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J. S. Aujla - M. S. Rawla ∗

SOME RESULTS ON OPERATOR MEANS AND SHORTED

OPERATORS

Abstract. We prove some results on operator equalities and inequalities
involving positive maps, operator means and shorted operators. Inequali-
ties for shorted operators involving convex operator functions and tensor
product have also been proved.

1. Introduction

With a view to studying electrical network connections, Anderson and Duffin [2] intro-
duced the concept of parallel sum of two positive semidefinite matrices. Subsequently,
Anderson [1] defined a matrix operation, called shorted operation to a subspace, for
each positive semidefinite matrix. IfA andB are impedance matrices of two resistive
n-port networks, then their parallel sumA : B is the impedance matrix of the parallel
connection. If ports are partitioned to a group ofs ports and to the remaining group of
n− s ports, then the shorted matrixAS to the subspaceS spanned by the former group
is the impedance matrix of the network obtained by shorting the lastn − s ports.

Anderson and Trapp [3] have extended the notions of paralleladdition and shorted
operation to bounded linear positive operators on a HilbertspaceH and demonstrated
its importance in operator theory. They have studied fundamental properties of these
operations and their interconnetions.

The axiomatic theory for connections and means for pairs of positive operators
have been developed by Nishio and Ando [12] and Kubo and Ando [11]. This theory
has found a number of applications in operator theory.

In Section 2, we shall study when the equalities of the typeφ(Aσ B) = φ(A)σφ(B)
hold for a connectionσ , positive operatorsA, B on a Hilbert spaceH, and positive
mapφ. In these resultsφ is not assumed to be linear. In Section 3, we shall obtain
some operator inequalities involving shorted operators and convex operator functions.
An inequality for shorted operation of tensor product of twopositive operators has
also been proved in this section.

∗The authors would like to thank a referee for pointing out a mistake in the earlier version of this paper
and for giving useful suggestions.
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2. Positive Maps And Operator Means

In what follows,S(H) shall denote the set of positive linear operators on a Hilbert
spaceH, whereasP(H) shall denote the set of positive linear invertible operators on
H. An operator connectionσ according to Kubo and Ando [11] is defined as a binary
operation among positive operators satisfying the following axioms:

monotonicity:
A ≤ C, B ≤ D imply Aσ B ≤ CσD,

upper continuity:

An ↓ A andBn ↓ B imply (Anσ Bn) ↓ (Aσ B),

transformer inequality:

T∗(Aσ B)T ≤ (T∗ AT)σ (T∗BT).

A mean is a connection with normalization condition

Aσ A = A.

The main result of Kubo-Ando theory is the order isomorphismbetween the class
of connections and the class of positive operator monotone functions onR+. This
isomorphismσ ↔ f is characterized by the relation

Aσ B = A1/2 f (A−1/2B A−1/2)A1/2

for all A, B ∈ P(H). The operator monotone functionf is called the representing
function ofσ .

The operator connection corresponding to operator monotone function f (x) = s+

tx, s, t > 0, is denoted by5s,t . 51/2,1/2 is called the arithmetic mean and is denoted by
5. The operator mean corresponding to the operator monotone functionx → x1/2 is
called the geometric mean and is denoted by #. The operator connection corresponding
to the operator monotone functionx → x

s+t x , s, t > 0, is denoted by !s,t . !1/2,1/2 is
called the harmonic mean and is denoted by !.

The transposeσ ′ of a connectionσ is defined byAσ ′B = Bσ A. For a connection
σ , the adjointσ ∗ and the dualσ⊥ are respectively defined byAσ ∗B = (A−1σ B−1)−1

and Aσ⊥B = (B−1σ A−1)−1 for all A, B ∈ P(H). These definitions extend toS(H)
by continuity. A connectionσ is called symmetric ifσ ′ = σ , selfadjoint ifσ ∗ = σ and
selfdual ifσ⊥ = σ . It follows that if f is the representing function ofσ thenx f (x−1)

is the representing function ofσ ′, ( f (x−1))−1 is the representing function ofσ ∗ and
x( f (x))−1 is the representing function ofσ⊥. 5, # and ! are examples of symmetric
means.5 and ! are adjoints of each other while # is selfadjoint. Moreover it follows
that # is the only operator mean which is the dual of itself.

By a positive map, we mean a mapping from the set of bounded linear operators
on a Hilbert spaceH to the set of bounded linear operators on a Hilbert spaceK which
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maps positive intertible operators into positive invertible operators. A mapφ is called
unital if φ(I ) = I .

In [10], it is proved that ifφ is a C∗-homomorphism, then

φ(Aσ B) = φ(A)σφ(B)

for any operator meanσ , here we shall obtain similar type of results for a positive map
φ.

THEOREM 1. Letφ be a positive map such that

φ(A#B) = φ(A)#φ(B)

for all A, B ∈ P(H). Then

φ(Aσ B) = φ(A)σφ(B)

implies
φ(Aσ⊥B) = φ(A)σ⊥φ(B)

for all connectionsσ .

