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L P ESTIMATES FOR UNIFORMLY HYPOELLIPTIC

OPERATORS WITH DISCONTINUOUS COEFFICIENTS ON

HOMOGENEOUS GROUPS

Abstract. Let G be a homogeneous group and letX0, X1,. . . , Xq be left in-
variant real vector fields onG, satisfying Hörmander’s condition. Assume that
X1,. . . , Xq be homogeneous of degree one andX0 be homogeneous of degree
two. We study operators of the kind:

L =
q∑

i, j =1

ai j (x)Xi X j + a0(x)X0

whereai j (x) and a0(x) are real valued, bounded measurable functions belong-
ing to the space “Vanishing Mean Oscillation”, defined with respect to the qua-
sidistance naturally induced by the structure of homogeneous group. Moreover,
the matrix{ai j (x)} is uniformly elliptic anda0(x) is bounded away from zero.

Under these assumptions we prove local estimates in the Sobolev spaceS2,p

(1 < p < ∞) defined by the vector fieldsXi , for solutions to the equationLu = f
with f ∈ Lp. From this fact we also deduce the local Hölder continuity for solu-
tions toLu = f , when f ∈ Lp with p large enough. Further (local) regularity
results, in terms of Sobolev or Hölder spaces, are proved tohold when the coef-
ficients and data are more regular. Finally, lower order terms (in the sense of the
degree of homogeneity) can be added to the operator mantaining the same results.

1. Introduction

A classical result of Agmon-Douglis-Nirenberg [1] states that, for a given uniformly elliptic
operator in nondivergence form with continuous coefficients,

Lu =
∑

i, j

ai j (x) uxi x j

one has the followingL p-estimates for everyp ∈ (1,∞), on a bounded smooth domain� of
Rn: ∥∥∥uxi x j

∥∥∥
L p(�)

≤ c
{
‖Lu‖L p(�) + ‖u‖L p(�)

}
.

While the above estimate is false in general if the coefficients are merelyL∞, a remarkable
extension of the above result, due to Chiarenza-Frasca-Longo [6],[7], replaces the continuity
assumption with the weaker conditionai j ∈ V M O, whereV M O is the Sarason’s space of
vanishing mean oscillation functions, a sort of uniform continuity in integral sense.
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Roughly speaking, this extension relies on the classical theory of Calderón-Zygmu-nd op-
erators, a theorem of Coifman-Rochberg-Weiss [8] (which wewill recall later in detail) about
the commutator of an operator of this type with aBM O function, and the knowledge of the fun-
damental solution for constant coefficients elliptic operators onRn. All these ideas admit broad
generalizations: the Calderón-Zygmund theory and the commutator theorem can be settled in the
general framework of spaces of homogeneous type, in the sense of Coifman-Weiss (see [9], [20]
and [4]); however the knowledge of the fundamental solutionis a more subtle problem. Apart
from the elliptic case, an explicit fundamental solution isalso known for constant coefficients
parabolic operators. This kernel is homogeneous with respect to the “parabolic dilations”, so
that the abstract Calderón-Zygmund theory can be applied to this situation to getL p-estimates
of the above kind for parabolic operators withV M O coefficients (see Bramanti-Cerutti [3]).

In recent years it has been noticed by Lanconelli-Polidoro [23] that an interesting class
of ultraparabolic operators of Kolmogorov-Fokker-Plancktype, despite of its strong degener-
acy, admits an explicit fundamental solution which turns out to be homogeneous with respect
to suitable nonisotropic dilations, and invariant with respect to a group of (noncommutative)
translations. These operators can be written as:

(1) Lu =
q∑

i, j =1

ai j uxi x j +
n∑

i, j =1

xi bi j ux j − ut

where(x, t) ∈ Rn+1,
{
bi j
}

is a constant real matrix with a suitable upper triangular structure,
while

{
ai j
}

is aq × q uniformly elliptic matrix, withq < n. The structure of space of homo-
geneous type underlying the operator and the knowledge of a fundamental solution well shaped
on this structure, suggest that an analogL p theory could be settled for operators of kind (1) with
ai j in V M O. This has been actually done by Bramanti-Cerutti-Manfredini [5] . (In this case,
only local estimates are proved).

The class of operators (1) contains prototypes of Fokker-Planck operators describing brow-
nian motions of a particle in a fluid, as well as Kolmogorov operators describing systems with 2n
degrees of freedom (see [23] ), and is still extensively studied (see for instance [22], [24], [25],
[27] and references therein).

