ .

Now the condition (15) and the fact that Dδ
x Dγ

ξ ϕ j (x, ξ) = 0 in Qe
2Rjµ+ν−1 for (δ, γ ) 6=

(0, 0) imply that

H jαβ(x, ξ) ≤ C |α|+|β|+1
1 (α!)µ−1(β!)ν−1

(
C2

R

) j

where C2 is independent of R. Enlarging R, we obtain that
∑

j≥0

H jαβ(x, ξ) ≤ C |α|+|β|+1
3 (α!)µ−1(β!)ν−1 ∀(x, ξ) ∈ R

2n

from which we deduce that p ∈ 0∞
µνθ (R

2n).

It remains to prove that p ∼
∑
j≥0

p j . Let us fix N ∈ N \ {0}. We observe that if

(x, ξ) ∈ Qe
2RNµ+ν−1 , then

p(x, ξ)−
∑

j<N

p j(x, ξ) =
∑

j≥N

ϕ j (x, ξ)p j(x, ξ).

Thus we have ∣∣∣∣∣∣

∑

j≥N

Dα
ξ Dβ

x

[
ϕ j (x, ξ)p j(x, ξ)

]
∣∣∣∣∣∣
≤

C |α|+|β|+1α!β!〈x〉−|β|−N 〈ξ 〉−|α|−N exp
[
ε(|x | 1

θ + |ξ | 1
θ )
]∑

j≥N

H j Nαβ(x, ξ)

where

H j Nαβ(x, ξ) =
∑

γ≤α
δ≤β

[(α − γ )!]µ−1[(β − δ)!]ν−1

γ !δ!
·

·C2 j−|γ |−|δ|( j !)µ+ν−1〈x〉|δ|+N− j 〈ξ 〉|γ |+N− j |Dδ
x Dγ

ξ ϕ j (x, ξ)|.
Arguing as above we can estimate

H j Nαβ(x, ξ) ≤ C2N+|α|+|β|+1
4 (N!)µ+ν−1(α!)µ−1(β!)ν−1

and this concludes the proof.
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PROPOSITION 5. Let p ∈ 0∞
µνθ (R

2n) such that p ∼ 0. Then the operator P is
θ−regularizing.

To prove this assertion we need a preliminary result.

LEMMA 3. Let M, r, %, B be positive numbers, % ≥ 1. We define

h(λ) = inf
0≤N≤Bλ

1
%

Mr N (N!)r

λ
r N
%

, λ ∈ R
+.

Then there exist positive constants C, τ such that

h(λ) ≤ Ce−τλ
1
%
, λ ∈ R

+.

Proof. See Lemma 3.2.4 in [27] for the proof.

Proof of Proposition 5. It is sufficient to prove that if p ∼ 0, then the kernel of P

K (x, y) = (2π)−n
∫

Rn
ei〈x−y,ξ 〉 p(x, ξ)dξ

belongs to Sθ (R2n). By Definition 5, there exist B,C > 0 and for all ε > 0 there exists
a positive constant Cε such that, for every (x, ξ) ∈ R2n

∣∣∣Dα
ξ Dβ

x p(x, ξ)
∣∣∣ ≤ CεC

|α|+|β|(α!)µ(β!)ν〈ξ 〉−|α|〈x〉−|β| exp
[
ε(|x | 1

θ + |ξ | 1
θ )
]
·

· inf
0≤N≤(B−1〈ξ 〉〈x〉)

1
µ+ν−1

C2N (N!)µ+ν−1

〈ξ 〉N 〈x〉N
.

Applying Lemma 3 with % = r = µ+ ν − 1, λ = 〈ξ 〉〈x〉 and taking into account the

condition θ ≥ µ+ν−1, and the obvious estimate |x | 1
θ +|ξ | 1

θ ≤ c〈ξ 〉 1
θ 〈x〉 1

θ , we obtain
that for all ε > 0

(17)
∣∣∣Dα

ξ Dβ
x p(x, ξ)

∣∣∣ ≤ C ′
εC

|α|+|β|(α!)µ(β!)ν exp
[
−(τ − ε)(|x | 1

θ + |ξ | 1
θ )
]

for a certain positive τ. For 0 < ε < τ, it follows that p ∈ Sθ (R2n). By Theorem 3, it
is sufficient to show that there exists k ∈ (0, 1) such that

sup
(x,y)∈R2n\�k

C−|α|−|γ |(α!γ !)−θ exp
[
a(|x | 1

θ + |y| 1
θ )
] ∣∣Dα

x Dγ
y K (x, y)

∣∣ < +∞

for some positive constants a,C. From the estimates (17) we obtain, for τ ′ < τ,

∣∣Dα
x Dγ

y K (x, y)
∣∣ ≤

∑

β≤α

(
α

β

)
C |α|−|β| [(α − β)!]ν e−τ ′|x |

1
θ

∫

Rn
|ξ ||β|+|γ |e−τ ′|ξ |

1
θ dξ.
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Now, for every ε > 0 there exists a positive constant C = C(ε) such that

|ξ ||β|+|γ | ≤ C |β|+|γ |+1(β!γ !)θeε|ξ |
1
θ

Furthermore, we observe that there exists C ′
k > 0 such that in R

2n \�k

−τ
′

2
|x | 1

θ ≤ τ ′

2
k

1
θ + τ ′

2
k

1
θ |x | 1

θ − C ′
k |y| 1

θ .

So we can conclude that there exist ak > 0 for which

sup
R2n\�k

exp
[
ak(|x | 1

θ + |y| 1
θ )
] ∣∣Dα

x Dγ
y K (x, y)

∣∣ ≤ C |α|+|γ |+1(α!γ !)θ

and this concludes the proof.
Let us give now the main results of this section.

PROPOSITION 6. Let P = p(x, D) ∈ O PS∞
µνθ (R

n) and let t P be its transpose
defined by

(18) 〈t Pu, v〉 = 〈u, Pv〉, u ∈ S′
θ (R

n), v ∈ Sθ (R
n).