Proof. The equality
(Aσ B)#(Aσ⊥B) = A#B

implies

φ(Aσ B)#φ(Aσ⊥B) = φ(A#B)

= φ(A)#φ(B)

= (φ(A)σφ(B))#(φ(A)σ⊥φ(B))

= φ(Aσ B)#(φ(A)σ⊥φ(B))

which further implies
φ(Aσ⊥B) = φ(A)σ⊥φ(B),

sinceA#B = A#C implies B = C.

REMARK 1. It is not always true that the inequalityA#B ≤ A#C implies B ≤ C.

Indeed, letA = I , B =

(

2 3
3 5

)

,C =

(

5 4
4 5

)

. Then the inequalityA#B ≤

A#C is satisfied. However,B ≤ C is not true.

THEOREM2. Letφ be a unital positive map. Then any two of the following condi-
tions imply the third:

(i) φ(A−1) = (φ(A))−1 for all A ∈ P(H).

(ii) φ(A 5s,t B) = φ(A)5s,t φ(B) for all A, B ∈ P(H) and s, t > 0.

(iii) φ(A!s,t B) = φ(A)!s,tφ(B) for all A, B ∈ P(H) and s, t > 0.
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Proof. (i) and (ii) imply (iii): Observe that

φ(A−1 5s,t B−1) = φ(A−1)5s,t φ(B
−1)

= (φ(A))−1 5s,t (φ(B))
−1.

The above equality implies

φ(A!s,t B) = φ((A−1 5s,t B−1)−1)

= (φ(A−1 5s,t B−1))−1

= φ(A)!s,tφ(B).

(i) and (iii) imply (ii):

φ(A−1!s,t B
−1) = φ(A−1)!s,tφ(B

−1)

= (φ(A))−1!s,t(φ(B))
−1.

Consequently,

(φ(A 5s,t B))−1 = φ((A 5s,t B)−1)

= φ(A−1!s,t B
−1)

= (φ(A))−1!s,t(φ(B))
−1

= (φ(A)5s,t φ(B))
−1.

Thus
φ(A 5s,t B) = φ(A)5s,t φ(B).

(ii) and (iii) imply (i):

The equality
I ! A + I ! A−1 = 2I

implies
I !φ(A)+ I !φ(A−1) = 2I ,

i.e.,
(I + (φ(A))−1)−1 + (I + (φ(A−1))−1)−1 = I ,

which implies

(I + (φ(A))−1)+ (I + (φ(A−1))−1) = (I + (φ(A))−1)(I + (φ(A−1))−1).

Consequently,
φ(A)φ(A−1) = I .

Hence
φ(A−1) = (φ(A))−1.
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REMARK 2. Note that in Theorem 2 to prove (ii) and (iii) imply (i) we use (ii) and
(iii) for particular choice ofs, t whens = t = 1

2.

COROLLARY 1. Letφ be a unital positive map such that
(i) φ(A 5 B) = φ(A)5 φ(B) for all A, B ∈ P(H),
(ii) φ(A!B) = φ(A)!φ(B) for all A, B ∈ P(H).

Then

φ(A2) = (φ(A))2

for all A ∈ P(H).

Proof. For a fixedA ∈ P(H), consider the mapψ defined onP(H) by

ψ(X) = (φ(A))−1/2φ(A1/2X A1/2)(φ(A))−1/2.

Then

ψ(I ) = I ,

ψ(X 5 Y) = ψ(X) 5 ψ(Y),

ψ(X!Y) = ψ(X)!ψ(Y),

sinceφ satisfies these. Therefore by Theorem 2 and Remark 2,

ψ(A−1) = (ψ(A))−1,

i.e.,

(φ(A))−1 = (φ(A))1/2(φ(A2))−1(φ(A))1/2,

which gives the desired equality

φ(A2) = (φ(A))2.

COROLLARY 2. Let φ be a unital positive map. Then any two of the following
conditions imply the third:

(i) φ(A#B) = φ(A)#φ(B) for all A, B ∈ P(H).

(ii) φ(A 5s,t B) = φ(A)5s,t φ(B) for all A, B ∈ P(H) and s, t > 0.

(iii) φ(A!s,t B) = φ(A)!s,tφ(B) for all A, B ∈ P(H) and s, t > 0.

Proof. The implications (i) and (ii) imply (iii), and (i) and (iii) imply (ii) follows from
Theorem 1.

(ii) and (iii) imply (i):
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If ψ is the map considered in Corollary 1, then

ψ(I ) = I ,

ψ(X 5 Y) = ψ(X) 5 ψ(Y),

ψ(X!Y) = ψ(X)!ψ(Y).

Therefore, by Corollary 1,
ψ(X2) = (ψ(X))2.