Whenai j = δi j , (1) exhibits an interesting example of “Hörmander’s operator”, of the kind

Lu =
q∑

i=1

X2
i u + X0u

whereX0 =
∑n

i, j =1 xi bi j ∂x j − ∂t , andXi = ∂xi for i = 1, 2, , . . . q. This introduces us to the
point of view of hypoelliptic operators. Recall that a differential operatorP with C∞ coefficients
is said to be hypoelliptic in some open setU ⊆ RN if, whenever the equationPu = f is satisfied
in U by two distributionsu, f , then the following condition holds: ifV is an open subset ofU
such thatf|V ∈ C∞(V), thenu|V ∈ C∞(V). We recall the well-known

THEOREM 1 (HÖRMANDER, [16]). Let X0, X1,. . . , Xq be real vector fields with coeffi-
cients C∞(RN ). The operator

(2) P =
q∑

i=1

X2
i + X0

is hypoelliptic inRN if the Lie algebra generated at every point by the fields X0, X1,. . . , Xq is
RN . We will call this property “Hörmander’s condition”.
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The operator (1) with constantai j ’s satisfies Hörmander’s condition, by the structure as-
sumption on the matrix

{
bi j
}
, and is therefore hypoelliptic.

In ’75, Folland [11] proved that any Hörmander’s operator like (2) which is left invariant
with respect to a group of translations, and homogeneous of degree 2 with respect to a family
of (nonisotropic) dilations, which are group automorphisms, has a homogeneous left invariant
fundamental solution. This allows to apply the abstract theory of singular integrals in spaces of
homogeneous type, to get localL p estimates of the kind

(3)
∥∥Xi X j u

∥∥
Lp(�′) ≤ c

{
‖Lu‖Lp(�) + ‖u‖Lp(�)

}
(i, j = 1, . . . , q)

for any p ∈ (1,∞) , �′ ⊂⊂ �.

Motivated by the results obtained by [3], [5], the aim of thispaper is to extend the above
techniques and results to the homogeneous setting considered by Folland, where good properties
of the fundamental solution allow to obtain in a natural way theL p estimates, using the available
real variable machinery.

More precisely, we study operators of the kind:

L =
q∑

i, j =1

ai j (x)Xi X j + a0(x)X0

whereX0, X1,. . . , Xq form a system ofC∞ real vector fields defined inRN (N ≥ q + 1), satis-
fying Hörmander’s condition. We also assume thatX0, X1,. . . , Xq are left invariant with respect
to a “translation” which makesRN a Lie group, and homogeneous with respect to a family of
“dilations” which are group automorphisms. More precisely, X1,. . . , Xq are homogeneous of
degree one andX0 is homogeneous of degree two. The coefficientsai j (x), a0(x) are real valued
bounded measurable functions, satisfying very weak regularity conditions (they belong to the
classV M O, “Vanishing Mean Oscillation”, defined with respect to the homogeneous distance;
in particular, they can be discontinuous); moreover, the matrix {ai j (x)} is uniformly elliptic and
not necessarily symmetric; the functiona0(x) is bounded away from zero.

Under these assumptions (see §2 for precise statements) we prove that the localLp estimates
(3) hold for p ∈ (1, ∞), every bounded domain�, any�′ ⊂⊂ �, and anyu for which the right
hand side of (3) makes sense (see Theorem 3 for a precise statement). From this fact we also
deduce the local Ḧolder continuity for solutions to the equationLu = f , when f ∈ Lp(�) with
p large enough (see Theorem 4).

To get (3) we will first prove the following estimate:

(4)
∥∥Xi X j u

∥∥
p ≤ c‖Lu‖p (i, j = 1, . . . , q, 1 < p < ∞),

for every test functionu supported in a ball with sufficiently small radius (see Theorem 2). It is
in this estimate that theV M O regularity of the coefficients plays a crucial role.

Further (local) regularity results for solutions to the equationLu = f , in terms of Sobolev or
Hölder spaces, are proved to hold when the coefficients and data are more regular (see Theorems
5, 6). Finally, lower order terms (in a suitable sense) can beadded to the operator maintaining
the same results (see Theorem 7).

Since the operatorL has, in general, nonsmooth coefficients, the above definition of hypoel-
lipticity makes no sense forL. However we will show (Theorem 8) that if the coefficientsai j (x)

are smooth, thenL is actually hypoelliptic. Moreover, for every fixedx0 ∈ RN , the frozen
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operator

(5) L0 =
q∑

i, j =1

ai j (x0)Xi X j + a0(x0)X0

is always hypoelliptic and, by the results of Folland [11] (see Theorem 9 below), has a homoge-
neous fundamental solution, which we will prove to satisfy some uniform bounds, with respect
to x0 (Theorem 12). This perhaps justifies the (improper) name of “uniformly hypoelliptic oper-
ators” forL, which appears in the title.

