Rend. Sem. Mat. Univ. Pol. Torino Vol. 59, 1 (2001)

C. Buşe

EXPONENTIAL STABILITY FOR PERIODIC EVOLUTION FAMILIES OF BOUNDED LINEAR OPERATORS

Abstract. We prove that a q-periodic evolution family

$$\mathcal{U} = \{U(t,s) : t \ge s \ge 0\}$$

of bounded linear operators is uniformly exponentially stable if and only if

$$\sup_{t>0} || \int\limits_0^t e^{-i\mu\xi} U(t,\xi) f(\xi) d\xi || = M(\mu,f) < \infty$$

for all $\mu \in \mathbb{R}$ and $f \in P_q(\mathbb{R}_+, X)$, (that is f is a q-periodic and continuous function on \mathbb{R}_+).

Introduction

Let X be a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all linear and bounded operators acting on X. We denote by $||\cdot||$, the norms of vectors and operators. Let $A \in \mathcal{L}(X)$ and \mathbb{R}_+ , the set of the all non-negative real numbers. It is known, see e.g. [1] that if the Cauchy Problem

$$\dot{x}(t) = Ax(t) + e^{i\mu t}x_0, \quad x(0) = 0,$$

has a bounded solution on \mathbb{R}_+ for every $\mu \in \mathbb{R}$ and any $x_0 \in X$ then the homogenous system $\dot{x} = Ax$, is uniformly exponentially stable. The hypothesis of the above result can be written in the form:

$$\sup_{t>0} || \int_{0}^{t} e^{-i\mu\xi} e^{\xi A} x_0 d\xi || < \infty, \quad \forall \mu \in \mathbb{R}, \forall x_0 \in X.$$

This result cannot be extended for C_0 -semigroups (cf. [14], Example 3.1). However, Neerven (cf. [11], Corollary 5) shown that if $\mathbf{T} = \{T(t)\}_{t\geq 0}$ is a strongly continuous semigroup on X and

(1)
$$\sup_{\mu \in \mathbb{R}} \sup_{t>0} \left| \int_{0}^{t} e^{i\mu\xi} T(\xi) x_0 d\xi \right| < \infty, \quad \forall x_0 \in X,$$

then $\omega_1(\mathbf{T}) < 0$. For details concerning $\omega_1(\mathbf{T})$, we refer to [12] or [9], Theorem A IV.1.4. Moreover, under the hypothesis (1), it results that the resolvent $R(z, A_{\mathbf{T}}) =$

18 C. Buşe

 $(z - A_{\mathbf{T}})^{-1}$ of the infinitesimal generator of \mathbf{T} , exists and is uniformly bounded on $\mathbf{C}_+ := \{\lambda \in \mathbf{C} : \text{Re } (\lambda) > 0\}$, see [11]. Combining this with a result of Gearhart [6], (see also Huang [7], Weiss [15] or Pandolfi [13] for other proofs and generalizations), it results that if X is a complex Hilbert space and (1) holds, then \mathbf{T} is uniformly exponentially stable, i.e. its growth bound $\omega_0(\mathbf{T})$ is negative. A similar problem for q-evolution families of bounded linear operators seems to be an open question. In the general case, when X is a Banach space the last results is not true, see e.g. [2], Example 2. However, a weakly result, announced before, holds.

1. Definitions. Preliminary results

Let q > 0 and $\Delta = \{(t, s) \in \mathbb{R}^2 : t \geq s \geq 0\}$. A mapping $\mathcal{U} : \Delta \to \mathcal{L}(X)$ would be called q-periodic evolution family of bounded linear operators on X, iff:

- (i) U(t,s) = U(t,r)U(r,s) for all $t \ge s \ge r \ge 0$;
- (ii) U(t,t) = Id, (Id is the identity on X), for all $t \ge 0$;
- (iii) for all $x \in X$, the map $(t,s) \mapsto U(t,s)x : \Delta \to X$, is continuous;
- (iv) U(t+q, s+q) = U(t, s) for all $t \ge s \ge 0$.

The operator $\mathcal{U}(t,s)$ was denoted by U(t,s).

If A is a linear operator on X, $\sigma(A)$ will denote the *spectrum of A*, and if $T \in \mathcal{L}(X)$, r(T) will denote the *spectral radius* of T.

The following two lemmas, which would be used later, are essentially known (see [4], Ch.V, Theorem 1.1, Corollary 1.1 or [5], Theorem 6.6).