Then, t P = Q + R, where R is a θ−regularizing operator and Q = q(x, D) is in
O PS∞

µνθ (R
n) with

q(x, ξ) ∼
∑

j≥0

∑

|α|= j

(α!)−1∂αξ Dα
x p(x,−ξ)

in FS∞
µνθ (R

2n).

THEOREM 5. Let P = p(x, D), Q = q(x, D) ∈ O PS∞
µνθ (R

n). Then P Q =
T + R where R is θ−regularizing and T = t (x, ξ) ∈ O PS∞

µνθ (R
n) with

t (x, ξ) ∼
∑

j≥0

∑

|α|= j

(α!)−1∂αξ p(x, ξ)Dα
x q(x, ξ)

in FS∞
µνθ (R

2n).

To prove these results it is convenient to enlarge the class of our operators by con-
sidering more general classes of symbols.

Let µ, ν, θ be real numbers satisfying the condition (13).

DEFINITION 6. We shall denote by 5∞
µνθ (R

3n; C) the Fréchet space of all func-

tions a(x, y, ξ) ∈ C∞(R3n) such that for every ε > 0

sup
α,β∈Nn

sup
(x,y,ξ)∈R3n

C−|α|−|β|−|γ |(α!)−µ(β!γ !)−ν〈ξ 〉|α|
(
|x |2 + |y|2

) 1
2 |β+γ |

·
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·〈x − y〉−|β+γ | exp
[
−ε(|x | 1

θ + |y| 1
θ + |ξ | 1

θ )
] ∣∣∣Dα

ξ Dβ
x Dγ

y a(x, y, ξ)
∣∣∣ < +∞.

We set
5∞
µνθ (R

3n) = lim
−→

C→+∞
5∞
µνθ (R

3n,C).

It is immediate to verify the following relations:
i) if a(x, y, ξ) ∈ 5∞

µνθ (R
3n), then the function (x, ξ) → a(x, x, ξ) belongs to

0∞
µνθ (R

2n).

ii) if p(x, ξ) ∈ 0∞
µνθ (R

2n), then p((1−τ)x +τ y, ξ) ∈ 5∞
µνθ (R

3n) for every τ ∈ [0, 1].

Given a ∈ 5∞
µνθ (R

3n), we can associate to a a pseudodifferential operator de-
fined by

(19) Au(x) = (2π)−n
∫

R2n
ei〈x−y,ξ 〉a(x, y, ξ)u(y)dydξ, u ∈ Sθ (R

n).

We remark that the integral written above is not absolutely convergent in general. Let
us give a more precise meaning to (19).

LEMMA 4. Let χ ∈ Sθθ (R
n), χ(0) = 1. Then, for every x ∈ R

n and u ∈ Sθ (Rn),

the function

(20) Iχ,δ(x) = (2π)−n
∫

R2n
ei〈x−y,ξ 〉a(x, y, ξ)χ(δξ)u(y)dydξ

has a limit when δ → 0+ and this limit is independent of χ.

Proof. We remark that for every positive ζ, η the following relations hold:

(21)
1

m2θ,ζ (x)

∞∑

p=0

ζ p

(p!)2θ
(1 −1ξ )

pei〈x,ξ 〉 = ei〈x,ξ 〉

(22)
1

m2θ,η(ξ)

∞∑

q=0

ηq

(q!)2θ
(1 −1y)

qei〈x−y,ξ 〉 = ei〈x−y,ξ 〉.

Substituting (21) in (20) and integrating by parts, we obtain

Iχ,δ(x) = (2π)−n

m2θ,ζ (x)

∞∑

p=0

ζ p

(p!)2θ
·

·
∫

R2n
ei〈x,ξ 〉(1 −1ξ )

p
[
e−i〈y,ξ 〉a(x, y, ξ)χ(δξ)

]
u(y)dydξ =

(2π)−n

m2θ,ζ (x)

∞∑

p=0

ζ p

(p!)2θ

∫

R2n
ei〈x−y,ξ 〉λp,δ(x, y, ξ)dydξ
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where

λp,δ(x, y, ξ) =
p∑

r=0

(
p

r

)
(−1)r

∑

|α|=r

r !

α1!...αn!
·

·
∑

β≤2α

(
2α

β

)
(−i y)β∂2α−β

ξ [a(x, y, ξ)χ(δξ)] u(y)

Applying (22) we obtain that

Iχ,δ(x) = (2π)−n

m2θ,ζ (x)

∞∑

p=0

ζ p

(p!)2θ

∞∑

q=0

ηq

(q!)2θ
·

·
∫

R2n
ei〈x−y,ξ 〉 1

m2θ,η(ξ)
(1 −1y)

qλp,δ(x, y, ξ)dydξ.

The hypotheses on a, u, χ imply that there exist C1,C2,C3 > 0 and for all ε > 0,
there exists Cε > 0 such that

∣∣(1 −1y)
qλp,δ(x, y, ξ)

∣∣ ≤ CεC
p
1 Cq

2 (p!q!)2θeε|x |
1
θ e−(C3−ε)|y|

1
θ eε|ξ |

1
θ
.

Hence, choosing ζ < 1
C1
, η < 1

C2
and ε sufficiently small, we can re-arrange the

sums under the integral sign and obtain an estimate independent of δ. By Lebesgue’s
dominated convergence theorem, it turns out that

lim
δ→0+

Iχ,δ(x) = (2π)−n

m2θ,ζ (x)

∫

R2n
ei〈x−y,ξ 〉

∞∑

p=0

∞∑

q=0

ζ pηq

(p!q!)2θ

p∑

r=0

(
p

r

)
(−1)r

∑

|α|=r

r !

α1!...αn!
·

·
∑

β≤2α

(
2α

β

)
(1 −1y)

q∂
2α−β
ξ

[
(−i y)βa(x, y, ξ)u(y)

]
dydξ.

From Lemma 4 we deduce the following natural definition.