We point out that the results in this paper contain as particular cases the local estimates
proved in [6], [3] and [5]. On the other side, globalL p estimates on a domain are not available
for hypoelliptic operators, even in simple model cases.

A natural issue is to discuss the necessity of our homogeneity assumptions. In a famous
paper, Rothschild-Stein [28] introduced a powerful technique of “lifting and approximation”,
which allows to study a general Hörmander’s operator by means of operators of the kind studied
by Folland. As a consequence, they obtained estimates like (3) in this more general setting.

In a forthcoming paper [2], we shall use their techniques, combined with our results, to
attack the general case where the homogeneous structure underlying the Hörmander’s vector
fields is lacking.

Outline of the paper. §§2.1, 2.2, 2.5 contain basic definitions and known results.In §2.3
we state our main results (Theorems 2 to 7 ). In §2.4 we illustrate the relations between our
class of operators and the operators of Hörmander type, comparing our results with those of
Rothschild-Stein [28].

In §3 we prove Theorem 2 (that is (4)). The basic tool is the fundamental solution of the
frozen operator (5), whose existence is assured by [11] (see§3.1. The line of the proof consists
of three steps:

(i ) we write a representation formula for the second order derivatives of a test function in
terms of singular integrals and commutators of singular integrals involving derivatives of the
fundamental solution (see §3.2);

(i i ) we expand the singular kernel in series of spherical harmonics, to get singular integrals
of convolution-type, with respect to our group structure (see §3.3); this step is necessary due to
the presence of the variable coefficientsai j (x) in the differential operator;

(i i i ) we getLp-bounds for the singular integrals of convolution-type andtheir commutators,
applying general results for singular integrals on spaces of homogeneous type (see §3.4).

This line is the same followed in [5], which in turn was inspired by [6], [7]. While the com-
mutator estimate needed in [6], [7] to achieve point (i i i ) is that proved by Coifman-Rochberg-
Weiss in [8], the suitable extension of this theorem to spaces of homogeneous type has been
proved by Bramanti-Cerutti in [4].

The basic difficulty to overcome in the present situation, due to the class of differential op-
erators we are considering, is that an explicit form for the fundamental solution of the frozen
operatorL0 in (5) is in general unknown. Therefore we have to prove in an indirect way uni-
form bounds with respect tox0 for the derivatives of the fundamental solutions corresponding
to L0 (Theorem 12). This will be a key point, in order to reduce the proof of (3) to that ofLp

boundedness for singular integrals of convolution type. Wewish to stress that, although several
deep results have been proved about sharp bounds for the fundamental solution of a hypoelliptic
operator (see [26], [29], [19]), these bounds are proved fora fixed operator, and the dependence
of the constants on the vector fields is not apparent: therefore, these results cannot be applied in



L p estimates for hypoelliptic operators 393

order to get uniform bounds for families of operators. On theother side, a useful point of view
on this problem has been developed by Rothschild-Stein [28], and we will adapt this approach to
our situation. To make more readable the exposition, the proof of this uniform bound (Theorem
12) is postponed to §4.

To prove local estimates for solutions to the equationLu = f , starting from our basic es-
timate (4), we need some properties of the Sobolev spaces generated by the vector fieldsXi ,
which we investigate in §5: interpolation inequalities, approximation results, embedding theo-
rems. Some of these results appear to be new and can be of independent interest, because they
regard spaces of functions not necessarily vanishing at theboundary, whereas in [11] or [28], for
instance, only Sobolev spaces of functions defined on the whole space are considered.

In §6 we apply all the previous theory to local estimates for solutions toLu = f . First
we prove (3) and the local Hölder continuity of solutions (see Theorems 4, 5). Then we prove
some regularity results, in the sense of Sobolev or Hölder spaces (see Theorems 5, 6), when
the coefficients are more regular, as well as the generalization of all the previous estimates to
the operator with lower order terms (Theorem 7). Observe that, since the vector fields do not
commute, estimates on higher order derivatives are not a straightforward consequence of the
basic estimate (3). Instead, we shall prove suitable representation formulas for higher order
derivatives and then apply again the machinery of §3.

