E. Ballico

MULTIPLICATION OF SECTIONS OF STABLE VECTOR BUNDLES: THE INJECTIVITY RANGE

Abstract

Let X be a smooth curve of genus g. For any vector bundles E, F on X, let $\mu_{E, F}: H^{0}(X, E) \otimes H^{0}(X, F) \rightarrow H^{0}(X, E \otimes F)$ be the multiplication map. Here we study the injectivity of $\mu_{E, F}$ when E, F are general stable bundles with $h^{1}(X, E)=h^{1}(X, F)=0$.

1. Introduction

Let X be a smooth projective curve of genus $g \geq 2$ and E, F vector bundle on X. Let $\mu_{E, F}: H^{0}(X, E) \otimes H^{0}(X, F) \rightarrow H^{0}(X, E \otimes F)$ be the multiplication map. When E and F are spanned by their global sections several geometric properties of the pair (E, F) may be translated in terms of the rank of $\mu_{E, F}$. For instance if $E, F \in \operatorname{Pic}(X)$, $u:=h^{0}(X, E)-1, v:=h^{0}(X, F)-1$ and $f: X \rightarrow \mathbf{P}^{u} \times \mathbf{P}^{v}$ is the map associated to the pair (E, F), the linear map $\mu_{E, F}$ is injective if and only if $f(X)$ spans \mathbf{P}^{t}, $t:=u v+u+v$, where $\mathbf{P}^{u} \times \mathbf{P}^{v}$ is embedded in \mathbf{P}^{t} using the Plücker embedding. For other uses of the multiplication map, see [2], [3] and [8]. If $h^{1}(X, E)=h^{1}(X, F)=0$ we have $h^{1}(X, E \otimes F)=0$ and hence $h^{0}(X, E)=\operatorname{deg}(E)+\operatorname{rank}(E)(1-g)$ and similarly for F and $E \otimes F$ (Riemann - Roch). Thus if $h^{1}(X, E)=h^{1}(X, F)=0$, the possible pairs $(\operatorname{deg}(E), \operatorname{deg}(F))$ for which $\mu_{E, F}$ may be injective is quite small (even if E and F are line bundles). For all integers e, f with $e>0$ the moduli scheme $M(X ; e, f)$ of all rank e stable vector bundles on X with degree f is an irreducible smooth variety with $\operatorname{dim}(M(X ; e, f))=e 2(g-1)+1$. In this paper we work over an arbitrary algebraically closed base field \mathbf{K} and prove the following result.

THEOREM 1. Let X be a general smooth curve of genus $g \geq 4$. Fix positive integers $r, s, x_{i}, 1 \geq i \geq r$, and $y_{j}, 1 \geq j \geq s$. Assume $x_{i} y_{j} \geq g$ for all pairs (i, j). Let E (resp. F) be the general rank r (resp. rank s) stable vector bundle on X with $\operatorname{deg}(E)=r(g-1)+x_{1}+\ldots+x_{r}\left(\right.$ resp. $\left.\operatorname{deg}(F)=s(g-1)+y_{1}+\ldots+y_{s}\right)$. Then $h^{1}(X, E)=h^{1}(X, F)=0, h^{0}(X, E)=x_{1}+\ldots+x_{r}, h^{0}(X, F)=y_{1}+\ldots+y_{s}$ and the multiplication map $\mu_{E, F}$ is injective.

We think that Theorem 1 is quite strong even for non-special line bundles (see Remark 1). Theorem 1 will be proved in section 2 by reduction to the case of line bundles. This case will be proved using Gieseker - Petri theorem for special divisors ([4]). It is the use of this theorem which force us to assume that X has general moduli.

We do not know if the corresponding result is true for arbitrary smooth curves; guess: yes. For the case of nodal curves, see Remark 4.

2. Proof of Theorem 1

First, we will prove the following result, i.e. the case $\operatorname{rank}(E)=\operatorname{rank}(F)=1$ of Theorem 1.

