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HYPERBOLIC EQUATIONS WITH NON-LIPSCHITZ

COEFFICIENTS

Abstract. The goal of this article is to present new trends in the the-
ory of solutions valued in Sobolev spaces for strictly hyperbolic Cauchy
problems of second order with non-Lipschitz coefficients. A very precise
relation between oscillating behaviour of coefficients and loss of deriva-
tives of solution is given. Several methods as energy method together with
sharp Gårding’s inequality and construction of parametrix are used to get
optimal results. Counter-examples complete the article.

1. Introduction

In this course we are interested in the Cauchy problem

ut t −
n∑

k,l=1

akl(t, x)uxk xl = 0 on (0, T )× Rn ,

(1)

u(0, x) = ϕ(x), ut (0, x) = ψ(x) for x ∈ Rn .

Setting a(t, x, ξ) :=
n∑

k,l=1
akl(t, x)ξkξl we suppose with a positive constant C the strict

hyperbolicity assumption

a(t, x, ξ) ≥ C |ξ |2(2)

with akl = alk , k, l = 1, · · · , n.

DEFINITION 1. The Cauchy problem (1) is well-posed if we can fix function spaces
A1, A2 for the data ϕ,ψ in such a way that there exists a uniquely determined solution
u ∈ C([0, T ], B1) ∩ C1([0, T ], B2) possessing the domain of dependence property.

The question we will discuss in this course is how the regularity of the coefficients
akl = akl(t, x) is related to the well-posedness of the Cauchy problem (1).

∗The author would like to express many thanks to Prof’s L. Rodino and P. Boggiatto and their col-
laborators for the organization of Bimestre Intensivo Microlocal Analysis and Related Subjects held at the
University of Torino May-June 2003. The author thanks the Department of Mathematics for hospitality.
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136 M. Reissig

2. Low regularity of coefficients

2.1. L1-property with respect to t

In [10] the authors studied the Cauchy problem

ut t −
n∑

k,l=1

∂xk (akl(t, x)∂xl u) = 0 on (0, T )×� ,

u(0, x) = ϕ(x) , ut(0, x) = ψ(x) on � ,

where � is an arbitrary open set of Rn and T > 0. The coefficients of the elliptic
operator in self-adjoint form satisfy the next analyticity assumption:

For any compact set K of� and for any multi-index β there exist a constant AK and a
function3K = 3K (t) belonging to L1(0, T ) such that

|
n∑

k,l=1

∂βx akl(t, x)| ≤ 3K (t)A
|β|
K |β|! .

Moreover, the strict hyperbolicity condition

λ0|ξ |2 ≤
n∑

k,l=1

akl(t, x)ξkξl ≤ 3(t)|ξ |2

is satisfied with λ0 > 0 and
√
3(t) ∈ L1(0, T ).

THEOREM 1. Let us suppose these assumptions. If the data ϕ and ψ are real
analytic on �, then there exists a unique solution u = u(t, x) on the conoid 0T

� ⊂
Rn+1. The conoid is defined by

0T
� =

{
(t, x) : dist (x,Rn \�) >

T∫

0

√
3(s)ds , t ∈ [0, T ]

}
.

The solution is C1 in t and real analytic in x.

QUESTIONS. The Cauchy problem can be studied for elliptic equations in the case
of analytic data. Why do we need the hyperbolicity assumption? What is the difference
between the hyperbolic and the elliptic case?

We know from the results of [8] for the Cauchy problem

ut t − a(t)ux x = 0 , u(0, x) = ϕ(x) , ut(0, x) = ψ(x) ,

that assumptions like a ∈ L p(0, T ), p > 1, or even a ∈ C[0, T ], don’t allow to
weaken the analyticity assumption for data ϕ,ψ to get well-posedness results.
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THEOREM 2. For any class E{Mh} of infinitely differentiable functions which
strictly contains the space A of real analytic functions on R there exists a coefficient
a = a(t) ∈ C[0, T ], a(t) ≥ λ > 0, such that the above Cauchy problem is not
well-posed in E{Mh}.

2.2. Cκ -property with respect to t

Let us start with the Cauchy problem

ut t − a(t)ux x = 0, u(0, x) = ϕ(x), ut (0, x) = ψ(x) ,

where a ∈ Cκ [0, T ], κ ∈ (0, 1). From [5] we have the following result:

THEOREM 3. If a ∈ Cκ [0, T ], then this Cauchy problem is well-posed in Gevrey
classes Gs for s < 1

1−κ . To ϕ, ψ ∈ Gs we have a uniquely determined solution

u ∈ C2([0, T ],Gs).

We can use different definitions for Gs (by the behaviour of derivatives on compact
subsets, by the behaviour of Fourier transform). If

• s = 1
1−κ , then we should be able to prove local existence in t ;

• s > 1
1−κ , then there is no well-posedness in Gs .

The paper [22] is concerned with the strictly hyperbolic Cauchy problem

ut t −
n∑

k,l=1

akl(t, x)uxk xl + lower order terms = f (t, x)

u(0, x) = ϕ(x), ut(0, x) = ψ(x),

with coefficients depending Hölderian on t and Gevrey on x . It was proved well-
posedness in Gevrey spaces Gs . Here Gs stays for a scale of Banach spaces.

One should understand

• how to define the Gevrey space with respect to x , maybe some suitable depen-
dence on t is reasonable, thus scales of Gevrey spaces appear;

• the difference between s = 1
1−κ and s < 1

1−κ , in the first case the solution
should exist locally, in the second case globally in t if we constructed the right
scale of Gevrey spaces.

REMARK 1. In the proof of Theorem 3 we use instead of a ∈ Cκ [0, T ] the condi-

tion
T−τ∫

0
|a(t + τ) − a(t)|dt ≤ A τ κ for τ ∈ [0, T/2]. But then the solution belongs

only to H 2,1([0, T ],Gs).
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3. High regularity of coefficients

3.1. Lip-property with respect to t

Let us suppose a ∈ C1[0, T ], a(t) ≥ C > 0, in the strictly hyperbolic Cauchy problem

ut t − a(t)ux x = 0,

u(0, x) = ϕ(x), ut(0, x) = ψ(x).

Using the energy method and Gronwall’s Lemma one can prove immediately the well-
posedness in Sobolev spaces H s, that is, if ϕ ∈ H s+1(Rn), ψ ∈ H s(Rn), then there
exists a uniquely determined solution u ∈ C([0, T ], H s+1)∩C1([0, T ], H s) (s ∈ N0).
A more precise result is given in [20].

THEOREM 4. If the coefficients akl ∈ C([0, T ], Bs) ∩ C1([0, T ], B0) and
ϕ ∈ H s+1 , ψ ∈ H s, then there exists a uniquely determined solution u ∈
C([0, T ], H s+1) ∩ C1([0, T ], H s). Moreover, the energy inequality Ek(u)(t) ≤
Ck Ek(u)(0) holds for 0 ≤ k ≤ s, where Ek(u) denotes the energy of k’th order of
the solution u.

By B∞ we denote the space of infinitely differentiable functions having bounded
derivatives on Rn. Its topology is generated by the family of norms of spaces B s, s ∈
N, consisting of functions with bounded derivatives up to order s.

REMARK 2. For our starting problem we can suppose instead of a ∈ C 1[0, T ]

the condition
T−τ∫

0
|a(t + τ) − a(t)|dt ≤ A τ for τ ∈ [0, T/2]. Then we have the

same statement as in Theorem 4. The only difference is that the solution belongs to
C([0, T ], H s+1)∩ H 1,2([0, T ], H s) ∩H 2,1([0, T ], H s−1).

PROBLEM 1. Use the literature to get information about whether one can weaken
the assumptions for akl from Theorem 4 to show the energy estimates Ek(u)(t) ≤
Ck Ek(u)(0) for 0 ≤ k ≤ s.

All results from this section imply that no loss of derivatives appears, that is, the
energy Ek(u)(t) of k-th order can be estimated by the energy Ek(u)(0) of k-th order.

Let us recall some standard arguments:

• If the coefficients have more regularity C1([0, T ], B∞), and the data ϕ and ψ
are from H∞, then the Cauchy problem is H∞ well-posed, that is, there exists a
uniquely determined solution from C2([0, T ], H∞).
This result follows from the energy inequality.

• Together with the domain of dependence property from H∞ well-posedness we
conclude C∞ well-posedness, that is, to arbitrary data ϕ and ψ from C∞ there
exists a uniquely determined solution from C2([0, T ],C∞).
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This result follows from the energy inequality and the domain of dependence
property.

Results for domain of dependence property:

THEOREM 5 ([5]). Let us consider the strictly hyperbolic Cauchy problem

ut t −
n∑

k,l=1

akl(t)uxk xl = f (t, x), u(0, x) = ϕ(x), ut(0, x) = ψ(x) .

The coefficients akl = alk are real and belong to L1(0, T ). Moreover,
n∑

k,l=1
akl(t)ξkξl ≥

λ0|ξ |2 with λ0 > 0. If u ∈ H 2,1([0, T ],A′) is a solution for given ϕ,ψ ∈ A′ and
f ∈ L1([0, T ],A′), then from ϕ ≡ ψ ≡ f ≡ 0 for |x − x0| < ρ it follows that u ≡ 0
on the set

{(t, x) ∈ [0, T ]× Rn : |x − x0| < ρ −
t∫

0

√
|a(s)|ds}.

Here |a(t)| denotes the Euclidean matrix norm, A′ denotes the space of analytic func-
tionals.

THEOREM 6 ([20]). Let us consider the strictly hyperbolic Cauchy problem

ut t −
n∑

k,l=1

akl(t, x)uxk xl = f (t, x), u(0, x) = ϕ(x), ut(0, x) = ψ(x).

The real coefficients akl = alk satisfy akl ∈ C1+σ ([0, T ]×Rn)∩C([0, T ], B0). Let us
define λ2

max := sup
|ξ |=1,[0,T ]×Rn

akl(t, x)ξkξl . Then ϕ = ψ ≡ 0 on D∩{t = 0} and f ≡ 0

on D implies u ≡ 0 on D, where D denotes the interior for t ≥ 0 of the backward cone
{(x, t) : |x − x0| = λmax(t0 − t), (x0, t0) ∈ (0, T ]× Rn}.

3.2. Finite loss of derivatives

In this section we are interested in weakening the Lip-property for the coefficients
akl = akl(t) in such a way, that we can prove energy inequalities of the form
Es−s0(u)(t) ≤ Es(u)(t), where s0 > 0. The value s0 describes the so-called loss
of derivatives.

Global condition

The next idea goes back to [5]. The authors supposed the so-called LogLip-property,
that is, the coefficients akl satisfy

|akl(t1)− akl(t2)| ≤ C|t1 − t2| | ln |t1 − t2| | for all t1, t2 ∈ [0, T ], t1 6= t2 .
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More precisely, the authors used the condition

T−τ∫

0

|akl(t + τ)− akl(t)|dt ≤ C τ(| ln τ | + 1) for τ ∈ (0, T/2] .

Under this condition well-posedness in C∞ was proved.

As far as the author knows there is no classification of LogLip-behaviour with
respect to the related loss of derivatives. He expects the following classification for
solutions of the Cauchy problem u t t−a(t)ux x = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x):

Let us suppose |a(t1)−a(t2)| ≤ C|t1− t2| | ln |t1− t2||γ for all t1, t2 ∈ [0, T ], t1 6=
t2. Then the energy estimates Es−s0(u)(t) ≤ C Es(u)(0) should hold, where

• s0 = 0 if γ = 0 ,

• s0 is arbitrary small and positive if γ ∈ (0, 1) ,

• s0 is positive if γ = 1 ,

• there is no positive constant s0 if γ > 1 (infinite loss of derivatives).

The statement for γ = 0 can be found in [5]. The counter-example from [9] implies
the statement for γ > 1.

OPEN PROBLEM 1. Prove the above statement for γ ∈ (0, 1)!

OPEN PROBLEM 2. The results of [9] show that γ = 1 gives a finite loss of deriva-
tives. Do we have a concrete example which shows that the solution has really a finite
loss of derivatives?

We already mentioned the paper [9]. In this paper the authors studied strictly hy-
perbolic Cauchy problems with coefficients of the principal part depending LogLip on
spatial and time variables.

• If the principal part is as in (1.1) but with an elliptic operator in divergence form,
then the authors derive energy estimates depending on a suitable low energy of
the data and of the right-hand side.

• If the principal part is as in (1.1) but with coefficients which are B∞ in x and
LogLip in t , then the energy estimates depending on arbitrary high energy of the
data and of the right-hand side.

• In all these energy estimates which exist for t ∈ [0, T ∗], where T ∗ is a suitable
positive constant independent of the regularity of the data and right-hand side,
the loss of derivatives depends on t .

It is clear, that these energy estimates are an important tool to prove (locally in t) well-
posedness results.
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Local condition

A second possibility to weaken the Lip-property with respect to t goes back to [6].
Under the assumptions

a ∈ C[0, T ] ∩ C1(0, T ], |ta′(t)| ≤ C for t ∈ (0, T ],(3)

the authors proved a C∞ well-posedness result for ut t − a(t)ux x = 0, u(0, x) =
ϕ(x), ut(0, x) = ψ(x) (even for more general Cauchy problems). They observed the
effect of a finite loss of derivatives.

REMARK 3. Let us compare the local condition with the global one from the pre-
vious section. If a = a(t) ∈ LogLip[0, T ], then the coefficient may have an irregular
behaviour (in comparison with the Lip-property) on the whole interval [0, T ]. In (3)
the coefficient has an irregular behaviour only at t = 0. Away from t = 0 it belongs to
C1. Coefficients satisfying (3) don’t fulfil the non-local condition

T−τ∫

0

|a(t + τ)− a(t)|dt ≤ Cτ(| ln τ | + 1) for τ ∈ (0, T/2] .

We will prove the next theorem by using the energy method and the following gener-
alization of Gronwall’s inequality to differential inequalities with singular coefficients.
The method of proof differs from that of [6].

