Rend. Sem. Mat. Univ. Pol. Torino Vol. 59, 3 (2001)

E. Ballico

MULTIPLICATION OF SECTIONS OF STABLE VECTOR BUNDLES: THE INJECTIVITY RANGE

Abstract. Let *X* be a smooth curve of genus *g*. For any vector bundles *E*, *F* on *X*, let $\mu_{E,F} : H^0(X, E) \otimes H^0(X, F) \to H^0(X, E \otimes F)$ be the multiplication map. Here we study the injectivity of $\mu_{E,F}$ when *E*, *F* are general stable bundles with $h^1(X, E) = h^1(X, F) = 0$.

1. Introduction

Let X be a smooth projective curve of genus $g \ge 2$ and E, F vector bundle on X. Let $\mu_{E,F} : H^0(X, E) \otimes H^0(X, F) \to H^0(X, E \otimes F)$ be the multiplication map. When E and F are spanned by their global sections several geometric properties of the pair (E, F) may be translated in terms of the rank of $\mu_{E,F}$. For instance if $E, F \in Pic(X)$, $u := h^0(X, E) - 1$, $v := h^0(X, F) - 1$ and $f : X \to \mathbf{P}^u \times \mathbf{P}^v$ is the map associated to the pair (E, F), the linear map $\mu_{E,F}$ is injective if and only if f(X) spans \mathbf{P}^t , t := uv + u + v, where $\mathbf{P}^u \times \mathbf{P}^v$ is embedded in \mathbf{P}^t using the Plücker embedding. For other uses of the multiplication map, see [2], [3] and [8]. If $h^1(X, E) = h^1(X, F) = 0$ we have $h^1(X, E \otimes F) = 0$ and hence $h^0(X, E) = deg(E) + rank(E)(1 - g)$ and similarly for F and $E \otimes F$ (Riemann - Roch). Thus if $h^1(X, E) = h^1(X, F) = 0$, the possible pairs (deg(E), deg(F)) for which $\mu_{E,F}$ may be injective is quite small (even if E and F are line bundles). For all integers e, f with e > 0 the moduli scheme M(X; e, f) of all rank e stable vector bundles on X with degree f is an irreducible smooth variety with $dim(M(X; e, f)) = e^2(g-1) + 1$. In this paper we work over an arbitrary algebraically closed base field **K** and prove the following result.

THEOREM 1. Let X be a general smooth curve of genus $g \ge 4$. Fix positive integers r, s, x_i , $1 \ge i \ge r$, and y_j , $1 \ge j \ge s$. Assume $x_i y_j \ge g$ for all pairs (i, j). Let E (resp. F) be the general rank r (resp. rank s) stable vector bundle on X with $deg(E) = r(g - 1) + x_1 + ... + x_r$ (resp. $deg(F) = s(g - 1) + y_1 + ... + y_s$). Then $h^1(X, E) = h^1(X, F) = 0$, $h^0(X, E) = x_1 + ... + x_r$, $h^0(X, F) = y_1 + ... + y_s$ and the multiplication map $\mu_{E,F}$ is injective.

We think that Theorem 1 is quite strong even for non-special line bundles (see Remark 1). Theorem 1 will be proved in section 2 by reduction to the case of line bundles. This case will be proved using Gieseker - Petri theorem for special divisors ([4]). It is the use of this theorem which force us to assume that X has general moduli.

We do not know if the corresponding result is true for arbitrary smooth curves; guess: yes. For the case of nodal curves, see Remark 4.

2. Proof of Theorem 1

First, we will prove the following result, i.e. the case rank(E) = rank(F) = 1 of Theorem 1.

PROPOSITION 1. Let X be a general smooth curve of genus $g \ge 4$. Fix integers x, y with $x \ge 2$, $y \ge 2$ and $xy \le g$. Set a := x + g - 1 and b := y + g - 1. Let (L, M) be a general element of $Pic^a(X) \times Pic^b(X)$. Then the multiplication map $\mu_{L,M} : H^0(X, L) \otimes H^0(X, M) \to H^0(X, L \otimes M)$ is injective.

Proof. Set d := g - 1 + x - y. By the existence theorem for special divisors and Gieseker - Petri theorem ([4] or [1], Ch. IV and Ch. VII) there is $R \in Pic^d(X)$ such that $h^0(X, R) = x$ and the multiplication map $\mu_{R,\omega_X \otimes R^*} : H^0(X, R) \otimes H^0(X, \omega_X \otimes R^*) \to H^0(X, \omega_X)$ is injective. By Riemann - Roch and the choice of d we have $h^0(X, \omega_X \otimes R^*) = y$. Take y + x general points of X, say $P_1, \ldots, P_y, Q_1, \ldots, Q_x$ and set $L' := R(P_1 + \ldots + P_y)$ and $M' := \omega_X \otimes R^*(Q_1 + \ldots + Q_x)$. By the generality of the points P_i and Q_j we have $h^1(X, L') = h^1(X, M') = 0, h^0(X, L') = x$ and $h^0(X, M') = y$. The injectivity of $\mu_{R,\omega_X \otimes R^*}$ implies the injectivity of $\mu_{L',M'}$ because $H^0(X, L')$ may be identified (after deleting the base locus) with $H^0(X, R)$, while $H^0(X, M')$ may be identified with a linear subspace of $H^0(X, \omega_X \otimes R^*)$. Hence we conclude by semicontinuity.