DEFINITION 7. Given a ∈ 5∞
µνθ (R

3n), we define, for every u ∈ Sθ (Rn)

(23) Au(x) = (2π)−n lim
δ→0+

∫

R2n
ei〈x−y,ξ 〉a(x, y, ξ)χ(δξ)u(y)dydξ

with χ ∈ Sθ (Rn), χ(0) = 1.

We denote by O PS
∞
µνθ (R

n) the space of all operators of the form (19) defined by

an amplitude of 5∞
µνθ (R

3n). Theorems 2 and 3 extend without relevant changes in the
proofs to these operators; details are left to the reader.
The next theorem states a relation between operators (19) and the elements of
O PS∞

µνθ (R
n).
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THEOREM 6. Let A be an operator defined by an amplitude a ∈ 5∞
µνθ (R

3n). Then
we may write A = P + R, where R is a θ−regularizing operator and P = p(x, D) ∈
O PS∞

µνθ (R
n), with p ∼

∑
j≥0

p j , where

(24) p j(x, ξ) =
∑

|α|= j

(α!)−1∂αξ Dα
y a(x, y, ξ)|y=x .

Proof. Let χ ∈ C∞(R2n) such that

(25) χ(x, y) =
{

1 if |x − y| ≤ 1
4 〈x〉

0 if |x − y| ≥ 1
2 〈x〉

and ∣∣Dβ
x Dγ

y χ(x, y)
∣∣ ≤ C |β|+|γ |+1(β!γ !)ν

for all β, γ ∈ Nn and (x, y) ∈ R2n. We may decompose a as the sum of two elements
of 5∞

µνθ (R
3n) writing

a(x, y, ξ) = χ(x, y)a(x, y, ξ)+ (1 − χ(x, y))a(x, y, ξ).

Furthermore, it follows from Theorem 3 that (1 − χ(x, y))a(x, y, ξ) defines a
θ−regularizing operator. Hence, eventually perturbing A with a θ−regularizing op-

erator, we can assume that a(x, y, ξ) is supported on
(
R

2n \� 1
2

)
× R

n, where � 1
2

is

defined as in Theorem 3.
It is trivial to verify that

∑
j≥0

p j defined by (24) belongs to FS∞
µνθ (R

2n). By Theorem 4

we can find a sequence ϕ j ∈ C∞(R2n) depending on a parameter R such that

p(x, ξ) =
∑

j≥0

ϕ j (x, ξ)p j (x, ξ)

defines an element of 0∞
µνθ (R

2n) for R large and p ∼
∑
j≥0

p j in FS∞
µνθ (R

2n). Let

P = p(x, D). To prove the Theorem it is sufficient to show that the kernel K (x, y) of
A − P is in Sθ (R2n).

We can write
a(x, y, ξ)− p(x, ξ) = (1 − ϕ0(x, ξ))a(x, y, ξ)

+
∞∑

N=0

(ϕN − ϕN+1)(x, ξ)


a(x, y, ξ)−

∑

j≤N

p j(x, ξ)


 .

Consequently,

(26) K (x, y) = K (x, y)+
∞∑

N=0

KN (x, y)
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where

K (x, y) = (2π)−n
∫

Rn
ei〈x−y,ξ 〉(1 − ϕ0(x, ξ))a(x, y, ξ)dξ,

KN (x, y) = (2π)−n
∫

Rn
ei〈x−y,ξ 〉(ϕN −ϕN+1)(x, ξ)


a(x, y, ξ)−

∑

j≤N

p j(x, ξ)


 dξ.

A power expansion in the second argument gives for N = 1, 2, ...

a(x, y, ξ) =
∑

|α|≤N

(α!)−1(y − x)α∂αy a(x, x, ξ)+
∑

|α|=N+1

(α!)−1(y − x)αwα(x, y, ξ)

with

wα(x, y, ξ) = (N + 1)
∫ 1

0
∂αy a(x, x + t (y − x), ξ)(1 − t)N dt .

In view of our definition of the p j(x, ξ), integrating by parts, we obtain that

KN (x, y) = WN (x, y)+ (2π)−n
∑

1≤|α|≤N

∑

06=β≤α

1

β!(α − β)!
·

·
∫

Rn
ei〈x−y,ξ 〉Dβ

ξ (ϕN − ϕN+1)(x, ξ)(D
α−β
ξ ∂αy a)(x, x, ξ)dξ,

where

WN (x, y) = (2π)−n
∑

|α|=N+1

∑

β≤α

1

β!(α − β)!
·

·
∫

Rn
ei〈x−y,ξ 〉Dβ

ξ (ϕN − ϕN+1)(x, ξ)D
α−β
ξ wα(x, y, ξ)dξ

for all N = 1, 2, ...
Using an absolute convergence argument, we may re-arrange the sums under the inte-
gral sign. We also observe that

∑

N≥|α|
Dβ
ξ (ϕN − ϕN+1)(x, ξ) = Dβ

ξ ϕ|α|(x, ξ).

Then we have

K = K +
∑

α 6=0

Iα +
∞∑

N=0

WN

where

Iα(x, y) = (2π)−n
∑

06=β≤α

1

β!(α − β)!

∫

Rn
ei〈x−y,ξ 〉Dβ

ξ ϕ|α|(x, ξ)D
α−β
ξ ∂αy a(x, x, ξ)dξ
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and we may write W0(x, y) for K0(x, y). To conclude the proof, we want to show that

K ,
∑
α 6=0

Iα,
∞∑

N=0
WN ∈ Sθ (R2n). First of all, we have to estimate the derivatives of K

for (x, ξ) ∈ supp(1 − ϕ0(x, ξ)), i.e. for 〈x〉 ≤ R, 〈ξ 〉 ≤ R. We have

∣∣∣xk yh Dδ
x Dγ

y K (x, y)
∣∣∣ = (2π)−n

∣∣∣∣∣∣∣∣
xk yh

∑

γ1+γ2=γ
δ1+δ2+δ3=δ

γ !δ!

γ1!γ2!δ1!δ2!δ3!
·

· (−1)|γ1|
∫

Rn
ei〈x−y,ξ 〉ξγ1+δ1 Dδ2

x Dγ2
y a(x, y, ξ)Dδ3

x (1 − ϕ0(x, ξ))dξ

∣∣∣∣ ≤

|x ||k||y||h| ∑

γ1+γ2=γ
δ1+δ2+δ3=δ

γ !δ!