LEMMA 1. A q-periodic evolution family \mathcal{U} on X has exponential growth, that is, there exist $\omega \in \mathbb{R}$ and M > 1 such that

(2)
$$||U(t,s)|| < Me^{\omega(t-s)} \quad \forall t > s > 0.$$

We recall that the evolution family \mathcal{U} is called *exponentially stable* if there are $\omega < 0$ and M > 1 such that (2) holds. Let $V = U(q, 0) \in \mathcal{L}(X)$.

Lemma 2. A q-periodic evolution family $\mathcal U$ is exponentially stable if and only if r(V) < 1.

For the proofs of these lemmas we refer to [3].

Let $\mathbf{T} = \{T(t)\}_{t\geq 0}$ be a strongly continuous semigroup on X and $A_{\mathbf{T}}$ its infinite-simal generator. In [14], Proposition 3.3, it is shown that if

$$\sup_{t>0} || \int_{0}^{t} e^{i\mu\xi} T(\xi) d\xi || < \infty, \quad \forall x \in X, \forall \mu \in \mathbb{R}$$

then

$$\sigma(A_{\mathbf{T}}) \subset \mathbf{C}_{-} := \{ z \in \mathbf{C} : \operatorname{Re}(z) < 0 \}.$$

The discret version of this result is the following:

LEMMA 3. Let $T \in \mathcal{L}(X)$. If

$$\sup_{n \in \mathbf{N}} || \sum_{k=0}^{n} e^{i\mu k} T^{k} || = M_{\mu} < \infty \quad \forall \mu \in \mathbb{R},$$

then r(T) < 1.

We mention that the result in Lemma 3 is also known and is, for instance, consequence of the uniform ergodic theorem ([8], Theorems 2.1 and 2.7). For reasons of self-containedness we give the proof of Lemma 3 in detail.

Proof. We will use the identity:

(3)
$$\sum_{k=0}^{n} e^{i\mu k} T^{k} (e^{i\mu} T - Id) = e^{i\mu(n+1)} T^{n+1} - Id.$$

From (3) it follows:

(4)
$$||e^{i\mu(n+1)}T^{n+1}|| \le 1 + M_{\mu}(1+||T||) \quad \forall n \in \mathbf{N},$$

that is $r(T) \leq 1$. Suppose that $1 \in \sigma(T)$. Then for all $m = 1, 2, \dots$, there exists $x_m \in X$ with $||x_m|| = 1$ and $(Id - T)x_m \to 0$ as $m \to \infty$, (see [9], Proposition 2.2, p. 64). From (4) it results that $T^k(Id - T)x_m \to 0$ as $m \to \infty$, uniformly for $k \in \mathbb{N}$. Let $N \in \mathbb{N}$, $N > 2M_0$ and $m \in \mathbb{N}$ such that

$$||T^k(Id - T)x_m|| \le \frac{1}{2N}, \quad k = 0, 1, \dots N.$$

Then

$$M_0 \ge \|x_m + \sum_{k=1}^{N} (x_m + \sum_{j=0}^{k-1} T^j (T - Id) x_m)\|$$

$$= \|(N+1)x_m + \sum_{k=1}^{N} \sum_{j=0}^{k-1} T^j (T - Id) x_m\|$$

$$\ge (N+1) - \frac{N(N+1)}{4N} > \frac{N}{2} > M_0.$$

This contradiction concludes that $1 \notin \sigma(T)$. Now, it is easy to show that $e^{i\mu} \notin \sigma(T)$ for $\mu \in \mathbb{R}$, that is, r(T) < 1.

2. Uniform exponential stability

Let us consider the following spaces:

- $BUC(\mathbf{I}, X), \mathbf{I} \in \{\mathbb{R}, \mathbb{R}_+\}$ is the Banach space of all X-valued bounded uniformly continuous functions on \mathbf{I} , with the sup-norm.
- $AP(\mathbf{I}, X)$ is the linear closed hull in $BUC(\mathbf{I}, X)$ of the set of all functions

$$t \mapsto e^{i\mu t}x : \mathbf{I} \to X, \quad \mu \in \mathbf{R}, \quad x \in X.$$

• $P_q(\mathbf{I}, X)$ is the set of all continuous functions $f: \mathbf{I} \to X$ such that f(t+q) = f(t), for any $t \in \mathbf{I}$ and some q > 0.