REMARK 1. Proposition bal:prop2.1 is almost the best a priori possible result. Indeed, by Riemann - Roch the best range in which μL , M may be injective is the range $xy \le g - 1 + x + y$.

REMARK 2. Fix positive integers r, s, a projective curve X and vector bundles A(i), $1 \le i \le r$ and B(j), $1 \le j \le s$, on X. Set $A := \bigotimes_{1 \le i \le r} A(i)$ and $B := \bigotimes_{1 \le j \le s} B(j)$. Assume that for every pair (i, j) with $1 \le i \le r$ and $1 \le j \le s$ the multiplication map $\mu_{A(i),B(j)} : H^0(X, A(i)) \otimes H^0(X, B(j)) \to H^0(X, A(i) \otimes B(j))$ is injective.

REMARK 3. Let X be a smooth projective curve and E a vector bundle on X. Let F be the general vector bundle obtained from E making a positive elementary transformation, i.e. the general vector bundle fitting in an exact sequence

$$0 \to E \to F \to \mathbf{K}^P \to 0$$

with $P \in X$ and \mathbf{K}^P skyscraper sheaf supported by P and with $h^0(X, \mathbf{K}^P) = 1$. Alternatively, F * may be obtained from E * in the following way. Fix any $P \in X$ and consider a general surjection $a : E * \mathbf{K}^P$, i.e. a general linear map $E * | P \to \mathbf{K}$, where E * | P is the fiber of E * over P; then set F * := Ker(a). We have rank(E) =

174

Multiplication of sections

rank(F) = r, deg(F) = deg(E) + 1 and *E* is isomorphic to a subsheaf of *F*. It is easy to check that $h^1(X, F) = max0$, $h^1(X, E) - 1$ (see [6], proof of 1.6 at p. 101, for a characteristic free proof). Thus by Riemann - Roch we have $h^0(X, F) = h^0(X, E)$ if $h^1(X, E) > 0$ and $h^0(X, F) = h^0(X, E) + 1$ if $h^1(X, E) = 0$.

Proof. The values for $h^i(X, E)$ and $h^i(X, F)$ are well-known ([6], Cor. 1.7, or [9] or just apply several times Remark 3). Let A(i) (resp. B(j)) be the general line bundle of degree $g - 1 + x_i$ (resp. $g - 1 + y_j$). Set $A := \bigotimes_{1 \le i \le r} A(i)$ and $B := \bigotimes_{1 \le j \le s} B(j)$. Notice that $h^i(X, A) = h^i(X, E)$ and $h^i(X, B) = h^i(X, F)$, i = 0, 1. By Proposition 1 and Remark 3 the multiplication map $\mu_{A,B}$ is injective. Since $h^1(X, A) = h^1(X, B) = 0$ we may apply semicontinuity and obtain the injectivity of $\mu_{E,F}$ when E (resp F) is a sufficiently general deformation of A (resp. B). Since any vector bundle on X is the flat limit of a family of stable vector bundles ([7], Prop. 2.6, or, in arbitrary characteristic, [5], Cor. 2.2), we conclude.

REMARK 4. Fix an integer q with $0 \le q < g$. Let Y be the general curve with pa(Y) = g and exactly q nodes as only singularities. By [4], Prop. 1.2, we may apply the proof of Proposition 1 and hence of Theorem 1 to Y.

References

- [1] ARBARELLO E., CORNALBA M., GRIFFITHS PH. AND HARRIS J., Geometry of Algebraic Curves, I, Springer Verlag, 1985.
- [2] EISENBUD D., Linear sections of determinantal varieties, Am. J. Math. 110 (1988), 541–575.
- [3] EISENBUD D., KOH J. AND STILLMAN M., *Determinantal equations for curves of high degree*, Amer. J. Math. **110** (1989), 513–540.
- [4] GIESEKER D., Stable curves and special divisors, Invent. Math. 66 (1982), 251– 275.
- [5] HIRSCHOWITZ A., Problème de Brill-Noether en rang superieur, Prepublication Mathematiques 91, Nice 1985.
- [6] LAUMON G., *Fibres vectoriels speciaux*, Bull. Soc. Math. France **119** (1991), 97–119.
- [7] NARASIMHAN M. S. AND RAMANAN S., Deformation of the moduli space of vector bundles over an algebraic curve, Ann. Math. **101** (1975), 391–417.
- [8] RE R., *Multiplication of sections and Clifford bounds for stable vector bundles*, Comm. in Alg. 26 (1998), 1931–1944.
- [9] SUNDARAM N., Special divisors and vector bundles, Toh(tm)ku Math. J. 39 (1987), 175–213.

E. Ballico

AMS Subject Classification: 14H60, 14H50, 14H51.

Edoardo BALLICO Dipartimento di Matematica Università of Trento 38050 Povo (TN), ITALIA e-mail: ballico@science.unitn.it

Lavoro pervenuto in redazione il 10.05.2000 e, in forma definitiva, il 30.04.2001.

176