LEMMA 1 (LEMMA OF NERSESJAN [21]). Let us consider the differential in-
equality

y′(t) ≤ K (t)y(t)+ f (t)

for t ∈ (0, T ), where the functions K = K (t) and f = f (t) belong to C(0, T ], T > 0.
Under the assumptions

•
δ∫

0
K (τ )dτ = ∞ ,

T∫
δ

K (τ )dτ <∞ ,

• lim
δ→+0

t∫
δ

exp

( t∫
s

K (τ )dτ

)
f (s)ds exists,

• lim
δ→+0

y(δ) exp

(
t∫
δ

K (τ )dτ

)
= 0

for all δ ∈ (0, t) and t ∈ (0, T ], every solution belonging to C[0, T ]∩C 1(0, T ] satisfies

y(t) ≤
t∫

0

exp
( t∫

s

K (τ )dτ
)

f (s)ds .
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THEOREM 7. Let us consider the strictly hyperbolic Cauchy problem

ut t − a(t)ux x = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x) ,
where a = a(t) satisfies with γ ≥ 0 the conditions

a ∈ C[0, T ] ∩ C1(0, T ], |tγ a′(t)| ≤ C for t ∈ (0, T ] .(4)

Then this Cauchy problem is C∞ well-posed iff γ ∈ [0, 1]. If

• γ ∈ [0, 1), then we have no loss of derivatives, that is, the energy inequalities
Es(u)(t) ≤ Cs Es(u)(0) hold for s ≥ 0;

• γ = 1, then we have a finite loss of derivatives, that is, the energy inequalities
Es−s0(u)(t) ≤ Cs Es(u)(0) hold for large s with a positive constant s0.

Proof. The proof will be divided into several steps.

Step 1. Cone of dependence
Let u ∈ C2([0, T ],C∞(R)) be a solution of the Cauchy problem. If χ = χ(x) ∈
C∞0 (R) and χ ≡ 1 on [x0− ρ, x0 + ρ], then v = χ u ∈ C2([0, T ],A′) is a solution of

vt t − a(t)vx x = f (t, x) , v(0, x) = ϕ̃(x), vt (0, x) = ψ̃(x) ,
where ϕ̃, ψ̃ ∈ C∞0 (R) and f ∈ C([0, T ],A′). Due to Theorem 5 we know that v =

v(t, x) is uniquely determined in {(t, x) ∈ [0, T ]× Rn : |x − x0| < ρ −
t∫

0

√|a(s)|ds}.
Hence, u is uniquely determined in this set, too. This implies ϕ ≡ ψ ≡ 0 on [x0 −
ρ, x0+ρ] gives u ≡ 0 in this set. It remains to derive an energy inequality (see Section
3.1).

Step 2. The statement for γ ∈ [0, 1)
If γ ∈ [0, 1), then

T−τ∫

0

∣∣∣∣
a(t + τ)− a(t)

τ

∣∣∣∣ dt ≤
T−τ∫

0

|a′(θ(t, τ ))|dt ≤
T−τ∫

0

C

tγ
dt ≤ C .

Thus the results from [5] are applicable.

Step 3. The statement for γ > 1
From the results of [6], we understand, that there is no C∞ well-posedness for γ > 1.
One can only prove well-posedness in suitable Gevrey spaces. Now let us consider the
remaining case γ = 1.

Step 4. A family of auxiliary problems
We solve the next family of auxiliary problems:

u(0)t t = 0 , u(0)(0, x) = ϕ(x) , u(0)t (0, x) = ψ(x) ,
u(1)t t = a(t)u(0)x x , u(1)(0, x) = u(1)t (0, x) = 0 ,

u(2)t t = a(t)u(1)x x , u(2)(0, x) = u(2)t (0, x) = 0 , · · · ,
u(r)t t = a(t)u(r−1)

x x , u(r)(0, x) = u(r)t (0, x) = 0 .
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For the solution of our starting problem we choose the representation u =
r∑

k=0
u(k)+ v.

Then v solves the Cauchy problem vt t − a(t)vx x = a(t)u(r)x x , v(0, x) = vt (0, x) = 0 .
Now let us determine the asymptotic behaviour of u(r) near t = 0. We have

|u(0)(t, x)| ≤ |ϕ(x)| + t|ψ(x)| , |u(1)(t, x)| ≤ C t2(|ϕx x(x)| + t|ψx x(x)|),
|u(2)(t, x)| ≤ C t4(|∂4

xϕ| + t|∂4
xψ|)

and so on.

LEMMA 2. If ϕ ∈ H s+1 , ψ ∈ H s, then u(k) ∈ C2([0, T ], H s−2k) and
‖u(k)‖C([0,t],H s−2k) ≤ Ck t2k for k = 0, · · · , r and s ≥ 2r + 2.

Step 5. Application of Nersesjan’s lemma
Now we are interested in deriving an energy inequality for a given solution v = v(t, x)
to the Cauchy problem

vt t − a(t)vx x = a(t)u(r)x x , v(0, x) = vt (0, x) = 0 .

Defining the usual energy we obtain

E ′(v)(t) ≤ Ca|a′(t)| E(v)(t)+ E(v)(t) + C‖u(r)x x (t, ·)‖2L2(R)

≤ Ca

t
E(v)(t) + E(v)(t)+ Ca‖u(r)x x (t, ·)‖2L2(R)

≤ Ca

t
E(v)(t) + E(v)(t)+ Ca,r t4r .

If 4r > Ca (Ca depends on a = a(t) only), then Lemma 1 is applicable with y(t) =
E(v)(t), K (t) = Ca

t and f (t) = Ca,r t4r . It follows that E(v)(t) ≤ Ca,r t4r .

LEMMA 3. If v is a solution of the above Cauchy problem which has an energy,
then this energy fulfils E(v)(t) ≤ Ca,r t4r .

Step 6. Existence of a solution
To prove the existence we consider for ε > 0 the auxiliary Cauchy problems

vt t − a(t + ε)vx x = a(t)u(r)x x ∈ C([0, T ], L2(R)) ,

with homogeneous data. Then aε = aε(t) = a(t + ε) ∈ C1[0, T ]. For solutions
vε ∈ C1([0, T ], L2(R)) which exist from strictly hyperbolic theory, the same energy
inequality from the previous step holds. Usual convergence theorems prove the exis-
tence of a solution v = v(t, x). The loss of derivatives is s0 = 2r + 2. All statements
of our theorem are proved.

�
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A refined classification of oscillating behaviour

Let us suppose more regularity for a, let us say, a ∈ L∞[0, T ] ∩ C2(0, T ]. The higher
regularity allows us to introduce a refined classification of oscillations.

DEFINITION 2. Let us assume additionally the condition

|a(k)(t)| ≤ Ck

(
1

t

(
ln

1

t

)γ)k

, for k = 1, 2 .(5)

We say, that the oscillating behaviour of a is

• very slow if γ = 0 ,

• slow if γ ∈ (0, 1) ,

• fast if γ = 1 ,

• very fast if condition (3.3) is not satisfied for γ = 1 .

EXAMPLE 1. If a = a(t) = 2+ sin
(

ln 1
t

)α
, then the oscillations produced by the

sin term are very slow (slow, fast, very fast) if α ≤ 1 (α ∈ (1, 2), α = 2, α > 2).

Now we are going to prove the next result yielding a connection between the type
of oscillations and the loss of derivatives which appears. The proof uses ideas from
the papers [7] and [14]. The main goal is the construction of WKB-solutions. We
will sketch our approach, which is a universal one in the sense, that it can be used to
study more general models from non-Lipschitz theory, weakly hyperbolic theory and
the theory of L p − Lq decay estimates.

THEOREM 8. Let us consider

ut t − a(t)ux x = 0 , u(0, x) = ϕ(x) , ut(0, x) = ψ(x) ,

where a = a(t) satisfies the condition (5), and the data ϕ , ψ belong to H s+1, H s

respectively. Then the following energy inequality holds:

E(u)(t) |H s−s0 ≤ C(T )E(u)(0) |H s for all t ∈ (0, T ] ,(6)

where

• s0 = 0 if γ = 0,

• s0 is an arbitrary small positive constant if γ ∈ (0, 1),

• s0 is a positive constant if γ = 1,

• there does not exist a positive constant s0 satisfying (6) if γ > 1, that is, we have
an infinite loss of derivatives.
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Proof. The proof will be divided into several steps. Without loss of generality we can
suppose that T is small. After partial Fourier transformation we obtain

vt t + a(t)ξ2v = 0 , v(0, ξ) = ϕ̂(ξ) , vt (0, ξ) = ψ̂(ξ) .(7)

Step 1. Zones
We divide the phase space {(t, ξ) ∈ [0, T ]×R : |ξ | ≥ M} into two zones by using the
function t = tξ which solves tξ 〈ξ 〉 = N(ln〈ξ 〉)γ . The constant N is determined later.
Then the pseudo-differential zone Z pd(N), hyperbolic zone Zhyp(N), respectively, is
defined by

Z pd(N) = {(t, ξ) : t ≤ tξ }, Zhyp(N) = {(t, ξ) : t ≥ tξ } .

Step 2. Symbols
To given real numbers m1,m2 ≥ 0, r ≤ 2, we define

Sr {m1,m2} = {d = d(t, ξ) ∈ L∞([0, T ]× R) :

|Dk
t Dα

ξ d(t, ξ)| ≤ Ck,α〈ξ 〉m1−|α|
(

1

t

(
ln

1

t

)γ)m2+k

, k ≤ r, (t, ξ) ∈ Zhyp(N)}.

These classes of symbols are only defined in Zhyp(N).

Properties:

• Sr+1{m1,m2} ⊂ Sr {m1,m2};

• Sr {m1 − p,m2} ⊂ Sr {m1,m2} for all p ≥ 0;

• Sr {m1 − p,m2 + p} ⊂ Sr {m1,m2} for all p ≥ 0, this follows from the
definition of Zhyp(N);

• if a ∈ Sr {m1,m2} and b ∈ Sr {k1, k2}, then a b ∈ Sr {m1 + k1,m2 + k2};
• if a ∈ Sr {m1,m2}, then Dt a ∈ Sr−1{m1,m2 + 1}, and Dα

ξ a ∈ Sr {m1 −
|α|,m2}.

Step 3. Considerations in Z pd(N)
Setting V = (ξv, Dt v)

T the equation from (7) can be transformed to the system of first
order

Dt V =
(

0 ξ

a(t)ξ 0

)
V =: A(t, ξ)V .(8)

We are interested in the fundamental solution X = X (t, r, ξ) to (8) with X (r, r, ξ) = I
(identity matrix). Using the matrizant we can write X in an explicit way by

X (t, r, ξ) = I +
∞∑

k=1

i k

t∫

r

A(t1, ξ)

t1∫

r

A(t2, ξ) · · ·
tk−1∫

r

A(tk, ξ)dtk · · · dt1 .



146 M. Reissig

The norm ‖A(t, ξ)‖ can be estimated by C〈ξ 〉. Consequently

tξ∫

0

‖A(s, ξ)‖ds ≤ Ctξ 〈ξ 〉 = CN (ln〈ξ 〉)γ .

The solution of the Cauchy problem to (8) with V (0, ξ) = V0(ξ) can be represented in
the form V (t, ξ) = X (t, 0, ξ)V0(ξ). Using

‖X (t, 0, ξ)‖ ≤ exp(

t∫

0

‖A(s, ξ)‖ds) ≤ exp(CN (ln〈ξ 〉)γ )

the next result follows.

LEMMA 4. The solution to (8) with Cauchy condition V (0, ξ) = V0(ξ) satisfies in
Z pd(N) the energy estimate

|V (t, ξ)| ≤ exp(CN (ln〈ξ 〉)γ )|V0(ξ)| .
REMARK 4. In Z pd(N) we are near to the line t = 0, where the derivative of

the coefficient a = a(t) has an irregular behaviour. It is not a good idea to use the
hyperbolic energy (

√
a(t)ξ v, Dtv) there because of the “bad” behaviour of a ′ = a′(t).

To avoid this fact we introduce the energy (ξ v, Dtv).

Step 4. Two steps of diagonalization procedure
Substituting V := (

√
a(t)ξ v, Dtv)

T (hyperbolic energy) brings the system of first
order

Dt V −
(

0
√

a(t)ξ√
a(t)ξ 0

)
V − Dt a

2a

(
1 0
0 0

)
V = 0 .(9)

The first matrix belongs to the symbol class S2{1, 0}, the second one belongs to

S1{0, 1}. Setting V0 := MV, M = 1
2

(
1 −1
1 1

)
, this system can be transformed to

the first order system

Dt V0 − M

(
0

√
a(t)ξ√

a(t)ξ 0

)
M−1V0 − M

Dt a

2a

(
1 0
0 0

)
M−1V0 = 0 ,

Dt V0 −
(
τ1 0
0 τ2

)
V0 −

Dta

4a

(
0 1
1 0

)
V0 = 0 ,

where τ1/2 := ∓√a(t)ξ + 1
4

Dt a
a . Thus we can write this system in the form Dt V0 −

DV0 − R0V0 = 0, where

D :=
(
τ1 0
0 τ2

)
∈ S1{1, 0} ; R0 =

1

4

Dt a

a

(
0 1
1 0

)
∈ S1{0, 1} .
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This step of diagonalization is the diagonalization of our starting system (9) modulo
R0 ∈ S1{0, 1}.

Let us set

N
(1) := −1

4

Dt a

a

(
0 1

τ1−τ2
1

τ2−τ1
0

)
= Dt a

8a3/2ξ

(
0 1
−1 0

)
.

Then the matrix N1 := I +N (1) is invertible in Zhyp(N) for sufficiently large N . This
follows from the definition of Zhyp(N), from

‖N1 − I‖ = ‖N (1)‖ ≤ Ca
1

t|ξ |

(
ln

1

t

)γ
≤ Ca

N

(
ln 1

t

ln〈ξ 〉

)γ
≤ Ca

N
≤ 1

2
,

if N is large, and from

ln〈ξ 〉 − ln
1

t
≥ ln N + ln(ln〈ξ 〉)γ .

We observe that on the one hand DN1 − N1D = R0 and on the other hand (Dt −
D − R0)N1 = N1(Dt − D − R1), where R1 := −N−1

1 (DtN
(1) − R0N

(1)). Taking
account of N (1) ∈ S1{−1, 1}, N1 ∈ S1{0, 0} and R1 ∈ S0{−1, 2} the transformation
V0 =: N1V1 gives the following first order system:

Dt V1 −DV1 − R1V1 = 0 , D ∈ S1{1, 0} , R1 ∈ S0{−1, 2} .