2. Definitions, assumptions and main results

2.1. Homogeneous groups and Lie algebras

Following Stein (see [31], pp. 618-622) we call homogeneousgroup the spaceRN equipped
with a Lie group structure, together with a family of dilations that are group automorphisms.
Explicitly, assume that we are given a pair of mappings:

[(x, y) 7→ x ◦ y] : R
N × R

N → R
N and

[
x 7→ x−1

]
: R

N → R
N

that are smooth and so thatRN , together with these mappings, forms a group, for which the
identity is the origin. Next, suppose that we are given anN-tuple of strictly positive exponents
ω1 ≤ ω2 ≤ . . . ≤ ωN , so that the dilations

(6) D(λ) : (x1, . . . ,xN ) 7→
(
λω1x1, . . . , λωN xN

)

are group automorphisms, for allλ > 0. We will denote byG the spaceRN with this structure
of homogeneous group, and we will writec(G) for a constant depending on the numbersN,
ω1,. . . , ωN and the group law◦.

We can define inRN a homogeneous norm‖·‖ as follows. For anyx ∈ RN , x 6= 0, set

‖x‖ = ρ ⇔
∣∣∣∣D(

1

ρ
)x

∣∣∣∣ = 1,

where|·| denotes the Euclidean norm; also, let‖0‖ = 0. Then:

(i) ‖D(λ)x‖ = λ ‖x‖ for everyx ∈ RN , λ > 0;

(ii) the set{x ∈ RN : ‖x‖ = 1} coincides with the Euclidean unit sphere
∑

N ;

(iii) the functionx 7→ ‖x‖ is smooth outside the origin;

(iv) there existsc(G) ≥ 1 such that for everyx, y ∈ RN

(7) ‖x ◦ y‖ ≤ c(‖x‖ + ‖y‖) and
∥∥∥x−1

∥∥∥ ≤ c‖x‖ ;
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(8)
1

c
|y| ≤ ‖y‖ ≤ c |y|1/ω if ‖y‖ ≤ 1, withω = max(ω1, . . . , ωN ) .

The above definition of norm is taken from [12]. This norm is equivalent to that defined in
[31], but in addition satisfies (ii), a property we shall use in §3.3. The properties (i),(ii) and (iii)
are immediate while (7) is proved in [31], p. 620 and (8) is Lemma 1.3 of [11].

In view of the above properties, it is natural to define the “quasidistance”d:

d(x, y) =
∥∥∥y−1 ◦ x

∥∥∥ .

Ford the following hold:

(9) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

(10)
1

c
d(y,x) ≤ d(x, y) ≤ c d(y,x);

(11) d(x, y) ≤ c
(
d(x, z) + d(z, y)

)

for every x, y, z ∈ RN and some positive constantc(G) ≥ 1. We also define the balls with
respect to d as

B(x, r ) ≡ Br (x) ≡
{

y ∈ R
N : d(x, y) < r

}
.

Note thatB(0, r ) = D(r )B(0,1). It can be proved (see [31], p. 619) that the Lebesgue measure
in RN is the Haar measure ofG. Therefore

(12) |B(x, r )| = |B(0,1)| r Q,

for everyx ∈ RN andr > 0, whereQ = ω1 + . . . + ωN , with ωi as in (6). We will callQ the
homogeneous dimension ofRN . By (12) the Lebesgue measuredx is a doubling measure with
respect tod, that is

|B(x, 2r )| ≤ c · |B(x, r )| for everyx ∈ R
N andr > 0

and therefore (RN ,dx, d) is a space of homogenous type in the sense of Coifman-Weiss (see
[9]). To be more precise, the definition of space of homogenous type in [9] requiresd to be
symmetric, and not only to satisfy (10). However, the results about spaces of homogeneous type
that we will use still hold under these more general assumptions. (See Theorem 16).

We say that a differential operatorY onRN is homogeneous of degreeβ > 0 if

Y
(

f
(
(D(λ)x

))
= λβ (Y f)(D(λ)x)

for every test functionf , λ > 0, x ∈ RN . Also, we say that a functionf is homogeneous of
degreeα ∈ R if

f
(
(D(λ)x)

)
= λα f (x) for everyλ > 0, x ∈ R

N .

Clearly, ifY is a differential operator homogeneous of degreeβ and f is a homogeneous function
of degreeα, thenY f is homogeneous of degreeα − β.

Let us consider now the Lie algebra` associated to the groupG (that is, the Lie algebra of
left-invariant vector fields). We can fix a basisX1,. . .,XN in ` choosingXi as the left invariant
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vector field which agrees with∂
∂xi

at the origin. It turns out thatXi is homogeneous of degree
ωi (see [11], p. 164). Then, we can extend the dilationsD(λ) to ` setting

D(λ) Xi = λωi Xi .