γ1!γ2!δ1!δ2!δ3!
C |γ2|+|δ2|+|δ3|(γ2!δ2!δ3!)ν〈x − y〉|γ2+δ2|·

· exp
[
ε(|x | 1

θ + |y| 1
θ )
] ∫

〈ξ 〉≤R
〈ξ 〉|γ1+δ1|eε〈ξ 〉

1
θ dξ.

Now, a(x, y, ξ) is supported on
(
R

2n \� 1
2

)
× R

n and in this region |y| ≤ 3
2 〈x〉 so,

there exist constants C1,C2 > 0 depending on R such that

sup
(x,y)∈R2n

∣∣∣xk yh Dδ
x Dγ

y K (x, y)
∣∣∣ ≤ C1 R|k|+|h|C |γ |+|δ|

2 (γ !δ!)θ ,

so K ∈ Sθ (R2n). Consider now

xk yh Dδ
x Dγ

y Iα(x, y) = (2π)−n
∑

06=β≤α

1

β!(α − β)!

∑

δ1+δ2+δ3=δ

δ!

δ1!δ2!δ3!
(−1)|γ |xk yh ·

·
∫

Rn
ei〈x−y,ξ 〉ξγ+δ1 Dδ2

x Dβ
ξ ϕ|α|(x, ξ)D

α−β
ξ Dδ3

x ∂
α
y a(x, x, ξ)dξ =

(2π)−n
∑

06=β≤α

1

β!(α − β)!

∑

δ1+δ2+δ3=δ

δ!

δ1!δ2!δ3!
(−1)|γ |(−i)hxk ·

·
∫

Rn
e−i〈y,ξ 〉∂h

ξ

[
ei〈x,ξ 〉ξγ+δ1 Dδ2

x Dβ
ξ ϕ|α|(x, ξ)D

α−β
ξ Dδ3

x ∂
α
y a(x, x, ξ)

]
dξ.

We need the estimates for (x, ξ) ∈ suppDβ
ξ ϕ|α|(x, ξ) ⊂ Q2R|α|µ+ν−1 \ QR|α|µ+ν−1 .

Then, there exist C1,C2,C3 > 0 such that
∣∣∣xk yh Dδ

x Dγ
y Iα(x, y)

∣∣∣ ≤ C |h|+|k|+1
1 C |α|

2 C |γ |+|δ|
3 (k!h!γ !δ!)θ(α!)ν〈x〉−|α|·

·
∑

06=β≤α
(β!)µ−1 [(α − β)!]µ−1

(
1

R|α|µ+ν−1

)|β| ∫

〈ξ 〉≤2R|α|µ+ν−1
〈ξ 〉−|α−β|dξ
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with C2 independent of R. Now, if (x, ξ) ∈ Q2R|α|µ+ν−1 \ QR|α|µ+ν−1 , we have that

C |α|
2 (α!)ν〈x〉−|α| ∑

06=β≤α
(β!)µ−1 [(α − β)!]µ−1

(
1

R|α|µ+ν−1

)|β|
·

·
∫

〈ξ 〉≤2R|α|µ+ν−1
〈ξ 〉−|α−β|dξ ≤

(
C4

R

)|α|

with C4 independent of R. Finally, we conclude that

sup
(x,y)∈R2n

∣∣∣xk yh Dδ
x Dγ

y Iα(x, y)
∣∣∣ ≤ C |h|+|k|+1C |γ |+|δ|

2 (k!h!γ !δ!)θ
(

C4

R

)|α|
.

Choosing R > C4, we obtain that
∑
α 6=0

Iα ∈ Sθ (R2n).

Arguing as for Iα, we can prove that also

sup
(x,y)∈R2n

∣∣∣xk yh Dδ
x Dγ

y WN (x, y)
∣∣∣ ≤ C |h|+|k|+1

1 C |γ |+|δ|
2 (h!k!γ !δ!)θ

(
C

R

)N

with C independent of R, which gives, for R sufficiently large, that
∞∑

N=0
WN is in

Sθ (R2n). This concludes the proof.

Proof of Proposition 6. By the formula (18), t P is defined by

t Pu(x) = (2π)−n
∫

R2n
ei〈x−y,ξ 〉 p(y,−ξ)u(y)dydξ, u ∈ Sθ (R

n).

Thus, t P ∈ O PS
∞
µνθ (R

n) with amplitude p(y,−ξ). By Theorem 6, t P = Q + R
where R is θ−regularizing and Q = q(x, D) ∈ O PS∞

µνθ (R
n), with

q(x, ξ) ∼
∑

j≥0

∑

|α|= j

(α!)−1∂αξ Dα
x p(x,−ξ).

Proof of Theorem 5. We can write Q =t (t Q). Then, by Theorem 6 and Proposition
6, Q = Q1 + R1, where R1 is θ−regularizing and

(27) Q1u(x) = (2π)−n
∫

R2n
ei〈x−y,ξ 〉q1(y, ξ)u(y)dydξ

with q1(y, ξ) ∈ 0∞
µνθ (R

2n), q1(y, ξ) ∼
∑
α

(α!)−1∂αξ Dα
y q(y,−ξ). From (27) it follows

that

Q̂1u(ξ) =
∫

Rn
e−i〈y,ξ 〉q1(y, ξ)u(y)dy, u ∈ Sθ (R

n)
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from which we deduce that

P Qu(x) = (2π)−n
∫

R2n
ei〈x−y,ξ 〉 p(x, ξ)q1(y, ξ)u(y)dydξ + P R1u(x).

We observe that p(x, ξ)q1(y, ξ) ∈ 5∞
µνθ (R

3n), then we may apply Theorem 6 and
obtain that

P Qu(x) = T u(x)+ Ru(x)

wher R is θ−regularizing and T = t (x, D) ∈ O PS∞
µνθ (R

n) with

t (x, ξ) ∼
∑

α

(α!)−1∂αξ p(x, ξ)Dα
x q(x, ξ).