The second step of diagonalization is the diagonalization of our starting system (9)
modulo R1 ∈ S0{−1, 2}.
Step 5. Representation of solution of the Cauchy problem
Now let us devote to the Cauchy problem

Dt V1 −DV1 − R1V1 = 0 ,

(10)

V1(tξ , ξ) = V1,0(ξ) := N−1
1 (tξ , ξ)M V (tξ , ξ).

If we have a solution V1 = V1(t, ξ) in Zhyp(N), then V = V (t, ξ) =
M−1 N1(t, ξ)V1(t, ξ) solves (9) with given V (tξ , ξ) on t = tξ .
The matrix-valued function

E2(t, r, ξ) :=




exp

(
i

t∫
r
(−√a(s)ξ + Dsa(s)

4a(s) )ds

)
0

0 exp

(
i

t∫
r
(
√

a(s)ξ + Dsa(s)
4a(s) )ds

)




solves the Cauchy problem (Dt − D)E(t, r, ξ) = 0, E(r, r, ξ) = I . We define the
matrix-valued function H = H (t, r, ξ), t, r ≥ tξ , by

H (t, r, ξ) := E2(r, t, ξ)R1(t, ξ)E2(t, r, ξ) .
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Using the fact that
t∫

r

∂sa(s)
4a(s) ds = ln a(s)1/4 |tr (this integral depends only on a, but is

independent of the influence of a ′) the function H satisfies in Zhyp(N) the estimate

‖H (t, r, ξ)‖ ≤ C

〈ξ 〉

(
1

t

(
ln

1

t

)γ)2

.(11)

Finally, we define the matrix-valued function Q = Q(t, r, ξ) is defined by

Q(t, r, ξ) :=
∞∑

k=1

i k

t∫

r

H (t1, r, ξ)dt1

t1∫

r

H (t2, r, ξ)dt2 · · ·
tk−1∫

r

H (tk, r, ξ)dtk .

The reason for introducing the function Q is that

V1 = V1(t, ξ) := E2(t, tξ , ξ)(I + Q(t, tξ , ξ))V1,0(ξ)

represents a solution to (10).

Step 6. Basic estimate in Zhyp(N)

Using (11) and the estimate
t∫

tξ
‖H (s, tξ , ξ)‖ds ≤ CN (ln〈ξ 〉)γ we get from the repre-

sentation for Q immediately

‖Q(t, tξ , ξ)‖ ≤ exp
( t∫

tξ

‖H (s, tξ , ξ)‖ds
)
≤ exp(CN (ln〈ξ 〉)γ ) .(12)

Summarizing the statements from the previous steps gives together with (12) the next
result.

LEMMA 5. The solution to (9) with Cauchy condition on t = tξ satisfies in
Zhyp(N) the energy estimate

|V (t, ξ)| ≤ C exp(CN (ln〈ξ 〉)γ )|V (tξ , ξ)| .

Step 7. Conclusions
From Lemmas 4 and 5 we conclude

LEMMA 6. The solution v = v(t, ξ) to

vt t + a(t)ξ2v = 0 , v(0, ξ) = ϕ̂(ξ) , vt(0, ξ) = ψ̂(ξ)

satisfies the a-priori estimate
∣∣∣∣
(
ξ v(t, ξ)
vt (t, ξ)

)∣∣∣∣ ≤ C exp(CN (ln〈ξ 〉)γ )
∣∣∣∣
(
ξ ϕ̂(ξ)

ψ̂(ξ)

)∣∣∣∣

for all (t, ξ) ∈ [0, T ]× R.
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The statement of Lemma 6 proves the statements of Theorem 8 for γ ∈ [0, 1]. The
statement for γ > 1 follows from Theorem 9 (see next chapter) if we choose in this
theorem ω(t) = lnq C(q)

t with q ≥ 2 .

�

REMARKS

1) From Theorem 5 and 8 we conclude the C∞ well-posedness of the Cauchy problem

ut t − a(t)ux x = 0 , u(0, x) = ϕ(x) , ut (0, x) = ψ(x),

under the assumptions a ∈ L∞[0, T ] ∩ C2(0, T ] and (5) for γ ∈ [0, 1].
2) Without any new problems all the results can be generalized to

ut t −
n∑

k,l=1

akl(t)uxk xl = 0 , u(0, x) = ϕ(x), ut (0, x) = ψ(x),

with corresponding assumptions for akl = akl(t).
3) If we stop the diagonalization procedure after the first step, then we have to assume
in Theorem 8 the condition (4). Consequently, we proposed another way to prove the
results of Theorem 7. This approach was used in [6].

OPEN PROBLEM 3. In this section we have given a very effective classification of
oscillations under the assumption a ∈ L∞[0, T ] ∩ C2(0, T ]. At the moment it does
not seem to be clear what kind of oscillations we have if a ∈ L∞[0, T ] ∩ C1(0, T ]

satisfies |a′(t)| ≤ C 1
t

(
ln 1

t

)γ
, γ > 0. If γ = 0, we have a finite loss of derivatives.

What happens if γ > 0? To study this problem we have to use in a correct way the low
regularity C1(0, T ] (see next chapters).

OPEN PROBLEM 4. Let us consider the strictly hyperbolic Cauchy problem

ut t + b(t)uxt − a(t)ux x = 0 , u(0, x) = ϕ(x), ut(0, x) = ψ(x) .

Does the existence of a mixed derivative of second order change the classification
of oscillations from Definition 3.1? From the results of [1] we know that a, b ∈
LogLip [0, T ] implies C∞ well-posedness of the above Cauchy problem.

REMARK 5. Mixing of different non-regular effects
The survey article [11] gives results if we mix the different non-regular effects of
Hölder regularity of a = a(t) on [0, T ] and L p integrability of a weighted deriva-
tive on [0, T ]. Among all these results we mention only that one which guarantees C∞

well-posedness of

ut t − a(t)ux x = 0 , u(0, x) = ϕ(x) , ut (0, x) = ψ(x),

namely, a = a(t) satisfies tq∂ta ∈ L p(0, T ) for q + 1/p = 1.
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4. Hirosawa’s counter-example

To end the proof of Theorem 8 we cite a result from [7] which explains that very fast
oscillations have a deteriorating influence on C∞ well-posedness.

THEOREM 9. [see [7]] Let ω : (0, 1/2] → (0,∞) be a continuous, decreasing
function satisfying limω(s) = ∞ for s → +0 and ω(s/2) ≤ c ω(s) for all s ∈
(0, 1/2]. Then there exists a function a ∈ C∞(R \ {0}) ∩ C0(R) with the following
properties:

• 1/2 ≤ a(t) ≤ 3/2 for all t ∈ R;

• there exists a suitable positive T0 and to each p a positive constant C p such that

|a(p)(t)| ≤ C pω(t)
(1

t
ln

1

t

)p
for all t ∈ (0, T0) ;

• there exist two functions ϕ and ψ from C∞(R) such that the Cauchy problem
ut t − a(t)ux x = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), has no solution in
C0([0, r), D′(R)) for all r > 0.

The coefficient a = a(t) possesses the regularity a ∈ C∞(R \ {0}). To attack
the open problem 3 it is valuable to have a counter-example from [14] with lower
regularity a ∈ C2(R \ {0}). To understand this counter-example let us devote to the
Cauchy problem

uss − b
(
(ln

1

s
)q
)2
4 u = 0 , (s, x) ∈ (0, 1]× Rn ,

(13)

u(1, x) = ϕ(x), us(1, x) = ψ(x), x ∈ Rn .

Then the results of [14] imply the next statement.

THEOREM 10. Let us suppose that b = b(s) is a positive, 1-periodic, non-constant
function belonging to C2. If q > 2, then there exist data ϕ,ψ ∈ C∞(Rn) such that
(13) has no solution in C2([0, 1],D′(Rn)).

Proof. We divide the proof into several steps.
Due to the cone of dependence property it is sufficient to prove H∞ well-posedness.
We will show that there exist positive real numbers sξ = s(|ξ |) tending to 0 as |ξ | tends
to infinity and data ϕ,ψ ∈ H∞(Rn) such that with suitable positive constants C1,C2,

and C3,

|ξ | |û(sξ , ξ)| + |ûs(sξ , ξ)| ≥ C1|ξ |
1
2 exp(C2(ln C3|ξ |)γ ) .

Here 1 < γ < q − 1. This estimate violates H∞ well-posedness of the Cauchy
problem (13). The assumption b ∈ C2 guarantees that a unique solution u ∈
C2((0, T ], H∞(Rn)) exists.
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Step 1. Derivation of an auxiliary Cauchy problem
After partial Fourier transformation we get from (13)

vss + b
(
(ln

1

s
)q
)2
|ξ |2v = 0 , (s, ξ) ∈ (0, 1]× Rn ,

v(1, ξ) = ϕ̂(ξ) , vs(1, ξ) = ψ̂(ξ) , ξ ∈ Rn ,

where v(s, ξ) = û(s, ξ). Let us define w = w(t, ξ) := τ(t)
1
2 v(s(t), ξ), where t =

t (s) := (ln 1
s )

q, τ = τ(t) := − dt
ds (s(t)) and s = s(t) denotes the inverse function to

t = t (s). Then w is a solution to the Cauchy problem

wt t + b(t)2λ(t, ξ)w = 0 , (t, ξ) ∈ [t (1),∞)× Rn ,

w(t (1), ξ) = τ(t (1)) 1
2 ϕ̂(ξ) , wt (t (1), ξ) = τ(t (1))−

1
2 (

1

2
τt(t (1))ϕ̂(ξ)− ψ̂(ξ)),

where λ = λ(t, ξ) = λ1(t, ξ)+ λ2(t), and

λ1(t, ξ) =
|ξ |2
τ(t)2

, λ2(t) =
θ(t)

b(t)2τ(t)2
, θ = τ ′2 − 2τ ′′τ .

Simple calculations show that τ(t) = q t
q−1

q exp(t
1
q ) and θ(t) ≈ − exp(2t

1
q ). Hence,

lim
t→∞ λ2(t) = 0. Let λ0 be a positive real number, and let us define tξ = tξ (λ0) by the

definition λ(tξ , ξ) = λ0. It follows from previous calculations that lim
|ξ |→∞

tξ = ∞.

Using the mean value theorem we can prove the following result.

LEMMA 7. There exist positive constants C and δ such that

|λ1(t, ξ)− λ1(t − d, ξ)| ≤ C d
τ ′(t)
τ (t)

λ1(t, ξ) , |λ2(t)− λ2(t − d)| ≤ C
τ ′(t)
τ (t)

for any 0 ≤ d ≤ δ τ (t)
τ ′(t) . In particular, we have

|λ(tξ , ξ)− λ(tξ − d, ξ)| ≤ Cd
τ ′(tξ )
τ (tξ )

λ(tξ , ξ) , 1 ≤ d ≤ δ τ(tξ )
τ ′(tξ )

.

We have the hope that properties of solutions of wt t + b(t)2λ(t, ξ)w = 0 are not
“far away” from properties of solutions of wt t + b(t)2λ(tξ , ξ)w = 0. For this reason
let us study the ordinary differential equation wt t + λ0b(t)2w = 0.

Step 2. Application of Floquet’s theory
We are interested in the fundamental solution X = X (t, t0) as the solution to the
Cauchy problem

d

dt
X =

(
0 −λ0b(t)2

1 0

)
X , X (t0, t0) =

(
1 0
0 1

)
.(14)

It is clear that X (t0 + 1, t0) is independent of t0 ∈ N.
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LEMMA 8 (FLOQUET’S THEORY). Let b = b(t) ∈ C2, 1-periodic, positive and
non-constant. Then there exists a positive real number λ0 such that λ0 belongs to an
interval of instability for wt t + λ0b(t)2w = 0, that is, X (t0+ 1, t0) has eigenvaluesµ0
and µ−1

0 satisfying |µ0| > 1.

Let us define for tξ ∈ N the matrix

X (tξ + 1, tξ ) =
(

x11 x12
x21 x22

)
.

According to Lemma 8 the eigenvalues of this matrix are µ0 and µ−1
0 . We suppose

|x11 − µ0| ≥
1

2
|µ0 − µ−1

0 | .(15)

Then we have |x22 − µ−1
0 | ≥ 1

2 |µ0 − µ−1
0 |, too.

Step 3. A family of auxiliary problems
For every non-negative integer n we shall consider the equation

wt t + λ(tξ − n + t, ξ)b(tξ + t)2w = 0.(16)

It can be written as a first-order system which has the fundamental matrix Xn =
Xn(t, t0) solving the Cauchy problem

dt X = An X , X (t0, t0) = I

(17)

An = An(t, ξ) =
(

0 −λ(tξ − n + t, ξ)b(tξ + t)2

1 0

)
.

LEMMA 9. There exist positive constants C and δ such that

max
t2,t1∈[0,1]

‖Xn(t2, t1)‖ ≤ eC λ0

for 0 ≤ n ≤ δ τ (tξ )
τ ′(tξ ) and tξ large.

Proof. The fundamental matrix Xn has the following representation:

Xn(t2, t1) = I +
∞∑

j=1

t2∫

t1

An(r1, ξ)

r1∫

t1

An(r2, ξ) · · ·
r j−1∫

t1

An(r j , ξ)dr j · · · dr1 .

By Lemma 7 we have

max
t2,t1∈[0,1]

‖Xn(t2, t1)‖ ≤ exp(1+ b2
1(λ1(tξ − n, ξ) + sup

t(1)≤t
|λ2(t)|))

= exp(1+ b2
1(λ1(tξ − n, ξ)− λ1(tξ , ξ)+ λ0 − λ2(tξ )+ sup

t(1)≤t
|λ2(t)|))

≤ eC λ0
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for large tξ , 0 ≤ n ≤ δ τ (tξ )
τ ′(tξ )

, where b1 = max
[0,1]

b(t).

LEMMA 10. Let η = η(t) be a function satisfying

lim
t→∞ η(t)

τ ′(t)
τ (t)

= 0 .(18)

Then there exist constants C and δ such that ‖Xn(1, 0) − X (tξ + 1, tξ )‖ ≤
C λ0η(tξ )

τ ′(tξ )
τ (tξ )

for 0 ≤ n ≤ δ η(tξ ). Consequently, ‖Xn(1, 0)− X (tξ + 1, tξ )‖ ≤ ε
for any given ε > 0, sufficiently large tξ ∈ N and 0 ≤ n ≤ δ η(tξ ).