20 C. Buse

Theorem 1. Let $\mathcal{U} = \{U(t,s)\}_{t \geq s \geq 0}$ be a q-periodic evolution family on the Banach space X. If

(5)
$$\sup_{t>0} \left| \int_{0}^{t} e^{-i\mu\xi} U(t,\xi) f(\xi) d\xi \right| < \infty, \quad \forall \mu \in \mathbb{R}, \forall f \in P_q(\mathbb{R}_+, X),$$

then U is exponentially stable.

Proof. Let
$$V = U(q,0), x \in X, n = 0, 1, \cdots$$
 and $g \in P_q(\mathbb{R}_+, X)$, such that
$$g(\xi) = \xi(q - \xi)U(\xi, 0)x, \quad \forall \xi \in [0, q].$$

From (5), for t = (n+1)q, we obtain:

(6)
$$\sup_{n \in \mathbf{N}} \left\| \sum_{k=0}^{n} \int_{kq}^{(k+1)q} U((n+1)q, \xi) e^{-i\mu\xi} g(\xi) d\xi \right\| < \infty, \quad \forall \mu \in \mathbb{R}.$$

In the view of definition of q-periodic evolution family (iv), it follows:

$$U(pq+q,pq+u) = U(q,u), \quad \forall p \in \mathbb{N}, \quad \forall u \in [0,q]$$

and

$$U(pq,jq) = U((p-j)q,0) = V^{p-j}, \quad \forall p \in \mathbf{N}, \forall j \in \mathbf{N}, \quad p \ge j.$$

Now, for every $k = 0, 1, \dots$, we have:

$$\begin{split} & \int\limits_{kq}^{(k+1)q} U((n+1)q,\xi)e^{-i\mu\xi}g(\xi)d\xi = \\ & = \int\limits_{kq}^{(k+1)q} U((n+1)q,(k+1)q)U((k+1)q,\xi)e^{-i\mu\xi}g(\xi)d\xi \\ & = V^{n-k}\int\limits_{0}^{q} U((k+1)q,u+kq)e^{-i\mu(u+kq)}g(kq+u)du \\ & = e^{-i\mu kq}V^{n-k}\int\limits_{0}^{q} e^{-i\mu u}U(q,u)g(u)du \\ & = e^{-i\mu kq}V^{n-k}\int\limits_{0}^{q} e^{-i\mu u}u(q-u)U(q,u)U(u,0)xdu \\ & = e^{-i\mu kq}(\int\limits_{0}^{q} e^{-i\mu u}u(q-u)du)V^{n-k+1}x \\ & = M(\mu,q)e^{-i\mu(n+1)q}e^{i\mu(n-k+1)q}V^{n-k+1}x, \end{split}$$

where

$$M(\mu, q) = \int_{0}^{q} u(q - u)e^{-i\mu u} du \neq 0.$$

We return in (6) and obtain

$$\sup_{n \in \mathbf{N}} || \sum_{j=0}^{n+1} e^{i\mu jq} V^j || < \infty,$$

that is, r(V) < 1 and \mathcal{U} is exponentially stable.

REMARK 1. It is clear that the converse statement from Theorem 1 is also true. Moreover if we denote by $P_2^0(\mathbb{R}_+, X)$ the set of all functions $f \in P_2(\mathbb{R}_+, X)$ for which f(0) = 0, then (5) holds (with $P_2(\mathbb{R}_+, X)$ replaced by $P_2^0(\mathbb{R}_+, X)$ if and only if the family \mathcal{U} is exponentially stable).

Corollary 1. A q-periodic evolution family $\mathcal U$ on X is uniformly exponentially stable if and only if

$$\sup_{t>0} || \int_{0}^{t} U(t,\xi)f(\xi)d\xi|| < \infty, \quad \forall f \in AP(\mathbb{R}_{+}, X).$$

For the other proofs of Corollary 1, see e.g. [2] and [14]. In the end we give a result about evolution families on the line. In this context,

$$\mathcal{U} = \{ U(t, s) : t \ge s \in \mathbb{R} \}$$

will be a q-periodic evolution family on \mathbb{R} . We shall use the same notations as in Section 1, with \mathbb{R}_+ replaced by \mathbb{R} and variables such as s and t taking any value in \mathbb{R} . Let us consider the evolution semigroup \mathbf{T}_{ap} associated to \mathcal{U} on the space $AP(\mathbb{R}, X)$. This semigroup is strongly continuous, see Naito and Minh ([10], Lemma 2).