REMARK 1. Definitions analogous to 4 and 5 can be given for formal sums of
elements of 0m1,m2

µν (R2n). Furthermore, under the condition (13), all the results of this
section can be extended to the corresponding operators.

4. Construction of a parametrix for the problem (2)

Let µ, ν be real numbers such that µ > 1, ν > 1 and consider the operator in (3) where
we assume that a j (t, x, Dx), j = 1, ...,m are pseudodifferential operators of the form

(8) with symbols a j(t, x, ξ) ∈ C
(

[0, T ], 0 pj,q j
µν (R2n)

)
, for some nonnegative p, q

such that p + q ∈ [ 0, 1 [ .
We want to construct a parametrix for the problem (2).We start by considering the
homogeneous equation. Namely, let θ be a real number such that θ ≥ µ + ν − 1 and

p + q ∈
[
0, 1

θ
[ . We want to find an operator E(t, s) ∈ O PS∞

µνθ (R
n), t, s in [0, T ]

such that

(28)





P(t, x, Dt , Dx )E(t, s) = R(t, s) (t, s) ∈ [0, T ]2, x ∈ Rn

D j
t E(s, s) = 0 j = 0, ...,m − 2

Dm−1
t E(s, s) = i I

where I is the identity operator and R(t, s) has its kernel in C
(
[0, T ], Sθ (R2n)

)
.

In order to construct the parametrix above, we want to apply the results obtained in
Sections 2, 3. To be more precise, we need to reformulate these results for operators
with symbols depending with a certain regularity on some parameters. The proofs
follow the same arguments of the previous sections.
Denote by I a compact pluri-interval of R

d .

THEOREM 7. Let a ∈ C(I,5∞
µνθ (R

3n)). Then, the operator

A(t)u(s, ·)(x) = (2π)−n
∫

R2n
ei〈x−y,ξ 〉a(t, x, y, ξ)u(s, y)dydξ
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defines a linear continuous map from C (I, Sθ (Rn)) to C
(
I 2, Sθ (Rn)

)
which extends

to a linear continuous map from C
(
I, S′

θ (R
n)
)

to C
(
I 2, S′

θ (R
n)
)
. Furthermore, if

a ∈ Ck(I,5∞
µνθ (R

3n)), k ∈ N, then

Dk
t A(t)u(s, ·)(x) = (2π)−n

∫

R2n
ei〈x−y,ξ 〉Dk

t a(t, x, y, ξ)u(s, y)dydξ

for all x ∈ R
n, (t, s) ∈ I 2.

PROPOSITION 7. i) Let p j ∈ C
(

I, 0∞
µνθ (R

2n)
)
, j ≥ 0 such that

∑
j≥0

p j belongs

to B

(
I, FS∞

µνθ (R
2n)
)
, set of the bounded functions from I to FS∞

µνθ (R
2n). Then, there

exists p in C
(

I, 0∞
µνθ (R

2n)
)

such that p ∼
∑
j≥0

p j in FS∞
µνθ (R

2n) uniformly with re-

spect to t ∈ I.

ii) Let p(t) ∈ C
(

I, 0∞
µνθ (R

2n)
)
, p(t) ∼ 0 uniformly with respect to t ∈ I in

FS∞
µνθ (R

2n). Then the operator P(t) has its kernel in C
(
I, Sθ (R2n)

)
.

PROPOSITION 8. Let p(t) ∈ C
(
I, 0∞

µνθ (R
2n)
)
. Then there exists

Q(t) = q(t, x, Dx ) in O PS∞
µνθ (R

n), t ∈ I, with symbol q(t, x, ξ) ∼∑
j≥0

∑
|α|= j

(α!)−1∂αξ Dα
x p(t, x,−ξ) in FS∞

µνθ (R
2n) uniformly with respect to t ∈ I, such

that t P = Q + R, where R has its kernel in C
(
I, Sθ (R2n)

)
.

THEOREM 8. Let P(t) = p(t, x, D), Q(t, s) = q(t, s; x, D) ∈ O PS∞
µνθ (R

n)

for t, s ∈ I, such that p(t, x, ξ) ∼
∑
j≥0

p j(t; x, ξ), q(t, s; x, ξ) ∼
∑
j≥0

q j (t, s; x, ξ)

in FS∞
µνθ (R

2n) uniformly with respect to t, s ∈ I. Assume that p j ∈
C
(

I, 0∞
µνθ (R

2n)
)
, q j ∈ C

(
I 2, 0∞

µνθ (R
2n)
)
. Then P Q(t, s) = B(t, s) + R(t, s),

where R has its kernel in C
(
I 2, Sθθ (R

2n
)

and B(t, s) = b(t, s; x, D) is in
O PS∞

µνθ (R
2n) with

b(t, s; x, ξ) ∼
∑

j≥0

∑

h+k+|α|= j

(α!)−1∂αξ ph(t, x, ξ)Dα
x qk(t, s; x, ξ)

in FS∞
µνθ (R

2n) uniformly with respect to (t, s) ∈ I 2.

Following a standard argument based on Theorem 8, we can now construct the
symbol e(t, s; x, ξ) of E(t, s) starting from its asymptotic expansion. Then we will

prove the regularity of e, namely Dk
t e ∈ C

(
[0, T ], 0∞

µνθ (R
2n)
)

for all s ∈ [0, T ], k =
0, ...,m with the aid of Proposition 7.
For every (x, ξ) ∈ R2n, let eh(t, s; x, ξ), h ≥ 0 be the solutions of the following
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Cauchy problems for ordinary differential equations

(29)





(
Dm

t +
m∑

j=1
a j (t, x, ξ)Dm− j

t

)
e0 = 0 (t, s) ∈ [0, T ]2

D j
t e0(s, s; x, ξ) = 0 j = 0, ...,m − 2

Dm−1
t e0(s, s; x, ξ) = i

and for h ≥ 1,

(30)





(
Dm

t +
m∑

j=1
a j (t, x, ξ)Dm− j

t

)
eh = dh(t, s; x, ξ) (t, s) ∈ [0, T ]2

D j
t eh(s, s; x, ξ) = 0 j = 0, ...,m − 1

where

dh(t, s; x, ξ) = −
m∑

j=1

h∑

l=1

∑

|α|=l

(α!)−1∂αξ a j (t, x, ξ)Dα
x Dm− j

t eh−l(t, s; x, ξ).