Proof. Using the representation of Xn(1, 0) and of X (tξ + 1, tξ ), then the application
of Lemma 7 to ‖Xn(1, 0)− X (tξ + 1, tξ )‖ gives

‖Xn(1, 0)− X (tξ + 1, tξ )‖ ≤ C λ0(n + 1)
τ ′(tξ )
τ (tξ )

exp(C λ0(n + 1)
τ ′(tξ )
τ (tξ )

)

≤ C λ0(δ η(tξ )+ 1)
τ ′(tξ )
τ (tξ )

exp(C λ0(δ η(tξ )+ 1)
τ ′(tξ )
τ (tξ )

)→ 0

for tξ →∞ and 1 ≤ n ≤ δ η(tξ ).

Repeating the proofs of Lemmas 9 and 10 gives the following result.

LEMMA 11. There exist positive constants C and δ such that

‖Xn+1(1, 0)− Xn(1, 0)‖ ≤ C λ0
τ ′(tξ − n)

τ (tξ − n)

for 1 ≤ n ≤ δ η(tξ ) and large ξ .

We will later choose η = η(t) ∼ tα with α ∈
(

1
2 ,

q−1
q

)
. That the interval is

non-empty follows from the assumptions of our theorem. If we denote Xn(1, 0) =(
x11(n) x12(n)
x21(n) x22(n)

)
, then the statements of Lemmas 8 and 10 imply

• |µn − µ0| ≤ ε, where µn and µ−1
n are the eigenvalues of Xn(1, 0);

• |µn| ≥ 1+ ε for ε ≤ (|µ0| − 1)/2;

• |x11(n)− µn| ≥ 1
4 |µ0 − µ−1

0 | , |x22(n)− µ−1
n | ≥ 1

4 |µ0 − µ−1
0 |.

From Lemma 11 we conclude

• |xi j (n + 1)− xi j (n)| ≤ C λ0
τ ′(tξ−n)
τ (tξ−n) . This implies
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• |µn+1 − µn| ≤ C λ0
τ ′(tξ−n)
τ (tξ−n) .

Step 4. An energy estimate from below

LEMMA 12. Let n0 satisfy 0 ≤ n0 ≤ δ η(tξ ) ≤ n0 + 1. Then there exist positive
constants C0 and C1 such that the solution w = w(t, ξ) to

wt t + b(t)2λ(t, ξ)w = 0,

w(tξ − n0 − 1, ξ) = 1 , wt (tξ − n0 − 1, ξ) = x12(n0)

µn0 − x11(n0)

satisfies

|w(tξ , ξ)| + |wt(tξ , ξ)| ≥ C0 exp(C1 η(tξ ))(19)

for large ξ and η = η(t) fulfilling (18).

Proof. The functionw = w(tξ − n0 + t, ξ) satisfies (16) with n = n0. It follows that

(
d
dt w(tξ , ξ)
w(tξ , ξ)

)
= X1(1, 0)X2(1, 0) · · ·

· · · Xn0−1(1, 0)Xn0(1, 0)

(
d
dt w(tξ − n0, ξ)

w(tξ − n0, ξ)

)
.

The matrix

Bn =
( x12(n)

µn−x11(n)
1

1 x21(n)
µ
−1
n −x22(n)

)

is a diagonalizer for Xn(1, 0), that is, Xn(1, 0)Bn = Bn diag (µn, µ
−1
n ). Since

det Xn(1, 0) = 1 and trace of Xn(1, 0) is µn + µ−1
n we get det Bn = µn−µ−1

n

µ
−1
n −x22(n)

. Us-

ing the properties of µn from the previous step we conclude | det Bn| ≥ C > 0 for all
0 < n ≤ δ η(tξ ). Moreover, by Lemma 9 we have |xi j (n)| ≤ C , ‖Bn‖ + ‖B−1

n ‖ ≤ C
for all 0 < n ≤ δ η(tξ ). All constants C are independent of n. These estimates lead to

‖B−1
n−1 Bn − I‖ = ‖B−1

n−1(Bn − Bn−1)‖ ≤ C λ0
τ ′(tξ − n)

τ (tξ − n)
(20)
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for large tξ . If we denote Gn := B−1
n−1 Bn − I , then we can write

X1(1, 0)X2(1, 0) · · · Xn0−1(1, 0)Xn0(1, 0)

= B1

(
µ1 0
0 µ−1

1

)
B−1

1 B2

(
µ2 0
0 µ−1

2

)

B−1
2 B3 · · · B−1

n0−1 Bn0

(
µn0 0
0 µ−1

n0

)
B−1

n0

= B1

(
µ1 0
0 µ−1

1

)
(I + G2)

(
µ2 0
0 µ−1

2

)

(I + G3) · · · (I + Gn0)

(
µn0 0

0 µ−1
n0

)
B−1

n0
.

We shall show that the (1, 1) element y11 of the matrix

(
µ1 0
0 µ−1

1

)
(I + G2)

(
µ2 0
0 µ−1

2

)
(I + G3) · · ·

· · · (I + Gn0)

(
µn0 0
0 µ−1

n0

)

can be estimated with suitable positive constants C0 and C1 by C0 exp(C1η(tξ )). It is
evident from (20) that

|y11 −
n0∏

n=1

µn| ≤ C
n0∏

n=1

|µn|
n0∑

n=1

τ ′(tξ − n)

τ (tξ − n)

for large tξ . We have

n0∑

n=1

τ ′(tξ − n)

τ (tξ − n)
≤

δ η(tξ )∫

0

τ ′(tξ − t − 1)

τ (tξ − t − 1)
dt ≤ ln

τ(tξ − 1)

τ (tξ − δ η(tξ )− 1)

≤ ln

(
1− δ η(tξ )

τ ′(tξ − 1)

τ (tξ − 1)

)−1

→ 0 as tξ →∞ .

Hence, we can find a positive real ν such that

|y11| ≥ (1− ν)
n0∏

n=1

|µn| ≥ (1− ν)(µ0 − ε)n0 ≥ (1− ν)(µ0 − ε)δ η(tξ )−1.

The vector of data on t = tξ − n0 is an eigenvector of Bn0 . Thus the estimate for y11
holds for the vector (dtw(tξ , ξ), w(tξ , ξ))T too. This proves the energy estimate from
below of the lemma.
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Step 5. Conclusion
After choosing sξ = s(tξ ) = exp(−t1/q

ξ ) for large tξ and taking account of wt(t, ξ) =
1
2 τt(t)τ (t)−

1
2 v(s(t), ξ) + τ(t) 1

2 vs(s(t), ξ) we obtain

|w(t (s), ξ)| + |wt(t (s), ξ)|

≤ τ(t (s))
1
2

(
1+ τt(t (s))

2τ(t (s))

)
|v(s, ξ)| + τ(t (s))− 1

2 |vs(s, ξ)|

≤ 2τ(t (s))
1
2 |v(s, ξ)| + τ(t (s))− 1

2 |vs(s, ξ)|

for large ξ . Finally, we use τ(t (s)) ∼ |ξ |. This follows from the definition λ(tξ , ξ) =
λ0 and lim

tξ→∞
λ2(tξ ) = 0. Thus we have shown

|ξ | |û(sξ , ξ)| + |ûs(sξ , ξ)| ≥ C1|ξ |
1
2 exp(C2 η(tξ )) .

The function η(t) = tα satisfies (18) if α < q−1
q . The function tξ behaves as (ln |ξ |)q .

Together these relations give

|ξ | |û(sξ , ξ)| + |ûs(sξ , ξ)| ≥ C1|ξ |
1
2 exp(C2 (ln |ξ |)qα)

≥ C1|ξ |
1
2 exp(C2 (ln |ξ |)γ ) , where γ ∈ (1, q − 1) .

From this inequality we conclude the statement of Theorem 10.

�

REMARK 6. The idea to apply Floquet’s theory to construct a counter-example
goes back to [25] to study C∞ well-posedness for weakly hyperbolic equations. This
idea was employed in connection to L p − Lq decay estimates for solutions of wave
equations with time-dependent coefficients in [24]. The merit of [14] is the application
of Floquet’s theory to strictly hyperbolic Cauchy problems with non-Lipschitz coef-
ficients. We underline that the assumed regularity b ∈ C2 comes from statements of
Floquet’s theory itself. An attempt to consider non-Lipschitz theory, weakly hyperbolic
theory and theory of L p − Lq decay estimates for solutions of wave equations with a
time-dependent coefficient is presented in [23].

5. How to weaken C2 regularity to keep the classification of oscillations

There arises after the results of [6] and [7] the question whether there is something
between the conditions

• a ∈ L∞[0, T ] ∩ C1(0, T ] , |tγ a′(t)| ≤ C for t ∈ (0, T ] ;(21)

• a ∈ L∞[0, T ] ∩ C2(0, T ] , |a(k)(t)| ≤ Ck

(
1

t

(
ln

1

t

)γ)k

(22)

for t ∈ (0, T ], k = 1, 2.
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The paper [15] is devoted to the model Cauchy problem

ut t − a(t, x)4 u = 0 , u(T, x) = ϕ(x), ut(T, x) = ψ(x) ,(23)

where a = a(t, x) ∈ L∞([0, T ], B∞(Rn)) and a0 ≤ a(t, x) with a positive constant
a0.

DEFINITION 3. Definition of admissible space of coefficients. Let T be a positive
small constant, and let γ ∈ [0, 1] and β ∈ [1, 2] be real numbers. We define the
weighted spaces of Hölder differentiable functions 3βγ = 3βγ ((0, T ]) in the following
way:

3βγ ((0, T ]) = {a = a(t, x) ∈ L∞([0, T ], Bk(Rn)) : sup
t∈(0,T ]

‖a(t)‖Bk(Rn)

+ sup
t∈(0,T ]

‖∂t a(t)‖Bk(Rn)

t−1(ln t−1)γ
+ sup

t∈(0,T ]

‖∂t a‖Mβ−1([t,T ],Bk(Rn))

(t−1(ln t−1)γ )β
for all k ≥ 0} ,

where ‖F‖Mβ−1(I ) with a closed interval I is defined by

‖F‖Mβ−1(I ) = sup
s1,s2∈I,s1 6=s2

|F(s1)− F(s2)|
|s1 − s2|β−1

.

• If a satisfies (21) with γ = 1, then a ∈ 31
0.

• If a satisfies (22) with γ ∈ [0, 1], then a ∈ 32
γ .

DEFINITION 4. Space of solutions. Let σ and γ be non-negative real numbers. We
define the exponential-logarithmic scale Hγ,σ by the set of all functions f ∈ L2(Rn)

satisfying

‖ f ‖Hγ,σ :=



∫

Rn

| exp(σ (ln〈ξ 〉)γ ) f̂ (ξ)|2dξ




1/2

<∞ .

In particular, we denote Hγ =
⋃
σ>0

Hγ,σ .

THEOREM 11. Let γ ∈ [0, 1] and β ∈ (1, 2]. If a ∈ 3βγ ((0, T ]), then the Cauchy
problem (23) is well-posed in Hγ on [0, T ], that is, there exist positive constants
Cγ,β , σ and σ ′ with σ ≤ σ ′ such that

‖(∇u(t), ut (t))‖Hγ,σ ≤ Cγ,β‖(∇ϕ,ψ)‖Hγ,σ ′ for all t ∈ [0, T ].

REMARK 7. In the Cauchy problem (23) we prescribe data ϕ and ψ on the hy-
perplane t = T . It is clear from Theorem 4, that a unique solution of the backward
Cauchy problem (23) exists for t ∈ (0, T ]. The statement of Theorem 11 tells us that
in the case of very slow, slow or fast oscillations (γ ∈ [0, 1]), the solution possesses a
continuous extension to t = 0.
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OPEN PROBLEM 5. Try to prove the next statement:
If a = a(t, x) ∈ 3βγ ((0, T ]) with γ > 1 and β ∈ (1, 2), then these oscillations are
very fast oscillations!

The energy inequality from Theorem 11 yields the same connection between the
type of oscillations and the loss of derivatives as Theorem 8.

THEOREM 12. Let us consider the Cauchy problem (23), where a ∈ 3βγ ((0, T ])
with γ ∈ [0, 1] and β ∈ (1, 2]. The data ϕ,ψ belong to H s+1, H s, respectively. Then
the following energy inequality holds:

E(u)(t)
∣∣∣

H s−s0
≤ C(T )E(u)(0)

∣∣∣
H s

for all t ∈ [0, T ] ,

where

• s0 = 0 if γ = 0 (very slow oscillations),

• s0 is an arbitrary small positive constant if γ ∈ (0, 1) (slow oscillations),

• s0 is a positive constant if γ = 1 (fast oscillations).

Proof of Theorem 11. The proof follows that for Theorem 8. But now the coefficient
depends on spatial variables, too. Our main goal is to present modifications to the proof
of Theorem 8.

To Step 2. Symbols
To given real numbers m1,m2 ≥ 0, we define S{m1,m2} and T m1 as follows:

S{m1,m2} = {a = a(t, x, ξ) ∈ L∞loc((0, T ),C∞(R2n)) :

|∂τx ∂ηξ a(t, x, ξ)| ≤ Cτ,η〈ξ 〉m1−|η|
(

1

t

(
ln

1

t

)γ)m2

in Zhyp(N)};

T m1 = {a = a(t, x, ξ) ∈ L∞((0, T ),C∞(R2n)) :

|∂τx ∂ηξ a(t, x, ξ)| ≤ Cτ,η〈ξ 〉m1−|η| in Z pd(N)}.