Proposition 1. Let X be a general smooth curve of genus $g \geq 4$. Fix integers x, y with $x \geq 2, y \geq 2$ and $x y \leq g$. Set $a:=x+g-1$ and $b:=y+g-1$. Let (L, M) be a general element of Pic ${ }^{a}(X) \times \operatorname{Pic}^{b}(X)$. Then the multiplication map $\mu_{L, M}: H^{0}(X, L) \otimes H^{0}(X, M) \rightarrow H^{0}(X, L \otimes M)$ is injective.

Proof. Set $d:=g-1+x-y$. By the existence theorem for special divisors and Gieseker - Petri theorem ([4] or [1], Ch. IV and Ch. VII) there is $R \in \operatorname{Pic}^{d}(X)$ such that $h^{0}(X, R)=x$ and the multiplication map $\mu_{R, \omega_{X} \otimes R^{*}}: H^{0}(X, R) \otimes H^{0}\left(X, \omega_{X} \otimes\right.$ $\left.R^{*}\right) \rightarrow H^{0}\left(X, \omega_{X}\right)$ is injective. By Riemann - Roch and the choice of d we have $h^{0}\left(X, \omega_{X} \otimes R^{*}\right)=y$. Take $y+x$ general points of X, say $P_{1}, \ldots, P_{y}, Q_{1}, \ldots, Q_{x}$ and set $L^{\prime}:=R\left(P_{1}+\ldots+P_{y}\right)$ and $M^{\prime}:=\omega_{X} \otimes R^{*}\left(Q_{1}+\ldots+Q_{x}\right)$. By the generality of the points P_{i} and Q_{j} we have $h^{1}\left(X, L^{\prime}\right)=h^{1}\left(X, M^{\prime}\right)=0, h^{0}\left(X, L^{\prime}\right)=$ x and $h^{0}\left(X, M^{\prime}\right)=y$. The injectivity of $\mu_{R, \omega_{X} \otimes R^{*}}$ implies the injectivity of $\mu_{L^{\prime}, M^{\prime}}$ because $H^{0}\left(X, L^{\prime}\right)$ may be identified (after deleting the base locus) with $H^{0}(X, R)$, while $H^{0}\left(X, M^{\prime}\right)$ may be identified with a linear subspace of $H^{0}\left(X, \omega_{X} \otimes R^{*}\right)$. Hence we conclude by semicontinuity.

REMARK 1. Proposition bal:prop 2.1 is almost the best a priori possible result. Indeed, by Riemann - Roch the best range in which $\mu L, M$ may be injective is the range $x y \leq g-1+x+y$.

REMARK 2. Fix positive integers r, s, a projective curve X and vector bundles $A(i), 1 \leq i \leq r$ and $B(j), 1 \leq j \leq s$, on X. Set $A:=\bigotimes_{1 \leq i \leq r} A(i)$ and $B:=$ $\otimes_{1 \leq j \leq s} B(j)$. Assume that for every pair (i, j) with $1 \leq i \leq r$ and $1 \leq j \leq s$ the multiplication map $\mu_{A(i), B(j)}: H^{0}(X, A(i)) \otimes H^{0}(X, B(j)) \rightarrow H^{0}(X, A(i) \otimes B(j))$ is injective. Then $\mu_{A, B}$ is injective.