We want to prove that

(31) Dk
t eh ∈ C

(
[0, T ]2, 0∞

µνθ (R
2n)
)

h ≥ 0, k = 0, ...,m

and

(32)
∑

h≥0

Dk
t eh ∈ B

(
[0, T ]2, FS∞

µνθ (R
2n)
)

k = 0, ...,m.

LEMMA 5. Let the functions a j belong to C
(

[0, T ], 0 pj,q j
µν (R2n)

)
and let e0 be

defined by (29). Then, there exist positive constants C, c such that

(33)
∣∣∣Dα

ξ Dβ
x Dk

t e0(t, s; x, ξ)
∣∣∣ ≤ C |α|+|β|(α!)µ(β!)ν〈ξ 〉−|α|〈x〉−|β|·

· exp
[
c〈ξ 〉p〈x〉q |t − s|

] |α+β|m∑

i=min(|α+β|,1)
〈ξ 〉pi 〈x〉qi |t − s|i+m−1−k

(i + m − 1 − k)!
k = 0, ...,m−1,

(34)
∣∣∣Dα

ξ Dβ
x Dm

t e0(t, s; x, ξ)
∣∣∣ ≤ C |α|+|β|(α!)µ(β!)ν〈ξ 〉−|α|〈x〉−|β|·

· exp
[
c〈ξ 〉p〈x〉q |t − s|

] (|α+β|+1)m∑

i=1

〈ξ 〉pi 〈x〉qi |t − s|i−1

(i − 1)!

for every (t, s) ∈ [0, T ]2, (x, ξ) ∈ R2n.
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Proof. Let k = 0, ...,m − 1. For α = β = 0, (33) follows directly from the initial
data of (29) and from well known estimates for the solution of the Cauchy problem
for ordinary differential equations. See also [4] and [14]. Let us now assume that (33)
holds for |α + β| = N and let l ∈ {1, ..., n}. By (29), it follows that Dξl e0 is a solution
of the problem





(
Dm

t +
m∑

j=1
a j(t, x, ξ)Dm− j

t

)
Dξl e0 = −

m∑
j=1

Dξl a j (t, x, ξ)Dm− j
t e0

D j
t Dξl e0(s, s; x, ξ) = 0 j = 0, ...,m − 1

so we have that

Dξl e0(t, s; x, ξ) = −
∫ t

s
e0(t, τ ; x, ξ)

m∑

j=1

Dξl a j(τ, x, ξ)Dm− j
τ e0(τ, s; x, ξ)dτ.

This remark allows to estimate the left-hand side of (33) inductively for every α, β ∈
Nn . The estimate (34) easily follows from (33) and (29).

LEMMA 6. Let the functions a j belong to C
(

[0, T ], 0 pj,q j
µν (R2n)

)
and let eh,

h ≥ 1 be the solutions of (30). Then, there exist positive constants C, c such that, for
every α, β ∈ Nn, (t, s) ∈ [0, T ]2, k = 0, ...,m − 1, (x, ξ) ∈ R2n, we have

(35)
∣∣∣Dα

ξ Dβ
x Dk

t eh(t, s; x, ξ)
∣∣∣ ≤ C |α|+|β|+2h[(|α| + h)!]µ[(|β| + h)!]ν(h!)−1·

·〈ξ 〉−|α|−h 〈x〉−|β|−h exp
[
c〈ξ 〉p〈x〉q |t − s|

] (|α+β|+2h)m∑

i=1

〈ξ 〉pi 〈x〉qi |t − s|i+m−1−k

(i + m − 1 − k)!

and

(36)
∣∣∣Dα

ξ Dβ
x Dm

t eh(t, s; x, ξ)
∣∣∣ ≤ C |α|+|β|+2h+1[(|α| + h)!]µ[(|β| + h)!]ν(h!)−1·

·〈ξ 〉−|α|−h 〈x〉−|β|−h exp
[
c〈ξ 〉p〈x〉q |t − s|

] (|α+β|+2h+1)m∑

i=1

〈ξ 〉pi 〈x〉qi |t − s|i−1

(i − 1)!

for every h ≥ 1, (t, s) ∈ [0, T ]2, (x, ξ) ∈ R2n.

Proof. First of all, we observe that

eh(t, s; x, ξ) =
∫ t

s
e0(t, τ ; x, ξ)dh(τ, s; x, ξ)dτ, h ≥ 1.

From the initial data of (29), it turns out that, for all α, β ∈ Nn, k = 0, ...,m − 1,

Dα
ξ Dβ

x Dk
t eh(t, s; x, ξ) = Dα

ξ Dβ
x

∫ t

s
Dk

t e0(t, τ ; x, ξ)dh(τ, s; x, ξ)dτ, h ≥ 1
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which we can easily estimate by induction on h ≥ 1, obtaining (35). The estimate (36)
immediately follows from (35) and (30).

LEMMA 7. Let the functions a j(t, x, ξ) belong to C
(

[0, T ], 0 pj,q j
µν (R2n

)
, j =

1, ...,m. Then, the solutions eh of (29), (30) satisfy the conditions (31) and (32).

Proof. We observe that for all k = 0, ...,m − 1, h ≥ 0,

(|α+β|+2h)m∑

i=0

〈ξ 〉pi 〈x〉qi |t − s|i+m−1−k

(i + m − 1 − k)!
≤ |t − s|m−1−k

(m − 1 − k)!
exp

[
〈ξ 〉p〈x〉q |t − s|

]
.