Regularization
Our goal is to carry out the first two steps of the diagonalization procedure because only
two steps allow us to understand a refined classification of oscillations. But the coeffi-
cient a = a(t, x) doesn’t belong to C2 with respect to t . For this reason we introduce
a regularization aρ of a. Let χ = χ(s) ∈ B∞(R) be an even non-negative function
having its support on (−1, 1). Let this function satisfy

∫
χ(s)ds = 1. Moreover, let

the function µ = µ(r) ∈ B∞[0,∞) satisfy 0 ≤ µ(r) ≤ 1, µ(r) = 1 for r ≥ 2 and
µ(r) = 0 for r ≤ 1. We define the pseudo-differential operator aρ = aρ(t, x, Dx) with
the symbol

aρ(t, x, ξ) = µ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

)
bρ(t, x, ξ)︸ ︷︷ ︸

Zhyp(N)

+
(

1− µ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

))
a0︸︷︷︸

Z pd (N)

,
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where

bρ(t, x, ξ) = 〈ξ 〉
∫

R

a(s, x)χ((t − s)〈ξ 〉)

︸ ︷︷ ︸
regularization of a

ds .

LEMMA 13. The regularization aρ has the following properties:

• aρ(t, x, ξ) ≥ a0;

• aρ(t, x, ξ) ∈ S0
1,0;

• ∂taρ(t, x, ξ) ∈ S{0, 1} ∩ T−∞;

• ∂2
t aρ(t, x, ξ) ∈ S{−β + 2, β} ∩ T−∞;

• a(t, x)− aρ(t, x, ξ) ∈ S{−β, β} ∩ T 0.

To Step 4. Two steps of diagonalization procedure
We start with ut t − a(t, x) 4 u = 0. The vector-valued function U =
(
√

aρ〈Dx 〉u, Dt u)T is a solution of the first order system

(Dt − A0 − B0 − R0)U = 0,

A0 :=
(

0
√

aρ〈Dx 〉√
aρ〈Dx 〉 0

)
,

B0 :=
(

Op
[

Dt aρ
2aρ

]
0

(a − aρ)〈Dx 〉√aρ] 0

)
,

where R0 ∈ S0 uniformly for all t ∈ [0, T ], that is, R0 = R0(t, x, ξ) ∈
L∞([0, T ], S0).
First step of diagonalization, diagonalization modulo L∞([0, T ], S{0, 1} ∩ T 1).
Using the same diagonalizer in the form of a constant matrix we obtain from the above
system

(Dt − A1 − B1 − R1)U1 = 0 ,

A1 := √aρ〈Dx 〉
(

1 0
0 −1

)
,

B1 ∈ L∞([0, T ], S{0, 1} ∩ T 1),

R1 ∈ L∞([0, T ], S0).

REMARK 8. We can split B1 into two parts

B10 := Op

[
Dt aρ
4aρ

](
1 1
1 1

)
,

B11 := 1

2
(a − aρ)〈Dx 〉√aρ

]

(
1 1
−1 −1

)
.
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The second part B11 belongs to S{−β+1, β}∩T 1 for all t ∈ [0, T ]. If β > 1, then this
class is better than S{0, 1} ∩ T 1. We need β > 1 later, to understand that the influence
of B11 is not essential. This is the reason we exclude in Theorem 11 the value β = 1.

Second step of diagonalization, diagonalization modulo
L∞([0, T ], S{−β + 1, β} ∩ T 1)+ L∞([0, T ], S0).

We define the diagonalizer M2 = M2(t, x, Dx ) :=
(

I −p
p I

)
, where p =

p(t, x, ξ) = Dt aρ
8aρ
√

aρ〈ξ 〉 . Then a suitable transformation U2 := M2U1 changes the

above system to

(Dt − A1 − A2 − B2 − R2)U2 = 0 ,

A2 := Op

[
Dt aρ
4aρ

](
1 0
0 1

)
,

B2 ∈ L∞([0, T ], S{−β + 1, β} ∩ T 1),

R2 ∈ L∞([0, T ], S0).

Transformation by an elliptic pseudo-differential operator.

We define M3 = M3(t, x, ξ) := exp

(
−

T∫
t

Dsaρ
4aρ

ds

)(
1 0
0 1

)
. The transformation

U2 := M3U3 gives from the last system (Dt − A1 − B3 − R3)U3 = 0, where B3, R3
belong to the same symbol classes as B2, R2, respectively.

REMARK 9. The last step corresponds to the fact from the proof of Theorem 8,

that
t∫

r

∂sa(s)
4a(s) ds depends only on a.

Application of sharp Gårding’s inequality for matrix-valued operators.
We generalize an idea from [2] to our model problem.

GOAL. Let us find a pseudo-differential operator θ = θ(t, Dx ) in such a way that after

transformation V (t, x) := e
−

T∫
t
θ(s,Dx)ds

U3(t, x) the operator equation (Dt−A1−B3−
R3)U3 = 0 is transformed to (∂t − P0 − P1)V = 0, where we can show that for the
solution V of the Cauchy problem an energy estimate without loss of derivatives holds.

A simple computation leads to

P0 + P1 = i(A1 + B3 + R3)+ θ(t, Dx)I

+ i


e
−

T∫
t
θ(s,Dx)ds

, A + B + R


 e

T∫
t
θ(s,Dx)ds

.

The matrix-valued operator A1 brings no loss of derivatives, here we feel the strict
hyperbolicity. Taking account of the symbol classes for B3, R3 and our strategy due to
Gårding’s inequality that θ = θ(t, ξ) should majorize i(B3(t, x, ξ) + R3(t, x, ξ)) the
symbol of θ should consist at least of two parts:
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• a positive constant K , due to R3 ∈ L∞([0, T ], S0);

• K θ0(t, ξ) := K µ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

)
1

〈ξ 〉β−1

(
1
t

(
ln 1

t

)γ )β

+K
(

1− µ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

))
〈ξ 〉, due to B3 ∈ L∞([0, T ], S{−β + 1, β} ∩ T 1).

It turns out that the symbol of the commutator doesn’t belong to one of these symbol
classes. For this reason we introduce a third part

• K θ1(t, ξ) := K µ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

) (
ln 1

t

)γ
+ K

(
1− µ

(
t〈ξ 〉

N(ln〈ξ 〉)γ
)) (

ln 1
tξ

)γ
.

Defining

• P0 = i(A1 + B3 + R3)+ K (1+ θ0(t, Dx ))I ,

• P1 = K θ1(t, Dx )I + i


e
−

T∫
t
θ(s,Dx)ds

, A1 + B3 + R3


 e

T∫
t
θ(s,Dx)ds

one can show

det

(
P0 + P∗0

2

)
(t, x, ξ) ≥ θ0(t, ξ) ∈ L∞([0, T ], S1

1,0) ,

det

(
P1 + P∗1

2

)
(t, x, ξ) ≥ θ1(t, ξ) ∈ L∞([0, T ], Sεε,0) .

We use the sharp Gårding’s inequality with (see [19]) with

• c0 = 0 , m = 1 , ρ = 1 , δ = 0 for P0 ,

• c0 = 0 , m = ε , ρ = ε , δ = 0 for P1 ,

thus Re(Pku, u) ≥ −Ck ‖u‖2L2
for k = 1, 2. These are the main inequalities for

proving the energy estimate

‖V (t, ·)‖2L2
≤ eCT ‖V (T, ·)‖2L2

for t ∈ [0, T ] .

It remains to estimate
T∫
0
θ(s, ξ)ds. This is more or less an exercise. A careful calcula-

tion brings
T∫
0
θ(s, ξ)ds ≤ C (ln〈ξ 〉)γ . The statements of Theorem 11 are proved.

�
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6. Construction of parametrix

In this section we come back to our general Cauchy problem (1) taking account of the
classification of oscillations supposed in Definition 2 and (5). We assume

akl ∈ C([0, T ],B∞(Rn)) ∩ C∞((0, T ],B∞(Rn)).(24)

The non-Lipschitz behaviour of coefficients is characterized by

|Dk
t Dβ

x akl(t, x)| ≤ Ck,β

(
1
t

(
ln 1

t

)γ )k
(25)

for all k, β and (t, x) ∈ (0, T ] × Rn, where T is sufficiently small and γ ≥ 0. The
transformation U = (〈Dx 〉u, Dt u)T transfers our starting Cauchy problem (1) to a
Cauchy problem for DtU − AU = F , where A = A(t, x, Dx) is a matrix-valued
pseudo-differential operator. The goal of this section is the construction of parametrix
to Dt − A.

DEFINITION 5. An operator E = E(t, s), 0 ≤ s ≤ t ≤ T0, is said to be a
parametrix to the operator Dt − A if Dt E − AE ∈ L∞([0, T0]2, 9−∞(Rn)). Here
9−∞ denotes the space of pseudo-differential operators with symbols from S−∞ (see
[19]).

We will prove that E is a matrix Fourier integral operator. The considerations of
this section are based on [17], where the case γ = 1 was studied, and on [23]. We will
sketch this construction of the parametrix and show how the different loss of derivatives
appears. It is more or less standard to get from the parametrix to the existence of C 1

solutions in t of (1) with values in Sobolev spaces.

Step 1. Tools
With the function t = tξ from the proof of Theorem 8 we define for 〈ξ 〉 ≥ M the
pseudo-differential zone Z pd(N), hyperbolic zone Zhyp(N), respectively, by

Z pd(N) = {(t, x, ξ) ∈ [0, T ]× R2n : t ≤ tξ } ,(26)

Zhyp(N) = {(t, x, ξ) ∈ [0, T ]× R2n : t ≥ tξ }.(27)

Moreover, we divide Zhyp(N) into the so-called oscillations subzone Zosc(N) and the
regular subzone Zreg(N). These subzones are defined by

Zosc(N) = {(t, x, ξ) ∈ [0, T ]× R2n : tξ ≤ t ≤ t̃ξ } ,(28)

Zreg(N) = {(t, x, ξ) ∈ [0, T ]× R2n : t̃ξ ≤ t} ,(29)

where t = t̃ξ solves

t̃ξ 〈ξ 〉 = 2N(ln〈ξ 〉)2γ .(30)

In each of these zones we define its own class of symbols.



Hyperbolic equations with non-Lipschitz coefficients 163

DEFINITION 6. By T2N we denote the class of all amplitudes a = a(t, x, ξ) ∈
L∞([0, T ],C∞(R2n)) satisfying for (t, x, ξ) ∈ Z pd(2N) and all α, β the estimates

ess sup(t,x)∈[0,tξ]×Rn |∂βx ∂αξ a(t, x, ξ)| ≤ Cβα〈ξ 〉1−|α|.(31)

By Sm
ρ,δ(R

n) we will denote the usual symbol spaces (see [19]).
To describe the behaviour in oscillations subzone Zosc(N) we need the following class
of symbols.

DEFINITION 7. By SN {m1,m2}, m2 ≥ 0, we denote the class of all amplitudes
a = a(t, x, ξ) ∈ C∞((0, T ]× R2n) satisfying

|∂k
t ∂
β
x ∂

α
ξ a(t, x, ξ)| ≤ Ckβα〈ξ 〉m1−|α|

(
1
t (ln

1
t )
γ
)m2+k

(32)

for all k, α, β and (t, x, ξ) ∈ Zhyp(N).

Finally, we use symbols describing the behaviour of the solution in the regular part
Zreg(N) of Zhyp(N).

DEFINITION 8. By S?N {m1,m2}, m2 ≥ 0, we denote the class of all amplitudes
a = a(t, x, ξ) ∈ C∞((0, T ]× R2n) satisfying

|∂k
t ∂
β
x ∂

α
ξ a(t, x, ξ)| ≤ Ckβα〈ξ 〉m1−|α|

(
1
t (ln

1
t )
γ
)m2+k

(33)

for all k, α, β and (t, x, ξ) ∈ Zreg(N).

To all these symbol classes one can define corresponding pseudo-differential op-
erators. To get a calculus for these symbol classes it is useful to know that under
assumptions on the behaviour of the symbols in Z pd(N) we have relations to classical
parameter-dependent symbol classes.

LEMMA 14. Assume that the symbol a ∈ SN {m1,m2} is constant in Z pd(N). Then

(34) a ∈ L∞([0, T ], Smax(0,m1+m2)
1,0 (Rn)), ∂k

t a ∈ L∞([0, T ], Sm1+m2+k
1,0 (Rn))

for all k ≥ 1.

The statements (34) allow us to apply the standard rules of classical symbolic cal-
culus. One can show

a hierarchy of symbol classes SN {m1,k,m2} for m1,k →−∞.

LEMMA 15. Assume that the symbols ak ∈ SN {m1,k,m2}, k ≥ 0, vanish in
Z pd(N) and that m1,k → −∞ as k → ∞. Then there is a symbol a ∈ SN {m1,0,m2}
with support in Zhyp(N) such that

a −
k−1∑

l=0

al ∈ SN {m1,k,m2} for all k ≥ 1.
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The symbol is uniquely determined modulo C∞([0, T ], S−∞(Rn)).

a hierarchy of symbol classes SN {m1 − k,m2 + k} for k ≥ 0.

LEMMA 16. Assume that the symbols ak ∈ SN {m1 − k,m2 + k}, k ≥ 0, vanish in
Z pd(N). Then there is a symbol a ∈ SN {m1,m2} with support in Zhyp(N) such that

a −
k−1∑

l=0

al ∈ SN {m1 − k,m2 + k} for all k ≥ 1 .

The symbol is uniquely determined modulo
⋂
l≥0

SN {m1 − l,m2 + l}.

Asymptotic representations of symbols vanishing in Z pd(N) by using these
hierarchies.

A composition formula of pseudo-differential operators whose symbols are constant in
Z pd(N).

LEMMA 17. Let A and B be pseudo-differential operators with symbols a := σ(A)
and b := σ(B) from SN {m1,m2} and SN {k1, k2}, where we use the representations

A(t, x, Dx )u = 1
(2π)n Os-

∫
Rn

∫
Rn

e−iyξa(t, x, ξ)u(x + y)dξdy ;

B(t, x, Dx)u = 1
(2π)n Os-

∫
Rn

∫
Rn

e−iyξb(t, x, ξ)u(x + y)dξdy.

Let us suppose that both symbols a and b are constant in Z pd(N). Then the operator
A ◦ B has a symbol c = c(x, t, ξ) which belongs to SN {m1+ k1,m2+ k2} and satisfies

c(t, x, ξ) ∼
∑

α

1

α!
Dα
ξ a(t, x, ξ)∂αx b(t, x, ξ)

modulo a regularizing symbol from C∞([0, T ], S−∞).

The existence of parametrix to elliptic matrix pseudo-differential operators belonging
to SN {0, 0} and which are constant in Z pd(N).