Using thatx → x1/2 is operator monotone on(0,∞), we obtain

ψ(X1/2) = (ψ(X))1/2,

i.e.,
ψ(I #X) = I #ψ(X)

for all X ∈ P(H). Now

φ(A#B) = φ(A1/2(I #(A−1/2B A−1/2))A1/2)

= (φ(A))1/2ψ(I #(A−1/2B A−1/2))(φ(A))1/2

= (φ(A))1/2(I #ψ(A−1/2B A−1/2))(φ(A))1/2

= φ(A)#φ(B).

3. Shorted Operators and Operator Means

Given a closed subspaceS of H, the shorted operatorAS of a positive operatorA toS

is defined as:
AS = max{D : 0 ≤ D ≤ A, Ran(D) ⊆ S}.

The existence of such a maximum is guaranteed by Anderson andTrapp [3]. The
operationA → AS is called the shorted operation. The shorted operation has the
following properties [3]:

(i) AS ≤ A,

(ii) (αA)S = αAS for α ≥ 0,

(iii) (AS)S = AS ,

(iv) AS + BS ≤ (A + B)S .

The parallel additionA : B = (A−1 + B−1)−1 for A, B ∈ P(H) is the opera-
tor connection corresponding to the operator monotone function x → x

1+x , x > 0.

ThusA : B = 1
2(A!B). The important interconnections between parallel addition and

shorted operator were established by Anderson and Trapp [3]:
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(1) lim
α→∞

(A : αP) = AS

whereP is the projection to the subspaceS. An important consequence of (1) is the
commutativity of parallel addition and shorted operation:

(A : B)S = AS : B = A : BS .

Our first result of this section is an inequality involving operator convex function
and shorted operator.

THEOREM 3. Let f be a strictly increasing operator convex function on[0,∞)

with f (0) = 0 and f(x−1) = ( f (x))−1 for all x > 0. Then

( f (A))S ≤ f (AS),

for all A ∈ P(H).

Proof. Let P be a projection ontoS andα > 1. Then for allε > 0, we have

f ((1 − α−1)−1A : α(P + ε)) = f ([(1 − α−1)A−1 + α−1(P + ε)−1]−1)

= [ f ((1 − α−1)A−1 + α−1(P + ε)−1)]−1

≥ [((1 − α−1) f (A−1)+ α−1 f ((P + ε)−1)]−1

= (1 − α−1)−1 f (A) : α f (P + ε).

On taking the limit whenε → 0, we get

(2) f ((1 − α−1)−1A : αP) ≥ (1 − α−1)−1 f (A) : α f (P).

Since f (0) = 0 and f (1) = 1, we have,f (P) = P. Also note that for anyX ∈ P(H)

and for any projectionP

(3) (1 − α−1)−1X : αP = (1 − α−1)−1[X : (α − 1)P] = (1 + γ−1)[X : γ P]

whereγ = α − 1. Now on taking limit whenα → ∞ in inequality (2) and using the
identities (3) and (1), we obtain

f (AS ) ≥ ( f (A))S .

This completes the proof.

Since the functionx → xr , 1 ≤ r ≤ 2 is operator convex on [0,∞), we have the
following corollary:

COROLLARY 3. Let A∈ P(H). Then

(Ar )S ≤ (AS)
r

for all 1 ≤ r ≤ 2.
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Since a positive operator concave function on [0,∞) is operator monotone and
hence is strictly increasing, one can prove the following theorem by an argument simi-
lar to that used in Theorem 3.

THEOREM4. Let f be a positive operator concave function on[0,∞)with f (0) =

0 and f(x−1) = ( f (x))−1 for all x > 0. Then

( f (A))S ≥ f (AS),

for all A ∈ P(H).

COROLLARY 4. Let A∈ P(H). Then

(Ar )S ≥ (AS)
r

for all 0 ≤ r ≤ 1.

Proof. Since the functionx → xr , 0 ≤ r ≤ 1 is operator concave on [0,∞), one have
the desired inequality by Theorem 4.

Let ei be a complete orthonormal system forH. Then for operatorsA, B on H,
their tensor productA ⊗ B is determined by

〈(A ⊗ B)(ei ⊗ ej ),ek ⊗ el 〉 = 〈Aei ,ek〉〈Bej ,el 〉.

We have the following theorem:

THEOREM 5. Let A, B ∈ S(H) andS be a closed subspace ofH. Then

(A ⊗ B)S⊗S ≥ AS ⊗ BS .

Proof. Indeed, by definition

AS = max{D : 0 ≤ D ≤ A, Ran(D) ⊆ S} = max
∑

1

and

BS = max{D : 0 ≤ D ≤ B, Ran(D) ⊆ S} = max
∑

2 .

Let D1 ∈
∑

1 andD2 ∈
∑

2. Then it is clear that

D1 ⊗ D2 ∈
∑

1 ⊗
∑

2 ⊆ max{D : 0 ≤ D ≤ A ⊗ B Ran(D) ⊆ S ⊗ S},

sinceRan(D1 ⊗ D2) ⊆ S ⊗ S and 0≤ D1 ⊗ D2 ≤ A ⊗ B. Consequently,

(A ⊗ B)S⊗S ≥ AS ⊗ BS .

This completes the proof of the theorem.
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