Then, by the condition p + q ∈
[
0, 1

θ
[ and the obvious estimate

〈ξ 〉p〈x〉q ≤ C1(|x |p+q + |ξ |p+q + C2),

it follows immediately that there exists C1 > 0 and for every ε > 0 there exists Cε > 0
such that

(37) sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|−2h
1 (α!)−µ(β!)−ν(h!)−µ−ν+1〈ξ 〉|α|+h〈x〉|β|+h ·

· exp
[
−ε(|x | 1

θ + |ξ | 1
θ )
] ∣∣∣Dα

ξ Dβ
x Dk

t eh(t, s; x, ξ)
∣∣∣ ≤ Cε

|t − s|m−1−k

(m − 1 − k)!

for every (t, s) ∈ [0, T ]2, k = 0, ...,m − 1. Analogously, we obtain that there exists
C2 > 0 and for all ε > 0 there exists C ′

ε > 0 such that

(38) sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|−2h
2 (α!)−µ(β!)−ν(h!)−µ−ν+1〈ξ 〉|α|+h〈x〉|β|+h ·

· exp
[
−ε(|x | 1

θ + |ξ | 1
θ )
] ∣∣∣Dα

ξ Dβ
x Dm

t eh(t, s; x, ξ)
∣∣∣ ≤ C ′

ε.

The estimates (37), (38) imply that Dk
t eh ∈ C

(
[0, T ]2, 0∞

µνθ (R
2n)
)

for all k =
0, ...,m − 1. The continuity of Dm

t eh follows from the relations (29), (30). Further-
more, (37) and (38) give directly (32).

THEOREM 9. Let P(t, x, Dt , Dx ) be defined by (3), where a j (t, x, ξ) belong to

C
(

[0, T ], 0 pj,q j
µν (R2n)

)
, j = 1, ...,m. Then, for every (t, s) ∈ [0, T ]2, there exists

E(t, s) ∈ O PS∞
µνθ (R

n) satisfying (28) with symbol e(t, s; x, ξ) such that

D j
t e ∈ C

(
[0, T ]2, 0∞

µνθ (R
2n)
)

j = 0, ...,m.
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Proof. Starting from
∑
h≥0

eh and applying i) of Proposition 7, we can construct a symbol

e ∈ C
(

[0, T ]2, 0∞
µνθ (R

2n)
)
. The same argument can be repeated for the derivatives

of e. By construction, the corresponding operator E satisfies (28).

As an immediate consequence of Theorem 9, we obtain a parametrix for the inho-
mogeneous equation.

COROLLARY 1. Let f ∈ C ([0, T ], Sθ (Rn)) and s ∈ [0, T ]. Under the same hy-
potheses of Theorem 9 the function

u(t, x) =
∫ t

s
E(t, τ ) f (τ, ·)(x)dτ

is in Cm ([0, T ], Sθ (Rn)) and
{

P(t, x, Dt , Dx )u = f (t, x)+
∫ t

s R(t, τ ) f (τ, ·)(x)dτ (t, x) ∈ [0, T ] × Rn

Dk
t u(s, x) = 0 k = 0, ...,m − 1, x ∈ Rn

where E(t, τ ), R(t, τ ) are the same of Theorem 9. The same result holds when we
replace Sθ (Rn) with S′

θ (R
n).

5. Existence and uniqueness

With the help of the parametrix constructed in the previous section, we are able to prove
existence and uniqueness of the solution for the problem (2). For sake of simplicity we
prove the existence only for regular data, but we remark that the result holds when we
replace Sθ (Rn) with S′

θ (R
n).

THEOREM 10. Let f ∈ C ([0, T ], Sθ (Rn)) and gk ∈ Sθ (Rn), k = 0, ...,m − 1.
Under the same hypotheses of Theorem 9, for any given s ∈ [0, T ], there exists a
unique function u ∈ Cm ([0, T ], Sθ (Rn)) such that

{
P(t, x, Dt , Dx )u = f (t, x) (t, x) ∈ [0, T ] × R

n

Dk
t u(s, x) = gk(x) x ∈ Rn, k = 0, ...,m − 1.

Proof: Let us start by considering the case in which gk(x)= 0, k = 0, ...,m − 1.
We shall find h ∈ C ([0, T ], Sθ (Rn)) such that, for every given s ∈ [0, T ], the function

u(t, x) =
∫ t

s
E(t, τ ) [ f (τ, ·)+ h(τ, ·)] (x)dτ

belonging to Cm ([0, T ], Sθ (Rn)) , is a solution of the Cauchy problem

(39)

{
P(t, x, Dt , Dx )u = f (t, x) (t, x) ∈ [0, T ] × Rn

Dk
t u(s, x) = 0 k = 0, ...,m − 1, x ∈ R

n .
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Hypotheses and notations are the same as in Corollary 1, in particular E(t, τ ) is the
parametrix in Theorem 9. To this end, for g ∈ C ([0, T ], Sθ (Rn)) , define

Rg(t, x) =
∫ t

s
R(t, τ )g(τ, ·)(x)dτ (t, x) ∈ [0, T ] × R

n

where R(t, τ ) is the operator with kernel K R in C
(
[0, T ]2, Sθ (R2n)

)
appearing in (28).

By Corollary 1,we have to find a function h ∈ C ([0, T ], Sθ (Rn)) such that

h(t, x)+ Rh(t, x)+ R f (t, x) = 0

for every (t, x) ∈ [0, T ] × Rn . To conclude, it is then sufficient to show that the

series
∞∑
ν=1
(−1)νRν f (t, ·) converges in Sθ (Rn) to a function h(t, ·) in C ([0, T ], Sθ (Rn))

uniformly with respect to t ∈ [0, T ]. Now we have that

R(t, τ ) f (τ, ·)(x) =
∫

Rn
K R(t, τ, x, y) f (τ, y)dy (t, τ ) ∈ [0, T ]2, x ∈ R

n.

Using the notations of the Introduction, we deduce that there exist positive integers
A, B for which

(40) ‖R f (t, ·)‖A,B,n ≤ sup
[0,T ]2

‖K R(t, s, ·, ·)‖A,B,2n

∫ t

s

(∫

Rn
| f (τ, y)|dy

)
dτ ≤

sup
[0,T ]2

‖K R(t, s, ·, ·)‖A,B,2n

∫ t

s
‖ f (τ, ·)‖A,B,ndτ.

