Rend. Sem. Mat. Univ. Pol. Torino Vol. 59, 3 (2001)

J. Fernández Novoa*

LOCALLY FINITE BOREL MEASURES IN RADOM SPACES

Abstract. For any locally finite Borel measure μ in a Radon space X we establish that the following properties are equivalent: (*i*) μ is semifinite; (*ii*) μ has a concassage; (*iii*) each atom of μ has finite μ -measure; (*iv*) μ is a Radon measure.

1. Introduction and preliminaries

Let *X* be a Hausdorff topological space. We shall denote by \mathcal{G} , \mathcal{K} and \mathcal{B} , respectively, the families of all open, compact and Borel subsets of *X*.

A *Borel measure* in X is a measure on \mathcal{B} . A Borel measure μ in X is called

- (a) *locally finite* if each $x \in X$ has an open neighborhood V_x such that $\mu(V_x) < +\infty$;
- (b) *semifinite* if $\mu(A) = \sup\{\mu(B) : A \supset B \in \mathcal{B}, \mu(B) < +\infty\}$ for each $A \in \mathcal{B}$;
- (c) Radon if it is locally finite and $\mu(A) = \sup\{\mu(K) : A \supset K \in \mathcal{K}\}$ for each $A \in \mathcal{B}$.

The space X is said to be a *Radon* (resp. *strongly Radon*) *space* if each finite (resp. locally finite) Borel measure μ in X is a Radon measure. For a extensive treatment of Radon measures and Radon spaces, we refer to [3].

The *support* of a Borel measure μ in X is the set of all $x \in X$ such that $\mu(U) > 0$ for each open neighborhood U of x. It is clear that the support S of a Borel measure μ in X is a closed subset of X.

Let μ be a Borel measure in X. A *concassage* of μ is a disjoint family \mathcal{D} of compact subsets of X such that

- (a) $\mu(G \cap D) > 0$ for each $G \in \mathcal{G}$ and each $D \in \mathcal{D}$ with $G \cap D \neq \emptyset$;
- (b) $\mu(A) = \sum_{D \in \mathcal{D}} \mu(A \cap D)$ for each $A \in \mathcal{B}$.

A set $A \in \mathcal{B}$ is called an *atom* of μ if $\mu(A) > 0$ and for each $B \in \mathcal{B}$ with $B \subset A$ either $\mu(B) = 0$ or $\mu(B) = \mu(A)$.

Let μ be a Radon measure in X. We shall recall three know facts:

1.1. μ is semifinite;

^{*}The author wish to thank the referee for several helpful comments and suggestions.

1.2. μ has a concassage (see e. g. ([2], Proposition 12.10));

1.3. each atom of μ has finite μ -measure (see ([1], Theorem 1)).

In this paper we establish the converse propositions for locally finite Borel measures in Radon spaces, and we deduce that a Radon space X is a strongly Radon space if and only if each locally finite Borel measure μ in X satisfies any of the conditions 1.1, 1.2 or 1.3.

2. The results

THEOREM 1. Let X be a Radon space and let μ be a locally finite Borel measure in X. The following properties are equivalent:

- (i) μ is semifinite;
- (ii) μ has a concassage;
- (iii) each atom of μ has finite μ -measure;
- (iv) μ is a Radon measure.

Proof. It is clear that $(ii) \Longrightarrow (iii)$ and that $(iv) \Longrightarrow (i)$. We shall prove that $(i) \Longrightarrow (ii)$ and that $(iii) \Longrightarrow (iv)$.

 $(i) \implies (ii)$. By Zorn's lemma there is a maximal disjoint family \mathcal{D} of compact subsets of X which satisfies the first condition of definition of concassage. In four etaps we shall prove that \mathcal{D} also satisfies the second condition.

Let $B \in \mathcal{B}$ with $\mu(B) < +\infty$ and $B \cap \cup \mathcal{D} = \emptyset$, and suppose that $\mu(B) > 0$. The measure ν defined by $\nu(A) = \mu(A \cap B)$ for each $A \in \mathcal{B}$ is a finite Borel measure in the Radon space *X*, hence it is a Radon measure in *X*. Therefore

$$\mu(B) = \nu(B) = \sup\{\nu(K) : B \supset K \in \mathcal{K}\} = \sup\{\mu(K) : B \supset K \in \mathcal{K}\}$$

and there is $K \in \mathcal{K}$ such that $K \subset B$ and $\mu(K) > 0$. The restriction μ_K of ν to the family $\{A \in \mathcal{B} : A \subset K\}$ is a Radon measure in K. Let S be the support of μ_K . Then S is a compact subset of X and $S \cap \cup \mathcal{D} = \emptyset$, and adding S to \mathcal{D} we obtain a contradiction to the maximality of \mathcal{D} . Thus $\mu(B) = 0$.