LEMMA 18. Assume that the symbol a := σ(A) of the matrix pseudo-differential
operator A belongs to SN {0, 0} and is a constant matrix in Z pd(N). If A is elliptic,
this means | det a(t, x, ξ)| ≥ C > 0 for all (t, x, ξ) ∈ [0, T ]× R2n, then there exists a
parametrix A], where a] := σ(A]) ∈ SN {0, 0} is a constant matrix in Z pd(N), too.

Proof. We set a]0(t, x, ξ) := a(t, x, ξ)−1. The symbol a]0 belongs to SN {0, 0}. Using

Lemma 14 we can recursively define symbols a]k by

k∑

|α|=1

1
α!

(
Dα
ξ a(t, x, ξ)

)(
∂αx a]k−|α|(t, x, ξ)

)
=: −a(t, x, ξ)a]k(t, x, ξ).
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It is clear that a]k(t, x, ξ) ≡ 0 in Z pd(N) and a]k ∈ SN {−k, 0}.
The application of Lemma 15 gives a symbol a]R ∈ SN {0, 0} and a right parametrix A]R
with symbol σ(A]R) =: a]R and

a]R −
k−1∑

l=0

a]l ∈ SN {−k, 0},

a]R(t, x, ξ) = a]0(t, x, ξ) in Z pd(N),

AA]R − I ∈ C∞([0, T ], 9−∞),

where I denotes the identity operator. In the same way we can show the existence of
a left parametrix A]L with A]L A − I ∈ C∞([0, T ], 9−∞). As usual one can show

that A]L and A]R coincide modulo C∞([0, T ], 9−∞). This gives the existence of
a parametrix with symbol belonging to SN {0, 0}. It is uniquely determined modulo
C∞([0, T ], 9−∞).

Step 2. Diagonalization procedure
We have to carry out perfect diagonalization. The main problem is to understand what
the perfect diagonalization procedure means. Here we follow the following strategy:

• The first step of perfect diafonalization we carry out in all zones.

• The second step of perfect diagonalization we only carry out in Zhyp(N).

• The perfect diagonalization we only carry out in Zreg(N).

Perfect diagonalization means diagonalization modulo T2N ∩ (S2N {0, 0}+S2N {−1, 2})
∩
{ ⋂

r≥0
S?2N {−r, r + 1}

}
.

Let us explain these steps more in detail. We start with

Lu := D2
t u −

n∑

k,l=1

akl(t, x)D2
xk xl

u = g,

u(0, x) = ϕ(x),
Dtu(0, x) = −iψ(x),

where g := − f from (1). The transformation U = (U1,U2)
T =

(
〈Dx 〉u, Dt u

)T

transfers this Cauchy problem to

DtU − AU = G , U(0, x) =
( 〈Dx 〉ϕ(x)
−iψ(x)

)
,(35)

where

A :=




0 〈Dx 〉
n∑

k,l=1
akl(t, x)D2

xk xl
〈Dx 〉−1 0


 , G :=

(
0
g

)
.
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LEMMA 19. Symbol σ(A) belongs to T2N ∩ SN {1, 0}.

Now we care for the main step of diagonalization, this means, for the step which
transforms A to a diagonal matrix pseudo-differential operator modulo an operator
with symbol from T2N ∩ SN {0, 1}. Therefore we define the pseudo-differential opera-
tors of first order8k = 8k(t, x, Dx ), k = 1, 2, having symbols

ϕk(t, x, ξ) = dk〈ξ 〉 χ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

)
+ τk(t, x, ξ)

(
1− χ

(
t〈ξ 〉

N(ln〈ξ 〉)γ
))
.(36)

Here d2 = −d1 is a positive constant and

τk(t, x, ξ) = (−1)k
√

a(t, x, ξ) , a(t, x, ξ) :=
n∑

k,l=1

akl(t, x)ξkξl .(37)

The function χ = χ(s) is from C∞0 (R), χ(s) ≡ 1 for |s| ≤ 1, χ(s) ≡ 0 for |s| ≥ 2
and 0 ≤ χ(s) ≤ 1.

LEMMA 20. a) The non-vanishing symbols ϕk = ϕk(t, x, ξ), k = 1, 2, belong
to T2N ∩ SN {1, 0}.

b) The special choice of dk, k = 1, 2, yields ϕ2 − ϕ1 = 2ϕ2.

To start the diagonalization procedure we define the matrix pseudo-differential op-
erator (h(Dx) = 〈Dx 〉)

M(t, x, Dx ) =
(

I I
81(t, x, Dx)h−1(Dx ) 82(t, x, Dx )h−1(Dx )

)
.

Due to Lemma 18 we have the existence of M ]. This follows from the analysis of

σ(M) =
(

1 1
ϕ1(t,x,ξ)

h(ξ)
ϕ2(t,x,ξ)

h(ξ)

)
,

that by (36) and (37) the symbol σ(M) is a constant matrix in Z pd(N), det σ(M) =
2ϕ2(t,x,ξ)
〈ξ 〉 ≥ C > 0 for (t, x, ξ) ∈ [0, T ] × R2n. Hence, M is elliptic with a symbol

belonging to SN {0, 0}. The parametrix M] belongs to SN {0, 0}, too. We will later
apply Duhamel’s principle to find a representation of the solution to (35). Therefore we
devote to find a fundamental solution to (35), this is a solution E = E(t, s) satisfying

Dt E − AE = 0 , E(s, s) = I.(38)

Setting E0 = M]E leads to

Dt E0 = M]Dt E + Dt M]E = M]AE + Dt M]E

= M]AM E0 + Dt M]M E0 + R∞E,
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where R∞ ∈ C∞([0, T ], 9−∞). The symbols σ(M]), σ (M) are constant in Z pd(N).
Consequently,

σ(M]AM) = σ(M])σ (A)σ (M)+ f0(t, x, ξ)+ r∞(t, x, ξ),

where

f0(t, x, ξ) =
{

0 in Z pd(N)
∈ T2N ∩ SN {0, 0} ,(39)

and r∞ ∈ C∞([0, T ], S−∞(Rn)). Straightforward calculations yield

σ(M])σ (A)σ (M) =
{

d(t, x, ξ) in Zhyp(2N)
∈ T2N ,

(40)

where

d(t, x, ξ) =
(
τ1(t, x, ξ) 0

0 τ2(t, x, ξ)

)

and

σ(M])σ (A)σ (M) =




τ 2
1+ϕ2

1
2ϕ1

ϕ2
2−τ 2

2
2ϕ2

ϕ2
1−τ 2

1
2ϕ1

τ 2
2+ϕ2

2
2ϕ2


 (t, x, ξ) in Z pd(2N).

Consequently, the following identity holds in Z pd(2N):

σ(M])σ (A)σ (M) =
(
ϕ1 0
0 ϕ2

)
+ σ(Q),

where the symbol σ(Q) ∈ T2N ∩ SN {1, 0} and σ(Q) ≡ 0 in Zhyp(2N). Finally, let us
devote to Dt M]M = −M]Dt M + R∞. We have

σ(M]Dt M) = σ(M])σ (Dt M)+ f0(t, x, ξ)+ r∞(t, x, ξ) ,

where

f0(t, x, ξ) =
{

0 in Z pd(N)
∈ T2N ∩ SN {−1, 1},(41)

and r∞ ∈ C∞([0, T ], S−∞(Rn)). Using

σ(M])σ (Dt M) =
(
ϕ2−ϕ1

h

)−1
( ϕ2

h −1
−ϕ1

h 1

)(
0 0

Dt
ϕ1
h Dt

ϕ2
h

)

= (
ϕ2−ϕ1

h

)−1
( −Dt

ϕ1
h −Dt

ϕ2
h

Dt
ϕ1
h Dt

ϕ2
h

)

and (38) to (41) we arrive at the next result. In the formulation of this result we use
due to the influence of Q some symbols in Zhyp(2N) and take into consideration that
symbols from SN {1, 0} supported in the transition zone Z pd(2N) \ Z pd(N) belong to
T2N .
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LEMMA 21. The fundamental solution E = E(t, s) solving (38) can be repre-
sented in the form E(t, s) = M(t)E0(t, s)M](s), where M is an elliptic operator with
symbol σ(M) ∈ SN {0, 0} and E0 = E0(t, s) solves

Dt E0 −DE0 + P1 E0 + P2 E0 + QE0 + R∞E = 0.(42)

The matrix pseudo-differential operators D, P1, P2, Q, R∞ possess the following
properties:

• D : σ(D) ∈ T2N ∩ SN {1, 0},

σ (D) =
(
ϕ1 + h

2ϕ2
Dt

ϕ2
h 0

0 ϕ2 + h
2ϕ2

Dt
ϕ2
h

)
;

• P1: diagonal, σ(P1) ∈ T2N ∩ SN {0, 0}, σ (P1) ≡ 0 in Z pd(N);

• P2: antidiagonal, σ(P2) ∈ T2N ∩ SN {0, 1}, σ (P2) ≡ 0 in Z pd(N);

• Q: σ(Q) ∈ T2N , σ (Q) ≡ 0 in Zhyp(2N);

• R∞: σ(R∞) ∈ C∞([0, T ], S−∞(Rn)).

This finishes the first step of perfect diagonalization, this step yields a diagonaliza-
tion modulo T2N ∩ S2N {0, 1}.

In the next step of perfect diagonalization our goal consists in the diagonalization
of the antidiagonal matrix operator P2 with symbol σ(P2) modulo S2N {−1, 2}. In the
hierarchy of symbols described in Lemma 16 the corresponding pseudo-differential op-
erator has a better smoothing property than pseudo-differential operators with symbols
from S2N {0, 1}. We restrict ourselves to

Dt E0 −DE0 + P1 E0 + P2 E0 + QE0 = 0.(43)

LEMMA 22. There exist an elliptic pseudo-differential operator N1 with σ(N1) ∈
SN {0, 0},
σ (N1) ≡ I in Z pd(N), and pseudo-differential operators F1 of diagonal structure
and P3 with σ(F1) ∈ T2N ∩ SN {0, 0}, σ (F1) ≡ 0 in Z pd(N), and σ(P3) ∈ T2N ∩
S2N {−1, 2} such that

(Dt −D + P1 + P2 + Q)N1 = N1(Dt −D + F1 + P3)(44)

holds modulo an regularizing operator R∞ with symbol σ(R∞) belonging to
C∞([0, T ], S−∞(Rn)).

Proof. We localize our considerations to Zhyp(N) by using the pseudo-differential op-

erator I − χ(t, Dx ) with symbol I
(

1− χ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

))
. We define F1 with the symbol

σ(F1)(t, x, ξ) =
(

1−χ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

))
σ(P1)(t, x, ξ), which belongs to T2N ∩ SN {0, 0}.
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Moreover, we introduce

n(1)1 (t, x, ξ) :=
(

0 p12
ϕ1−ϕ2p21

ϕ2−ϕ1
0

)(
1− χ

(
t〈ξ 〉

N(ln〈ξ 〉)γ
))
∈ T2N ∩ SN {−1, 1},

where

σ(P2) =
(

0 p12
p21 0

)
∈ T2N ∩ SN {0, 1}.

Setting N1 = I + N (1)
1 , σ (N (1)

1 ) = n(1)1 , we are able to conclude that the symbol
σ(B(1)) of

B(1) := (Dt −D + P1 + P2 + Q)(I + N (1)
1 )− (I + N (1)

1 )(Dt −D + F1)

= P1 + P2 + Q − [D, N (1)
1 ]− F1 + Dt N (1)

1 + (P1 + P2 + Q)N (1)
1

−N (1)
1 F1

belongs to T2N ∩ S2N {−1, 2}. This follows from

• σ(Dt N (1)
1 ) ∈ T2N ∩ SN {−1, 2}, σ (Dt N (1)

1 ) ≡ 0 in Z pd(N);

• σ((P1+P2)N
(1)
1 −N (1)

1 F1) ∈ T2N∩SN {−1, 2}, σ ((P1+P2)N
(1)
1 −N (1)

1 F1) ≡ 0
in Z pd(N);

• σ((1− χ)P2− [D, N (1)
1 ]) ∈ T2N ∩ SN {−1, 2}, σ ((1− χ)P2− [D, N (1)

1 ]) ≡ 0
in Z pd(N).

The last relation is a conclusion from

σ((1− χ)P2 − [D, N (1)
1 ]) =

(
0 (1− χ)p12

(1− χ)p21 0

)

−
(
ϕ1 + h

2ϕ2
Dt

ϕ2
h 0

0 ϕ2 + h
2ϕ2

Dt
ϕ2
h

)
×
(

0 (1−χ)p12
ϕ1−ϕ2

(1−χ)p21
ϕ2−ϕ1

0

)

+
(

0 (1−χ)p12
ϕ1−ϕ2

(1−χ)p21
ϕ2−ϕ1

0

)(
ϕ1 + h

2ϕ2
Dt

ϕ2
h 0

0 ϕ2 + h
2ϕ2

Dt
ϕ2
h

)

=
(

0 0
0 0

)
mod SN {−1, 2}.

The symbol σ((1 − χ)P2 − [D, N (1)
1 ]) vanishes in Z pd(N) because of σ(P2) =

σ(N (1)
1 ) ≡ 0 and belongs to T2N . The remainder R1 := (P1 + P2)χ + QN1 be-

longs to T2N and vanishes in Zhyp(2N). Summarizing these observations we see
that B(1) = B̃(1) + R1, where σ(B̃(1)) ∈ T2N ∩ SN {−1, 2}, ≡ 0 in Z pd(N) and
σ(R1) ∈ T2N , ≡ 0 in Zhyp(2N). Now let us show that a sufficiently large N in (30)
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guarantees that N1 is an elliptic pseudo-differential operator with symbol belonging to
SN {0, 0}. Due to our construction σ(N1) ≡ I in Z pd(N). We know that

|n(1)1 (x, t, ξ)| ≤ C
〈ξ 〉

1
t (ln

1
t )
γ ≤ C1

N in Zhyp(N).

Consequently, a large N yields |σ(N1)| ≥ 1/2 in [0, T ] × R2n. Using σ(N1) = I in
Z pd(N) gives together with Lemma 18 the existence of N ]

1 with σ(N]

1 ) ∈ SN {0, 0}. It
is clear that the symbol of

P3 := N]

1 B(1) = N]

1 (B̃
(1) + R1)(45)

belongs to T2N ∩ S2N {−1, 2}modulo a regularizing operator R∞ with symbol σ(R∞)
belonging to C∞([0, T ], S−∞(Rn)).