In particular, from (40) we deduce that

‖R f (t, ·)‖A,B,n ≤ sup
[0,T ]2

‖K R(t, s, ·, ·)‖A,B,2n · sup
[0,T ]

‖ f (t, ·)‖A,B,n · |t − s|.

Arguing by induction, let us suppose that for a fixed ν > 1

‖Rν f (t, ·)‖A,B,n ≤
(

sup
[0,T ]2

‖K R(t, s, ·, ·)‖A,B,2n

)ν
sup
[0,T ]

‖ f (t, ·)‖A,B,n
|t − s|ν
ν!

.

Then, we have

‖Rν+1 f (t, ·)‖A,B,n ≤ sup
[0,T ]2

‖K R(t, s, ·, ·)‖A,B,2n

∫ t

s
‖Rν f (τ, ·)‖A,B,ndτ ≤

(
sup

[0,T ]2
‖K R(t, s, ·, ·)‖A,B,2n

)ν+1

sup
[0,T ]

‖ f (t, ·)‖A,B,n

∫ t

s

|τ − s|ν
ν!

dτ ≤

(
sup

[0,T ]2
‖K R(t, s, ·, ·)‖A,B,2n

)ν+1

sup
[0,T ]

‖ f (t, ·)‖A,B,n
|t − s|ν+1

(ν + 1)!
.
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Hence,
∞∑
ν=1
(−1)νRν f (t, ·) converges in Sθ (Rn) uniformly with respect to t in [0, T ].

This gives solution to the problem with zero initial data. It is now standard to obtain
a result of existence of the solution for a homogeneous problem with non-zero initial
data. In fact, let gk ∈ Sθ (Rn), k = 0, ...,m − 1 and let

v(t, x) =
m−1∑

k=0

i k(t − s)k
gk(x)

k!
.

Then, arguing as before, we may construct a function h ∈ C ([0, T ], Sθ (Rn)) such that

u(t, x) = v(t, x)−
∫ t

s
E(t, τ ) [Pv(τ, ·) + h(τ, ·)] dτ

is a solution of the Cauchy problem

(41)

{
P(t, x, Dt , Dx )u = 0 (t, x) ∈ [0, T ] × Rn

Dk
t u(s, x) = gk(x) k = 0, ...,m − 1, x ∈ Rn .

The existence of a solution for the problem (2) directly follows from the existence
for (39) and (41). To conclude the proof of Theorem 10, we want to show that if u in
Cm

(
[0, T ], S′

θ (R
n)
)

is such that D j
t u(s, ·) = 0 for some s ∈ [0, T ] and Pu(t, ·) = 0

for all t ∈ [0, T ], then u(t, ·) = 0 on [0, T ]. The argument we will follow is the same
developed in [4], [6], so we will give only the main lines of the proof and leave the
details to the reader.
Let us consider the transpose t P of the operator P given by

t P =t am − Dt(
t am−1 − Dt (...− Dt (

ta1 − Dt )...))

where t a j is the transpose of the operator a j , j = 1, ...,m. By Proposition 8 we can

write ta j (t, x, Dx) = b j (t, x, Dx ) + r j (t, x, Dx ), where b j ∈ O PS pj,q j
µν (Rn) and r j

are θ−regularizing operators with kernel in C
(
[0, T ], Sθ (R2n)

)
.

Given f ∈ C ([0, T ], Sθ (Rn)) and s0 ∈ [0, T ], we want to prove the existence of a
function v ∈ Cm ([0, T ], Sθ (Rn)) , such that

(42)





t P(t, x, Dt , Dx )v = f (t, x) (t, x) ∈ [0, T ] × Rn

v(s0, x) = 0(
t a j − Dt (...− Dt (

ta1 − Dt )...)
)
v(s0, x) = 0 j = 0, ...,m − 1.

If such a function exists, then, given u as before, we can write
∫ s0

s
〈u(t, ·), f (t, ·)〉dt =

∫ s0

s
〈u(t, ·),t Pv(t, ·)〉dt =

∫ s0

s
〈Pu(t, ·), v(t, ·)〉dt = 0

from which it follows that u = 0.
The existence of a solution of the problem (42) can be obtained from the following
lemma.
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LEMMA 8. Let b j (t, x, ξ), j = 1, ...,m, be as before and assume that b j ∼∑
r≥0

b j,r in FS∞
µνθ (R

2n) uniformly with respect to t ∈ [0, T ].Then for every (t, s) in

[0, T ]2 there exists a m × m matrix of operators F k, j (t, s) ∈ O PS∞
µνθ (R

n),k, j =
0, ...,m − 1 such that:

i) their symbols f kj (t, s; x, ξ) belong to C
(

[0, T ]2, 0∞
µνθ (R

2n)
)

together with their

first order derivatives;
ii) Fkj (s, s) = −iδk

j I j, k = 0, ...,m − 1

iii) b j Fk,0 − Dt Fk, j−1 = Fk, j + Rk, j j = 1, ...,m −1, k = 0, ...,m −1
and bm Fk,0 − Dt Fk,m−1 = Rk,m

where Rk, j , Rk,m have their kernels in C
(
[0, T ]2, Sθ (R2n)

)
.

Proof. The lemma can be proved following the arguments in [4],[6] combined with the
global results obtained in the previous sections. We omit the details for sake of brevity.

From Lemma 8, using again the same arguments of [4], we can conclude that there
exist hk ∈ C

[
0, T ], Sθ (Rn)) such that the function

v(t, x) =
∫ t

s0

m−1∑

k=0

Fk,0(t, τ )
(

hk(τ, ·)+ δm−1
k f (τ, ·)

)
(x)dτ

is a solution of the problem (42).This concludes the proof of Theorem 10.

Acknowledgements. Thanks are due to Professor Luigi Rodino for helpful discussions
which influenced the final version of the paper.
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