Let $K \in \mathcal{K}$. Since μ is locally finite, each $x \in X$ has a open neighborhood V_x with $\mu(V_x) < +\infty$ and a finite family $\{V_{x_1}, ..., V_{x_n}\}$ of these neighborhoods is a cover of K. Then $G = \bigcup_{i=1}^n V_{x_i}$ is an open set such that $K \subset G$ and $\mu(G) < +\infty$. Since \mathcal{D} is a disjoint family, we have

$$\sum_{D\in\mathcal{D}}\mu\left(G\cap D\right)\leq\mu\left(G\right)<+\infty$$

Locally finite Borel measures

hence the family

$$\mathcal{D}_0 = \{ D \in \mathcal{D} : G \cap D \neq \emptyset \} = \{ D \in \mathcal{D} : \mu (G \cap D) > 0 \}$$

is countable. Since $(K \cap \cup \mathcal{D}_0) \cap (\cup \mathcal{D}) = \emptyset$, we have

$$\mu(K) = \mu(K \cap \cup \mathcal{D}_0) = \sum_{D \in \mathcal{D}_0} \mu(K \cap D) = \sum_{D \in \mathcal{D}} \mu(K \cap D).$$

Now, let $B \in \mathcal{B}$ with $\mu(B) < +\infty$. For each $K \in \mathcal{K}$ with $K \subset B$ we have

$$\mu(K) = \sum_{D \in \mathcal{D}} \mu(K \cap D) \le \sum_{D \in \mathcal{D}} \mu(B \cap D)$$

and since the measure ν defined by $\nu(A) = \mu(A \cap B)$ for each $A \in \mathcal{B}$ is a Radon measure in X, as in the first etap we show that

$$\mu(B) = \sup\{\mu(K) : B \supset K \in \mathcal{K}\}\$$

Consequently,

$$\mu\left(B\right) \leq \sum_{D \in \mathcal{D}} \mu\left(B \cap D\right)$$

Finally, let $A \in \mathcal{B}$. For each $B \in \mathcal{B}$ with $B \subset A$ and $\mu(B) < +\infty$ we have

$$\mu(B) \leq \sum_{D \in \mathcal{D}} \mu(B \cap D) \leq \sum_{D \in \mathcal{D}} \mu(A \cap D)$$

and since μ is semifinite,

$$\mu\left(A\right) = \sup\{\mu\left(B\right): A \supset B \in \mathcal{B}, \mu\left(B\right) < +\infty\} \le \sum_{D \in \mathcal{D}} \mu\left(A \cap D\right).$$

The reverse inequality is obvious because $\ensuremath{\mathcal{D}}$ is a disjoint family.

 $(iii) \Longrightarrow (iv)$. As above we show that

$$\mu(A) = \sup\{\mu(K) : A \supset K \in \mathcal{K}\}$$

for each $A \in \mathcal{B}$ with $\mu(A) < +\infty$. Let $A \in \mathcal{B}$ with $\mu(A) = +\infty$. It suffices to prove that

$$\sup\{\mu(B): A \supset B \in \mathcal{B}, \ \mu(B) < +\infty\} = +\infty.$$

Proceeding towards a contradiction, let

$$\sup\{\mu(B): A \supset B \in \mathcal{B}, \ \mu(B) < +\infty\} = \alpha < +\infty$$

J. Fernández Novoa

and for each $n \in \mathbb{N}$, let $A_n \in \mathcal{B}$ such that $A_n \subset A$ and

$$\alpha - \frac{1}{n} < \mu \left(A_n \right) \le \alpha$$

With no lost of generality, we can suppose that $(A_n)_{n \in \mathbb{N}}$ is an increasing sequence in \mathcal{B} . Then we have

$$\mu\left(\cup_{n\in\mathbb{N}}A_n\right)=\alpha.$$

If $B \in \mathcal{B}$ is contained in $A \setminus \bigcup_{n \in \mathbb{N}} A_n$, we have either $\mu(B) = +\infty$ or $\mu(B) = 0$. Then $A \setminus \bigcup_{n \in \mathbb{N}} A_n$ is an atom of μ with infinite measure against *(iii)*.

COROLLARY 1. A Radon space X is a strongly Radon space if and only if each locally finite Borel measure μ in X satisfies any of the following conditions:

- (i) μ is semifinite;
- (ii) μ has a concassage;
- (iii) each atom of μ has finite μ -measure.

References

- FERNÁNDEZ NOVOA J., Atomos para las medidas de Radon, Contribuciones Matemáticas, Libro homenaje al Prof. J. J. Etayo, 335–337, Complutense, Madrid, 1994.
- [2] GARDNER R. J. AND PFEFFER W. F., *Borel measures*; in: "Handbook of Set Theoretic Topology", (eds. Kunen K. and Vaughan J. E.), 961–1043, North Holland, New York 1984.
- [3] SCHWARTZ L., Radon measures on Arbitrary Topological Spaces and Cylindrical measures, Oxford Univ. Press, 1973.

AMS Subject Classification: 28C15, 28A12.

Jesùs FERNÁNDEZ NOVOA Departamento de Matemáticas Fundamentales Facultad de Ciencias,UNED Senda del Rey 9 28040 Madrid, SPAIN e-mail: jesusf@mat.uned.es

Lavoro pervenuto in redazione il 06.03.2000 e, in forma definitiva, il 13.06.2001.

188