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EXPONENTIAL STABILITY FOR PERIODIC
EVOLUTION FAMILIES OF BOUNDED LINEAR
OPERATORS

Abstract. We prove that a ¢-periodic evolution family
U={U(t,s):t>s>0}

of bounded linear operators is uniformly exponentially stable if and only
if

sup|| / U (1,€) F(€)dE| = M(p, f) < oo
t>0 A

for all u € R and f € Py(R4, X), (that is f is a g-periodic and continuous
function on Ry ).

Introduction

Let X be a complex Banach space and £(X) the Banach algebra of all linear and
bounded operators acting on X. We denote by [|-||, the norms of vectors and operators.
Let A € £L(X) and Ry, the set of the all non-negative real numbers. It is known, see
e.g. [1] that if the Cauchy Problem

i(t) = Az(t) + e™xzo, x(0) =0,

has a bounded solution on Ry for every p € R and any zo € X then the homogenous
system & = Ax, is uniformly exponentially stable. The hypothesis of the above result
can be written in the form:

t

sup|| [ e et aode]| < 00, Vu € R,V € X.
>0
0

This result cannot be extended for Co-semigroups (cf. [14], Example 3.1). However,
Neerven (cf. [11], Corollary 5) shown that if T = {T'(¢)}+>0 is a strongly continuous
semigroup on X and

t

(1) supsup || [ T (€)xodE|| < 0o, Vo € X,
ner >0

then wi(T) < 0. For details concerning wi(T), we refer to [12] or [9], Theorem A
IV.1.4. Moreover, under the hypothesis (1), it results that the resolvent R(z, At) =
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(z — Ap)™! of the infinitesimal generator of T, exists and is uniformly bounded on
Ci :={X € C: Re (X)) > 0}, see [11]. Combining this with a result of Gearhart [6],
(see also Huang [7], Weiss [15] or Pandolfi [13] for other proofs and generalizations),
it results that if X is a complex Hilbert space and (1) holds, then T is uniformly
exponentially stable, i.e. its growth bound wo(T) is negative. A similar problem for
g-evolution families of bounded linear operators seems to be an open question. In
the general case, when X is a Banach space the last results is not true, see e.g. [2],
Example 2. However, a weakly result, announced before, holds.

1. Definitions. Preliminary results

Let ¢ > 0 and A = {(t,s) € R* : t > s > 0}. A mapping U : A — L£(X) would be
called ¢-periodic evolution family of bounded linear operators on X, iff:

(1) U(t,s) =U(t,r)U(r,s) for all t > s >r > 0;
(ii) U(t,t) = Id, (Id is the identity on X), for all ¢ > 0;
(iii) for all x € X, the map (¢,s) — U(¢,s)x : A — X, is continuous;
(iv) Ult+q,s+q)=U(t,s) for all t > s > 0.
The operator U(t, s) was denoted by U(t, s).
If A is alinear operator on X, o(A) will denote the spectrum of A, and if T' € L(X),

r(T) will denote the spectral radius of T.

The following two lemmas, which would be used later, are essentially known (see
[4], Ch.V, Theorem 1.1, Corollary 1.1 or [5], Theorem 6.6).

LEMMA 1. A g-periodic evolution family U on X has exponential growth, that is,
there exust w € R and M > 1 such that

(2) U, s)|| < M) vt > s> 0.

We recall that the evolution family U/ is called exponentially stable if there are
w < 0 and M > 1 such that (2) holds. Let V = U(q,0) € L(X).

LEMMA 2. A g-periodic evolution family U is exponentially stable if and only if
r(V) <1

For the proofs of these lemmas we refer to [3].

Let T = {T'(t)}+>0 be a strongly continuous semigroup on X and Ar its infinite-
simal generator. In [14], Proposition 3.3, it is shown that if

¢
sup||/ei“5T(£)d§|| <oo, VreX,VueR
>0 )

then

o(Atr) CC_:={z€ C: Re (z) <0}.

The discret version of this result is the following:
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LEMMA 3. Let T € L(X). If

n
sup ||Zei”ka|| =M, <oo VYu€eR,
eN

then r(T) < 1.

We mention that the result in Lemma 3 is also known and is, for instance, con-
sequence of the uniform ergodic theorem ([8], Theorems 2.1 and 2.7). For reasons of
self-containedness we give the proof of Lemma 3 in detail.