Remark 3. Let X be a smooth projective curve and E a vector bundle on X. Let F be the general vector bundle obtained from E making a positive elementary transformation, i.e. the general vector bundle fitting in an exact sequence

$$
0 \rightarrow E \rightarrow F \rightarrow \mathbf{K}^{P} \rightarrow 0
$$

with $P \in X$ and \mathbf{K}^{P} skyscraper sheaf supported by P and with $h^{0}\left(X, \mathbf{K}^{P}\right)=1$. Alternatively, $F *$ may be obtained from $E *$ in the following way. Fix any $P \in X$ and consider a general surjection $a: E * \mathbf{K}^{P}$, i.e. a general linear map $E * \mid P \rightarrow \mathbf{K}$, where $E * \mid P$ is the fiber of $E *$ over P; then set $F *:=\operatorname{Ker}(a)$. We have $\operatorname{rank}(E)=$
$\operatorname{rank}(F)=r, \operatorname{deg}(F)=\operatorname{deg}(E)+1$ and E is isomorphic to a subsheaf of F. It is easy to check that $h^{1}(X, F)=\max 0, h^{1}(X, E)-1$ (see [6], proof of 1.6 at p. 101, for a characteristic free proof). Thus by Riemann - Roch we have $h^{0}(X, F)=h^{0}(X, E)$ if $h^{1}(X, E)>0$ and $h^{0}(X, F)=h^{0}(X, E)+1$ if $h^{1}(X, E)=0$.

Proof. The values for $h^{i}(X, E)$ and $h^{i}(X, F)$ are well-known ([6], Cor. 1.7, or [9] or just apply several times Remark 3). Let $A(i)$ (resp. $B(j))$ be the general line bundle of degree $g-1+x_{i}$ (resp. $g-1+y_{j}$). Set $A:=\bigotimes_{1 \leq i \leq r} A(i)$ and $B:=\bigotimes_{1 \leq j \leq s} B(j)$. Notice that $h^{i}(X, A)=h^{i}(X, E)$ and $h^{i}(X, B)=h^{i}(X, F), i=0,1$. By Proposition 1 and Remark 3 the multiplication map $\mu_{A, B}$ is injective. Since $h^{1}(X, A)=h^{1}(X, B)=$ 0 we may apply semicontinuity and obtain the injectivity of $\mu_{E, F}$ when $E($ resp $F)$ is a sufficiently general deformation of A (resp. B). Since any vector bundle on X is the flat limit of a family of stable vector bundles ([7], Prop. 2.6, or, in arbitrary characteristic, [5], Cor. 2.2), we conclude.

Remark 4. Fix an integer q with $0 \leq q<g$. Let Y be the general curve with $p a(Y)=g$ and exactly q nodes as only singularities. By [4], Prop. 1.2, we may apply the proof of Proposition 1 and hence of Theorem 1 to Y.

References

[1] Arbarello E., Cornalba M., Griffiths Ph. and Harris J., Geometry of Algebraic Curves, I, Springer Verlag, 1985.
[2] Eisenbud D., Linear sections of determinantal varieties, Am. J. Math. 110 (1988), 541-575.
[3] Eisenbud D., Koh J. and Stillman M., Determinantal equations for curves of high degree, Amer. J. Math. 110 (1989), 513-540.
[4] Gieseker D., Stable curves and special divisors, Invent. Math. 66 (1982), 251275.
[5] Hirschowitz A., Problème de Brill-Noether en rang superieur, Prepublication Mathematiques 91, Nice 1985.
[6] Laumon G., Fibres vectoriels speciaux, Bull. Soc. Math. France 119 (1991), 97-119.
[7] Narasimhan M. S. and Ramanan S., Deformation of the moduli space of vector bundles over an algebraic curve, Ann. Math. 101 (1975), 391-417.
[8] Re R., Multiplication of sections and Clifford bounds for stable vector bundles, Comm. in Alg. 26 (1998), 1931-1944.
[9] Sundaram N., Special divisors and vector bundles, Toh(tm)ku Math. J. 39 (1987), 175-213.

AMS Subject Classification: 14H60, 14H50, 14H51.

Edoardo BALLICO
Dipartimento di Matematica
Università of Trento
38050 Povo (TN), ITALIA
e-mail: ballico@science.unitn.it
Lavoro pervenuto in redazione il 10.05.2000 e, in forma definitiva, il 30.04.2001.