This finishes the second step of perfect diagonalization, this step yields a diagonal-
ization modulo T2N ∩ S2N {−1, 2}.

Summarizing we have proved the next result.

LEMMA 23. The fundamental solution E0 = E0(t, s) solving (43) can be rep-
resented in the form E0(t, s) = N1(t)E1(t, s)N]

1 (s), where N ]

1 and N1 are elliptic

pseudo-differential operators with symbols σ(N ]

1 ), σ (N1) ∈ SN {0, 0}, both symbols
are constant in Z pd(N). The matrix operator E1 = E1(t, s) solves

Dt E1 −DE1 + F1 E1 + P3 E1 + R∞E1 = 0,

where the matrix pseudo-differential operators D, F1, P3, R∞ possess the following
properties:

• D: σ(D) ∈ T2N ∩ SN {1, 0}, σ(D) =
(
ϕ1 + 〈ξ 〉2ϕ2

Dt
ϕ2
〈ξ 〉 0

0 ϕ2 + 〈ξ 〉2ϕ2
Dt

ϕ2
〈ξ 〉

)
;

• F1: diagonal, σ(F1) ∈ T2N ∩ SN {0, 0}, σ (F1) ≡ 0 in Z pd(N);

• P3: σ(P3) ∈ T2N ∩ S2N {−1, 2};
• R∞: σ(R∞) ∈ C∞([0, T ], S−∞(Rn)).

Now let us sketch the perfect diagonalization.

REMARK 10. Let us explain our philosophy to carry out further steps of perfect
diagonalization. We will localize further steps of diagonalization to Z reg(N). In this
part of Zhyp(N) we get the improvement of smoothness of the remainder Pp+2. This
improvement of smoothness can be understood after calculating for γ ∈ (0, 1]

∫ t

t̃ξ

∣∣∣σ(Pp+2)(τ, x, ξ)
∣∣∣dτ

≤
∫ t

t̃ξ

C p
〈ξ 〉p

(
1
τ

(
ln 1
τ

)γ )p+1
dτ ≤ C p(ln〈ξ 〉)γ (p+1)

(〈ξ 〉t̃ξ )p = C p
(2N)p (ln〈ξ 〉)γ (p+1)−2γ p,
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where t̃ξ is defined as in formula (30). In the oscillations subzone we use for the
construction of parametrix a behaviour of the symbol of remainder like S2N {0, 0} +
S2N {−1, 2}. It turns out that the perfect diagonalization means diagonalization modulo

operators with symbols from T2N ∩(S2N {0, 0}+S2N {−1, 2})∩
{ ⋂

p≥0
S?2N {−p, p+1}

}
.

LEMMA 24. There exist a matrix elliptic operator N2 with σ(N2) ∈ SN {0, 0},
σ (N2) ≡ I in Z pd(N) ∪ Zosc(N), a diagonal matrix pseudo-differential operator F2
with σ(F2) ∈ (S?N {0, 0} + S?N {−1, 2}), σ (F2) ≡ 0 in Z pd(N) ∪ Zosc(N), and a
matrix pseudo-differential operator P∞ with σ(P∞)(t, x, ξ) ∈ T2N ∩ (S2N {0, 0} +
S2N {−1, 2}) ∩

{ ⋂
p≥0

S?2N {−p, p+ 1}
}

such that

(Dt −D + F1 + P3)N2 = N2(Dt −D + F2 + P∞).(46)

This identity holds modulo a regularizing operator R∞ with symbol σ(R∞) belonging
to C∞([0, T ], S−∞(Rn)).

Proof. We choose the representation N2 ∼ I + ∑
r≥1

N (r)
2 and F2 ∼

∑
r≥0

F(r)2 . Our goal

is to show the relation

(Dt −D + F1 + P3)(I +
∑

r≥1

N (r)
2 ) ∼ (I +

∑

r≥1

N (r)
2 )(Dt −D +

∑

r≥0

F(r)2 + P∞).

For further constructions we use P3 = P3,1 + P3,2, where P3,1 denotes the diagonal
part of P3 and P3,2 denotes the antidiagonal part.
We localize our considerations to Zreg(N) by using the pseudo-differential opera-

tor I − χ I with symbol I
(

1 − χ
(

t〈ξ 〉
2N(ln〈ξ 〉)2γ

))
. We define F (0)2 with the symbol

σ(F(0)2 )(t, x, ξ) =
(

1 − χ
(

t〈ξ 〉
2N(ln〈ξ 〉)2γ

))
σ(F1 + P3,1)(t, x, ξ), which belongs to

S?N {0, 0} + S?N {−1, 2}. Moreover, we introduce

n(1)2 (t, x, ξ) :=
(

0 p13
ϕ1−ϕ2p31

ϕ2−ϕ1
0

)(
1− χ

(
t〈ξ 〉

2N(ln〈ξ 〉)2γ
))
∈ S?N {−2, 2},

where

σ(P3,2) =
(

0 p13
p31 0

)
∈ T2N ∩ S2N {−1, 2}.

Setting N2 = I + N (1)
2 , σ (N (1)

2 ) = n(1)2 , we get similar as in the proof of Lemma 22
that the symbol σ(B(1)) of

B(1) : = (Dt −D + F1 + P3)(I + N (1)
2 )− (I + N (1)

2 )(Dt −D + F (0)2 )

belongs to T2N ∩ (S2N {0, 0} + S2N {−1, 2}) ∩ S?2N {−2, 3}. Moreover, we can show
that B(1) = B̃(1) + R1, where σ(B̃(1)) ∈ S?N {−2, 3}, ≡ 0 in Z pd(N) ∪ Zosc(N) and
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σ(R1) ∈ T2N ∩ (S2N {0, 0} + S2N {−1, 2}), ≡ 0 in Zreg(2N). Now we are able to start
an induction procedure. Let us suppose that B̃(r) is already constructed and its symbol
σ(B̃(r)) ∈ S?N {−(r + 1), r + 2}, ≡ 0 in Z pd(N) ∪ Zosc(N). Then F (r)2 := B̃(r)1 has

the same properties, where B̃(r)1 , B̃(r)2 denote the diagonal part and antidiagonal part of
B̃(r), respectively. We introduce

n(r+1)
2 (t, x, ξ) :=

(
0 p1(r+3)

ϕ1−ϕ2p(r+3)1
ϕ2−ϕ1

0

)

as the symbol of N (r+1), where

σ(B̃(r)2 ) =
(

0 p1(r+3)
p(r+3)1 0

)
∈ S?N {−(r+1), r+2}, ≡ 0 in Z pd(N)∪Zosc(N).

Then we have to check the operator

B(r+1) := (Dt −D + F1 + P3)(I +
r+1∑

l=1

N (l)
2 )− (I +

r+1∑

l=1

N (l)
2 )(Dt −D +

r∑

l=0

F(l)2 )

and can show that B(r+1) = B̃(r+1)+R1, where σ(B̃(r+1)) ∈ S?N {−(r+2), r+3}, ≡ 0
in Z pd(N) ∪ Zosc(N) and R1 is as above. By Lemma 16 we find a symbol n2 =
n2(t, x, ξ) ∼ I + ∑

r≥1
σ(N (r)

2 )(t, x, ξ), n2 ∈ S?N {0, 0} modulo
⋂

r≥0
S?N {−r, r}, and

n2 ≡ I in Z pd(N) ∪ Zosc(N), and a symbol f2 = f2(t, x, ξ) ∼ ∑
r≥0

σ(F(r)2 )(t, x, ξ),

f2 ∈ (S?N {0, 0}+ S?N {−1, 2})modulo
⋂

r≥0
S?N {−r, r+1}, f2 ≡ 0 in Z pd(N)∪ Zosc(N).

Then the above operator identity holds with σ(N2) := n2 and σ(F2) := f2, where
P∞ can be represented in the form P∞ = F∞ + R, where σ(R) = σ(F1 +
P3)χ

(
t〈ξ 〉

2N(ln〈ξ 〉)2γ
)

.

The first pseudo-differential operator F∞ has a symbol σ(F∞) from
{ ⋂

r≥0
S?N {−r, r +

1}
}

, σ(F∞) ≡ 0 in Z pd(N) ∪ Zosc(N). The second pseudo-differential operator R

has a symbol σ(R) belonging to T2N ∩ (S2N {0, 0} + S2N {−1, 2}). Moreover, σ(R)
vanishes in Zreg(2N).

Thus we finished our perfect diagonalization modulo T2N ∩ (S2N {0, 0} +
S2N {−1, 2}) ∩

{ ⋂
r≥0

S?2N {−r, r + 1}
}

.

To complete the perfect diagonalization it remains to understand that a parametrix
N]

2 to N2 exists. From the construction we know that σ(N2 − I ) ∈ S?N {−1, 1} and
vanishes in Z pd(N) ∪ Zosc(N). A suitable large constant N in the definition of zones
guarantees that N2 is elliptic and its symbol is equal to I in Z pd(N)∪ Zosc(N). Hence,
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the statement of Lemma 18 gives the existence of N ]

2 with symbol from S?N {0, 0} and
equal to I in Z pd(N) ∪ Zosc(N). Thus we can formulate the next result.

LEMMA 25. The fundamental solution E0 = E0(t, s) solving (43) can be rep-
resented in the form E0(t, s) = N1(t)N2(t)E1(t, s)N]

2 (s)N
]

1 (s), where N ]

1 , N1 and

N]

2 , N2 are elliptic operators with symbols σ(N ]

1 ), σ (N1) ∈ SN {0, 0}, both sym-

bols are ≡ I in Z pd(N) and σ(N ]

2 ), σ (N2) ∈ S?N {0, 0}, both symbols are ≡ I in
Z pd(N) ∪ Zosc(N). The matrix operator E1 = E1(t, s) solves

Dt E1 −DE1 + F2 E1 + P∞E1 + R∞E1 = 0,

where the matrix pseudo-differential operators D, F2, P∞, R∞ possess the following
properties:

• D : σ(D) ∈ T2N ∩ SN {1, 0},

σ(D) =
(
ϕ1 + h

2ϕ2
Dt

ϕ2
h 0

0 ϕ2 + h
2ϕ2

Dt
ϕ2
h

)
;

• F2: diagonal, σ(F2) ∈ (S?N {0, 0} + S?N {−1, 2}), σ (F2) ≡ 0 in Z pd(N) ∪
Zosc(N);

• P∞: σ(P∞) ∈ T2N ∩ (S2N {0, 0} + S2N {−1, 2}) ∩
{ ⋂

p≥0
S?2N {−p, p + 1}

}
;

• R∞: σ(R∞) ∈ C∞([0, T ], S−∞(Rn)).

All the statements together yield the following result.

LEMMA 26. The determination of a parametrix to the matrix pseudo-differential
operator Dt − A can be reduced, after transformations by elliptic matrix pseudo-
differential operators (corresponding to perfect diagonalization), to the determination
of a parametrix to the matrix pseudo-differential operator Dt−D+F2+P∞, where the
matrix pseudo-differential operators D, F2, P∞, possess the following properties:

• D : σ(D) ∈ T2N ∩ SN {1, 0},

σ(D) =
(
ϕ1 + 〈ξ 〉2ϕ2

Dt
ϕ2
〈ξ 〉 0

0 ϕ2 + 〈ξ 〉2ϕ2
Dt

ϕ2
〈ξ 〉

)
;

• F2: diagonal, σ(F2) ∈ (S?N {0, 0} + S?N {−1, 2}), σ (F2) ≡ 0 in Z pd(N) ∪
Zosc(N);

• P∞: σ(P∞) ∈ T2N ∩ (S2N {0, 0} + S2N {−1, 2}) ∩
{ ⋂

p≥0
S?2N {−p, p + 1}

}
.
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Here we use

ϕk(t, x, ξ) = dk〈ξ 〉 χ
(

t〈ξ 〉
N(ln〈ξ 〉)γ

)
+ τk(t, x, ξ)

(
1− χ

(
t〈ξ 〉

N(ln〈ξ 〉)γ
))
,

where d2 = −d1 is a positive constant and

τk(t, x, ξ) = (−1)k
√

a(t, x, ξ) , a(t, x, ξ) :=
n∑

k,l=1

ak,l(t, x)ξkξl .

The function χ = χ(s) is from C∞0 (R), χ(s) ≡ 1 for |s| ≤ 1, χ(s) ≡ 0 for |s| ≥ 2
and 0 ≤ χ(s) ≤ 1.

Step 3. Construction of parametrix

We need four steps for the construction of the parametrix.

Transformation by an elliptic pseudo-differential operator.
Let K be the diagonal elliptic pseudo-differential operator with symbol

σ(K ) =



√
ϕ2
〈ξ 〉 0

0
√
ϕ2
〈ξ 〉


 .

This symbol is constant in Z pd(N), σ (K ) ∈ SN {0, 0}. Then the following operator-
valued identity holds modulo a regularizing operator:

(Dt −D + F2)K = K (Dt −D1 + F3),(47)

where

σ(D1) :=
(
ϕ1 0
0 ϕ2

)
, σ (F3) ≡ 0 in Z pd(N),

σ (F3) ∈ T2N ∩ (SN {0, 0} + S?N {−1, 2}).
REMARK 11. This transformation corresponds to the special structure of our start-

ing operator and explains that we have no contribution to the loss of derivatives from
D. This we already observed in Section 3 during the proof of Theorem 8. In the rep-
resentation of V1 from (10) there appears E2 = E2(t, tξ , ξ). Although in E2 there
appears the term 1

2
Dsa

a which belongs to S1{0, 1} (see Definition 7), this term has no
contribution to the loss of derivatives.

Parametrix to Dt −D1.

LEMMA 27. The parametrix E2(t, s) = diag(E−2 (t, s), E+2 (t, s)) to Dt −D1 is a
diagonal Fourier integral operator with

E∓2 (t, s)w(x) =
∫

Rn

eiφ∓(t,s,x,ξ)e∓2 (t, s, x, ξ)ŵ(ξ)dξ ,

φ∓(s, s, x, ξ) = x · ξ , e∓2 (s, s, x, ξ) = 1 .