Proof. We will use the identity:
(3) > eE TR (e - Id) = eI - I,
k=0

From (3) it follows:
(4) le DT < 14 Mu(1+[|T])) VneN,

that is (7)) < 1. Suppose that 1 € o(T). Then for all m = 1,2,---, there exists
Zm € X with ||zwm|| =1 and (Id — T)xm — 0 as m — oo, (see [9], Proposition 2.2, p.
64). From (4) it results that 7%(Id — T)zm — 0 as m — oo, uniformly for k € N. Let
N € N, N > 2M;, and m € N such that

1
T*(Id = T)zm|| < —, k=0,1,---N.
1T (1d = Ty < 5
Then
N k=1
Mo 2 lzm + 3 (@m + 30 T/(T = Id)zm)||
k=1 j=0
Njkfl )
=[|[(N+ Dam+ > 3 T(T = Id)wm||
k=1 j=0
> (N +1) — YA 5 Ny,

This contradiction concludes that 1 ¢ o(T). Now, it is easy to show that e ¢ o(T)
for p € R, that is, (T) < 1.
O

2. Uniform exponential stability

Let us consider the following spaces:

e BUC(I, X),I € {R,R;} is the Banach space of all X-valued bounded uniformly
continuous functions on I, with the sup-norm.

e AP(I, X) is the linear closed hull in BUC(I, X) of the set of all functions
t—e*z: 1> X, peR, ze€X.

e P,(I, X) is the set of all continuous functions f : I — X such that f(t+q) = f(t),
for any ¢t € I and some ¢ > 0.
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THEOREM 1. Let U = {U(t,s) }+>s>0 be a g-periodic evolution family on the Ba-
nach space X. If

(5) sup| / e HEL(,€) F(€)de]| < o0, Vi € R,V € Py(Ra, X),
0

then U is exponentially stable.
Proof. Let V. =U(g,0),z€ X,n=0,1,--- and g € P;(R4, X), such that

9(6) = &(g = U, 0)z, vEE€(0,q].
From (5), for ¢t = (n + 1)g, we obtain:
(k+1)q
(6) sup || Y / U((n+1)g,&)e” " g(€)dé|| < oo, Vp€eR.

neN —
k=0 kq

In the view of definition of ¢g-periodic evolution family (iv), it follows:
Ulpg+ ¢,pq+u) =U(q,u), VpeN, Vucel0,qg
and .
Ulpg,jq) = U((p—j)q,0) = V"7, VpeN,VjeN, p=>j.
Now, for every k =0,1,---, we have:
(k4+1)q )
J Ul(n+1)g,8)e " g(€)de =
kq

(k+1)q )
] U((n+1)q, (k+1)q)U((k + 1)q,§)e” " g(£)d¢

kg

q )
= V" [U((k+1)q,u+ kqe T g(kq + u)du
0
. q .
= e_”‘qu"_kfe_”“”‘U(q7 u)g(u)du
0

_ e—zukqvn—k f e—luuu(q _ u)[](q7 u)[](u7 O)xdu
0
. a .
_ efz,ukq(f ey (q — u)du)Vn7k+1$
0
M(IM q)6—iu(n+1)q€iu(n_k+l)qvn_k+lm7

where
q

M, q) = /U(q —u)e” " du # 0.
0

We return in (6) and obtain

n+1 o )
sup || E eIV < oo,
neN =0

that is, (V) < 1 and U is exponentially stable.
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REMARK 1. It is clear that the converse statement from Theorem 1 is also true.
Moreover if we denote by P§ (R4, X) the set of all functions f € P>(R4, X) for which
f(0) = 0, then (5) holds (with P»(Ry, X) replaced by P9 (R, X) if and only if the
family U is exponentially stable).

COROLLARY 1. A g-periodic evolution family U on X is uniformly exponentially
stable if and only if

sup | [ U(LOF(©del| < 0. ¥f € AP(Rs,X),
t>0 i

For the other proofs of Corollary 1, see e.g. [2] and [14]. In the end we give a
result about evolution families on the line. In this context,

U={U(,s):t>seR}

will be a g-periodic evolution family on R. We shall use the same notations as in
Section 1, with R4 replaced by R and variables such as s and t taking any value in R.
Let us consider the evolution semigroup Tq, associated to U on the space AP(R, X).
This semigroup is strongly continuous, see Naito and Minh ([10], Lemma 2).

COROLLARY 2. Let U = {U(t,s),t > s} be a g- periodic evolution family of
bounded linear operators on X and Tqap the evolution semigroup associated to U on

the space AP(R,X). Then U is uniformly exponentially stable if and only if

t

sup ([ €T (OO <00 VnER, VS € PyRa, X).
t>0 ]
Proof. For t > 0, we have

<f T ()0 = [ MUt — €)f(t - E)de

— ei“tje_i“TU(t,T)f(T)dr
0

O —«

Now, from Theorem 1, it follows that the restriction Uy of U to the set {(¢,s) : ¢t >
s > 0} is uniformly exponentially stable. Let N > 0 and v > 0 such that

Ut s)|| < Ne™" =) vt > 5> 0.
Then for all real numbers v and v with u > v, we have
U (u, v)|| = [|U(u + ng,v +ng)|| < Ne™"“7*),

where n € N is such that v + ng > 0, that is, U is uniformly exponentially stable.
O
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