COROLLARY 2. Let $\mathcal{U}=\{U(t,s),t\geq s\}$ be a q- periodic evolution family of bounded linear operators on X and \mathbf{T}_{ap} the evolution semigroup associated to \mathcal{U} on the space $AP(\mathbb{R},X)$. Then \mathcal{U} is uniformly exponentially stable if and only if

$$\sup_{t\geq 0} ||(\int_{0}^{t} e^{i\mu\xi} T_{ap}(\xi) f d\xi)(t)|| < \infty \quad \forall \mu \in \mathbb{R}, \quad \forall f \in P_{q}(\mathbb{R}_{+}, X).$$

Proof. For t > 0, we have

$$\left(\int_{0}^{t} e^{i\mu\xi} T_{ap}(\xi)f\right)(t) = \int_{0}^{t} e^{i\mu\xi} U(t, t - \xi)f(t - \xi)d\xi
= e^{i\mu t} \int_{0}^{t} e^{-i\mu\tau} U(t, \tau)f(\tau)d\tau.$$

Now, from Theorem 1, it follows that the restriction \mathcal{U}_0 of \mathcal{U} to the set $\{(t,s): t \geq s \geq 0\}$ is uniformly exponentially stable. Let N > 0 and $\nu > 0$ such that

$$||U(t,s)|| \le Ne^{-\nu(t-s)}, \quad \forall t \ge s \ge 0.$$

Then for all real numbers u and v with $u \geq v$, we have

$$||U(u,v)|| = ||U(u+nq,v+nq)|| \le Ne^{-\nu(u-v)},$$

where $n \in \mathbf{N}$ is such that $v + nq \ge 0$, that is, \mathcal{U} is uniformly exponentially stable.

C. Buşe

References

 BALINT S., On the Perron-Bellman theorem for systems with constants cofficients, Ann. Univ. Timişoara 21 1-2 (1983), 3-8.

- Buşe C., On the Perron-Bellman theorem for evolutionary processes with exponential growth in Banach spaces, New-Zealand Journal of Mathematics 27 (1998), 183–190.
- [3] Buşe C., Asymptotic stability and Perron condition for periodic evolution families on the half line, Evolution Equations and Semigroups (preprint), http://malserv.mathematik.uni-karlsruhe.de/evolve-l/index.html.
- [4] DALETCKII JU.L. AND KREIN M.G., Stability of solutions of differential equations in Banach spaces, Am. Math. Soc. 30, Providence, RI 1974.
- [5] DANERS D. AND KOCH MEDINA P., Abstract evolution equations, periodic problems and applications, Pitman Research Notes 1992.
- [6] GEARHART L., Spectral theory for contraction semigroups on Hilbert spaces, Trans. Amer. Math. Soc. 236 (1978), 385–394.
- [7] Huang F., Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Diff. Eq. 1 (1985), 43–56.
- [8] Krengel U., Ergodic theorems, De Gruyter 1985.
- [9] NAGEL R. (ed.), One-parameter semigroups of positive operators, Springer Lect. Notes in Math. 1184 (1986).
- [10] NAITO T. AND MINH N.V., Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations, J. Diff. Eq. 152 (1999), 358–376.
- [11] VAN NEERVEN J.M.A.M., Individual stability of C₀-semigroups with uniformly bounded local resolvent, Semigroup Forum 53 (1996), 155–161.
- [12] Neubrander F., Laplace transform and asymptotic behaviour on strongly continous semigroups, Houston Math. J. 12 (1986), 549–561.
- [13] Pandolfi L., Some properties of distributed control systems with finite-dimensional input space, SIAM J. Control and Optimization 30 4 (1992), 926–941.
- [14] REGHIŞ M. AND BUŞE C., On the Perron-Bellman theorem for C₀-semigroups and periodic evolutionary processes in Banach spaces, Italian J. Pure and Appl. Math. 4 (1998), 155–166.
- [15] WEISS G., Weak L^p-stability of a linear semigroup on a Hilbert space implies exponential stability, J. Diff. Eq. 76 (1988), 269–285.

AMS Subject Classification: 47D06, 34D05.

Constantin BUŞE
Department of Mathematics
West University of Timişoara
Bd. V. Parvan 4
Timişoara ROMÂNIA
e-mail: buse2002f@netscape.net

e-man. buse20021@netscape.net

Lavoro pervenuto in redazione il 02.11.1999 e in forma definitiva il 30.03.2000.