The phase functions φ∓ satisfy
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• φ∓(t, s, x, ξ) = x ·ξ+dk〈ξ 〉(t−s), k = 1 for φ−, k = 2 for φ+ if 0 ≤ s, t ≤ tξ ;

• |∂αξ ∂
β
x (φ
∓(t, s, x, ξ) − x · ξ)| ≤ Cα,β 〈ξ 〉1−|α|max(s, t) if max(s, t) ≥ tξ .

The amplitude functions e∓2 satisfy

• e∓2 (t, s, x, ξ) = 1 if 0 ≤ s, t ≤ tξ ;

• e∓2 ∈ C([0, T0]2, S0
1,0(R

n)).

To prove this result we follow the following steps:

Study of the Hamiltonian flow generated by ϕ1 = ϕ1(t, x, ξ) and ϕ2 = ϕ2(t, x, ξ).

Construction of phase functions
Let us denote by λ = λ(t, x, ξ) one of the functions ϕk = ϕk(t, x, ξ), k = 1, 2. The
Hamiltonian flow (q, p) = (q, p)(t, s, y, η) =: Hs,t(y, η) is the solution to

dq

dt
= ∇ξλ(t, q, p), q(s, s, y, η) = y ; dp

dt
= −∇xλ(t, q, p), p(s, s, y, η) = η.

Using σ(λ) ∈ T2N ∩ SN {1, 0} we know that the growth of λ with respect to q and p is
at most linear. Thus the solution (q, p) exists globally in time, t ∈ [0, T ], for all (y, η).
For the following considerations we need suitable estimates for q = q(t, s, y, η) and
p = p(t, s, y, η). Following the approach of [12] and [26] one can prove the next
results.

LEMMA 28. There exists a (in general small) positive constant T0 such that

q(t,s)−y
t−s , ∂t q(t, s), ∂sq(t, s) ∈ L∞([0, T0]2, S0

1,0(R
n
y × Rn

η));
p(t,s)−ξ

t−s , ∂t p(t, s), ∂s p(t, s) ∈ L∞([0, T0]2, S1
1,0(R

n
y × Rn

η)).

LEMMA 29. If T0 is small, then the inverse function y = y(t, s, x, η) to x =
q(t, s, y, η) exists and satisfies

y(t,s)−x
t−s , ∂t y(t, s), ∂s y(t, s) ∈ L∞([0, T0]2, S0

1,0(R
n
x × Rn

η)).

Construction of phase functions φ∓ solving the eikonal equations.

Let us construct the phase function φ = φ(t, s, x, ξ) solving the eikonal equation
∂tφ(t, s, x, ξ) − λ(t, x,∇xφ(t, s, x, ξ)) = 0, φ(s, s, x, ξ) = x · ξ .

LEMMA 30. The phase function φ = φ(t, s, x, ξ) is defined as follows:
φ(t, s, x, ξ) := v(t, s, y(t, s, x, ξ), ξ), where

v(t, s, y, ξ) = y · ξ −
t∫

s

(
p · ∇ξλ− λ

)(
τ, q(τ, s, y, ξ), p(τ, s, y, ξ)

)
dτ.
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Construction of amplitudes e∓2 by solving the transport equations and by using the
asymptotic representation theorem.

Following our representation

E∓2 (t, s)w(x) =
∫

Rn

eiφ∓(t,s,x,ξ)e∓2 (t, s, x, ξ)ŵ(ξ)dξ

with φ∓(s, s, x, ξ) = x · ξ , e∓2 (s, s, x, ξ) = 1, as usual, the asymptotic representation

e∓2 (t, s, x, ξ) ∼
∞∑

j=0

e∓2, j(t, s, x, ξ) modulo C([0, T0]2, S−∞(Rn)),

e∓2,0(s, s, x, ξ) = 1 , e∓2, j (s, s, x, ξ) = 0 for j ≥ 1,

allows us to derive so-called transport equations.
We have to study the action of Dt − ϕ1(t, x, Dx ), Dt − ϕ2(t, x, Dx ) respectively on
E−2 , E+2 . We consider (Dt −ϕ1)E

−
2 and suppose that all assumptions are satisfied for

the action of the pseudo-differential operator Dt − ϕ1(t, x, Dx ) on the Fourier integral
operator E−2 . On the one hand we get formally

Dt E−2 (t, s)w(x) =
∫

Rn

eiφ−(t,s,x,ξ)
(
∂tφ
− ∞∑

j=0
e−2, j + 1

i ∂t

∞∑
j=0

e−2, j

)
(t, s, x, ξ)ŵ(ξ)dξ ;

on the other hand we use formally

ϕ1(t, x, Dx)E
−
2 (t, s)w(x) =

∫

Rn

eiφ−(t,s,x,ξ)
[
ϕ1

(
t, x,∇xφ

−(t, s, x, ξ)
)

∞∑
j=0

e−2, j(t, s, x, ξ) +∇ξϕ1

(
t, x,∇xφ

−(t, s, x, ξ)
)
· 1

i

∞∑
j=0
∇x e−2, j (t, s, x, ξ)

− i
2

n∑
k,l=1

∂2
ξkξl
ϕ1

(
t, x,∇xφ

−(t, s, x, ξ)
)(
∂2

xk xl
φ−

∞∑
j=0

e−2, j

)
(t, s, x, ξ)

+r2(t, s, x, ξ)
]
ŵ(ξ)dξ,

where

r2(t, s, x, ξ) ∼
∞∑

|α|=2

1
α! Dα

y

(
∂αξ ϕ1

(
t, x,

1∫
0
∇xφ

−(t, s, y + r(x − y), ξ)dr
)

∞∑

j=0

e−2, j (t, s, y, ξ)
)

y=x
.

Supposing that all series converge uniformly and using that φ− solves the eikonal equa-
tion with λ = ϕ1 we arrive at the transport equations to determine e∓2, j for j ≥ 0.
Finally we arrive at the statements of Lemma 27.

Parametrix to Dt −D1 + F3.
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LEMMA 31. The parametrix E4 = E4(t, s) to the operator Dt −D1 + F3 can be
written as E4(t, s) = E2(t, s)Q4(t, s), where E2 = E2(t, s) is the diagonal Fourier
integral operator from Lemma 27 and Q4 = Q4(t, s) is a diagonal pseudo-differential
operator with symbol belonging to W 1,∞([0, T0]2, S0

1,0(R
n)).

To prove this result we follow the following steps:

Application of Egorov’s theorem, that is, conjugation of F3 by Fourier integral opera-
tors, here we use the diagonal structure.

We will construct the parametrix to Dt −D1 + F3. Using E2 = E2(t, s) from the
previous step we choose the representation

E4(t, s) = E2(t, s)Q4(t, s), Q4(s, s) ∼ I.

This implies the Cauchy problem

Dt Q4 + E2(s, t)F3(t)E2(t, s)Q4 ∼ 0 , Q4(s, s) ∼ I.

According to Egorov’s theorem [26] (here we can use the diagonal structure of Dt −
D1+ F3) the matrix operator R4(t, s) := E2(s, t)F3(t)E2(t, s) is a pseudo-differential
operator whose symbol is r4 = r4(t, s, x, ξ) = f3(t, Hs,t(x, ξ)), f3 := σ(F3), mod-
ulo a symbol from SN {−1, 0} + S?N {−2, 2}, where Hs,t(x, ξ) denotes the Hamiltonian
flow starting at (x, ξ) and generated by the symbols ϕk = ϕk(t, x, ξ), k = 1, 2.

For t ∈ [0, T0] with a sufficiently small T0 we understand to which zone the Hamilto-
nian flow belongs to.

We can write f3(t, x, ξ) = f3,0(t, x, ξ) + f3,1(t, x, ξ), where f3,0 ∈
SN {0, 0} , f3,1 ∈ S?N {−1, 2} ,
f3,0 ≡ 0 in Z pd(N), f3,1 ≡ 0 in Z pd(N) ∪ Zosc(N).

LEMMA 32. Let us denote by λ = λ(t, x, ξ) one of the functions ϕk =
ϕk(t, x, ξ), k = 1, 2. The Hamiltonian flow (q, p) = (q, p)(t, s, y, η) =: Hs,t(y, η)
is the solution to

dq

dt
= ∇ξλ(t, q, p), q(s, s, y, η) = y ; dp

dt
= −∇xλ(t, q, p), p(s, s, y, η) = η.

Then the symbols f3,0 and f3,1 satisfy
∣∣∣∂βx ∂αξ f3,0(t, Hs,t(x, ξ))

∣∣∣ ≤ Cα,β 〈ξ 〉−|α|,
∣∣∣∂βx ∂αξ f3,1(t, Hs,t(x, ξ))

∣∣∣ ≤ Cα,β
(

1
t (ln

1
t )
γ
)2
〈ξ 〉−1−|α|

for all (t, x, ξ) ∈ [0, T0]× R2N .

The statement of this lemma makes it clear that the following representation is
reasonable for Q4 = Q4(t, s):

Q4(t, s)w(x) =
∫

Rn

ei x ·ξq4(t, s, x, ξ)ŵ(ξ)dξ, q4(s, s, x, ξ) = I.



178 M. Reissig

We determine the matrix amplitude q4 by equivalence to a series, that is q4(t, s, x, ξ) ∼∑∞
j=0 q4, j(t, s, x, ξ). After determination of q4, j = q4, j(t, s, x, ξ) for j ≥ 0 we

obtain the statement of Lemma 31.

Parametrix to Dt −D + F2.

LEMMA 33. The parametrix E3 = E3(t, s) to the operator Dt − D + F2 can
be written as E3(t, s) = K (t)E2(t, s)Q4(t, s)K ](s), where K and its parametrix K ]

having symbols from L∞([0, T0], S0
1,0(R

n)) ∩ C∞((0, T0]2, S0
1,0(R

n)) are the elliptic
pseudo-differential operators from the above transformation.

REMARK 12. From Lemma 33 we conclude that the parametrix to Dt − D + F2
gives no loss of derivatives of the solution to (1). In the next point we will see that this
loss comes from P∞.

Parametrix to Dt −D + F2 + P∞.

LEMMA 34. The parametrix E1 = E1(t, s) to the operator Dt − D + F2 +
P∞ can be written as E1(t, s) = E3(t, s)Q1(t, s), where Q1 = Q1(t, s) is a
matrix pseudo-differential operator with symbol from L∞([0, T0]2, SK0

1−ε,ε(R
n)) ∩

W 1,∞([0, T0]2, SK0+1+ε
1−ε,ε (Rn)) for every small ε > 0. Here the constant K0 describes

the loss of derivatives coming from the pseudo-differential zone Z pd(2N) and the os-
cillations subzone Zosc(2N).

To prove this result we use the next observations and ideas:
• Egorov’s theorem is not applicable because P∞ has no diagonal structure.
•We have to use the properties of P∞ after perfect diagonalization.
• The next result is a base to get a relation between the type of oscillations and the loss
of derivatives.

LEMMA 35. The Fourier integral operator P∞(t)E∓3 (t, s) is a pseudo-differential
operator with the representation

P∞(t)E∓3 (t, s)w(x) =
∫

Rn

eix ·ξ r̃∓(t, s, x, ξ)ŵ(ξ)dξ,

where the symbol satisfies the estimates

∣∣∣∂βx ∂αξ r̃∓(t, s, x, ξ)
∣∣∣ ≤





Cαβεp

(
1
t (ln

1
t )
γ
)p+1

〈ξ 〉−p+ε|β|−(1−ε)|α| in Zreg(2N),

Cαβε
(

1+
(

1
t (ln

1
t )
γ
)2
〈ξ 〉−1

)
〈ξ 〉ε|β|−(1−ε)|α| in Zosc(2N),

Cαβε〈ξ 〉1+ε|β|−(1−ε)|α| in Z pd(2N),

for every p ≥ 0, small ε > 0 and all s ∈ [0, t].

Step 4. Conclusion
Using Lemma 34 and the backward transformation (from the steps of perfect diagonal-
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ization) we obtain the parametrix for Dt − A. The backward transformation doesn’t
bring an additional loss of derivatives. Therefore we can conclude the following result.

THEOREM 13. Let us consider

ut t −
n∑

k,l=1

akl(t, x)uxk xl = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x),

where the coefficients satisfy the conditions (24) and (25). The data ϕ, ψ belong to
H s+1, H s, respectively. Then the following energy inequality holds:

E(u)|H s−s0 (t) ≤ C(T )E(u)|H s (0) for all t ∈ (0, T ],(48)

where
• s0 = 0 if γ = 0,
• s0 is an arbitrary small positive constant if γ ∈ (0, 1),
• s0 is a positive constant if γ = 1,
• there doesn’t exist a positive constant s0 satisfying (48) if γ > 1, that is, we have an
infinite loss of derivatives.

It seems to be remarkable that we can prove the same relation between types of
oscillations and loss of derivatives as in Theorem 8.

7. Concluding remarks

Let us mention further results which are obtained for model problems with non-
Lipschitz behaviour and more problems which could be of interest.

REMARK 13. Lower regularity with respect to x. The results and the approach
from [15] motivate the study of the question of how to weaken the regularity with
respect to x (compare with [9]). From this paper we understand to which class the
remainder should belong after diagonalization. Thus pseudo-differential operators with
symbols of finite smoothness or maybe paradifferential operators should be used.

REMARK 14. Quasi-linear models. Quasi-linear models with behaviour of suitable
derivatives as O( 1

t ) were studied in [3] and [18]. Here the log-effect from (5) could
not be observed.

REMARK 15. Applications to Kirchhoff type equations. A nice application of non-
Lipschitz theory with behaviour a ′(t) = O((T − t)−1) for t → T − 0 to Kirchhoff
equations was described in [16]. The assumed regularity of data could be weakened
in [13] by proving that these very slow oscillations (in the language of Definition 2)
produce no loss of derivatives (see Theorem 8).

REMARK 16. p-Evolution equations. The paper [1] is devoted to the Cauchy prob-
lem for p-evolution equations with LogLip coefficients. The paper [4] is devoted
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among other things to p-evolution equations of higher order with non-Lipschitz co-
efficients. Concerning our starting model this means p-evolution equations of second
order with respect to t with coefficients behaving like |ta ′(t)| ≤ C on (0, T ]. An
interesting question is to find p-evolution models with log-effect from (5).
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