D(λ) turns out to be a Lie algebra automorphism, i.e.,

D(λ) [X, Y] = [D(λ)X, D(λ)Y] .

In this sense,̀ is said to be a homogeneous Lie algebra; as a consequence,` is nilpotent (see
[31], p. 621-2).

Recall that a Lie algebràis said to be graded if it admits a vector space decompositionas

` =
r⊕

i=1

Vi with
[
Vi ,Vj

]
⊆ Vi+ j for i + j ≤ r ,

[
Vi ,Vj

]
= {0} otherwise.

In this paper,̀ will always be graded and it will be possible to chooseVi as the set of vector
fields homogeneous of degreei .

Also, a homogeneous Lie algebra is called stratified if thereexists vector spaces̃V1, . . . , Ṽs
such that

` =
s⊕

i=1

Ṽi with
[
Ṽ1, Ṽi

]
= Ṽi+1 for 1 ≤ i < s and

[
Ṽ1, Ṽs

]
= {0}.

This implies that the Lie algebra generated byṼ1 is the wholè . Clearly, if ` is stratified
then` is also graded.

Throughout this paper, we will deal with two different situations:

Case A.There existq vector fields (q ≤ N) X1,. . . , Xq, homogeneous of degree 1 such that
the Lie algebra generated by them is the whole`. Thereforè is stratified and̃V1 is spanned by
X1,. . . , Xq. In this case the “natural” operator to be considered is

(13) L =
q∑

i=1

X2
i ,

which is hypoelliptic, left invariant and homogeneous of degree two.

EXAMPLE 1. The simplest (nonabelian) example of Case A is the Kohn-Laplacian on the

Heisenberg groupG =
(
R3, ◦, D(λ)

)
where:

(x1, y1, t1) ◦ (x2, y2, t2) =

= (x1 + x2, y1 + y2, t1 + t2 + 2(x2y1 − x1y2))

and
D(λ) (x, y, t) =

(
λx, λy, λ2t

)
.

X = ∂

∂x
+ 2y

∂

∂t
; Y = ∂

∂y
− 2x

∂

∂t
; [X, Y] = −4

∂

∂t
;

` = V1 ⊕ V2 with V1 = 〈X, Y〉.
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The fieldsX,Y are homogeneous of degree 1, and the operator

L = X2 + Y2

is hypoelliptic and homogeneous of degree two. Here the homogeneous dimension ofG is
Q = 4.

Case B.There existq + 1 vector fields (q + 1 ≤ N) X0, X1,. . . , Xq, such that the Lie al-
gebra generated by them is the whole`, X1,. . . , Xq are homogeneous of degree 1 andX0 is
homogeneous of degree 2. In this case the “natural” operatorto be considered is

(14) L =
q∑

i=1

X2
i + X0.

Under these assumptions` may or may not be stratified (see examples below).

EXAMPLE 2. (Kolmogorov-type operators, studied in [23]).

ConsiderG =
(
R3, ◦, D(λ)

)
with:

(x1, y1, t1) ◦ (x2, y2, t2) = (x1 + x2, y1 + y2 − x1t2, t1 + t2)

and
D(λ) (x, y, t) =

(
λx, λ3y, λ2t

)
.

X1 =
∂

∂x
; X0 =

∂

∂t
− x

∂

∂y
;
[
X0, X1

]
=

∂

∂y
;

(15) ` = Ṽ1 ⊕ Ṽ2 with Ṽ1 = 〈X1, X0〉, Ṽ2 = 〈 ∂

∂y
〉

thereforè is stratified; the fieldsX1, X0 are homogeneous of degree 1 and 2, respectively, and
the operator

L = X2
1 + X0

is hypoelliptic and homogeneous of degree two. Note that in this case the stratification (15) of`

is different from the natural decomposition of` as a graded algebra:

` = V1 ⊕ V2 ⊕ V3 with V1 = 〈X1〉, V2 = 〈X0〉, V3 = 〈 ∂

∂y
〉.

This is the simplest (nonabelian) example of Case B; note that Q = 6. If, keeping the same
group law◦, we changed the definition ofD(λ) setting

D(λ) (x, y, t) =
(
λx, λ2y, λt

)
,

then the fieldsX0, X1 would be homogeneous of degree one, and we should consider the operator

L = X2
1 + X2

0,

as in Case A.
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EXAMPLE 3. This is an example of the non-stratified case.

ConsiderG =
(
R5, ◦, D(λ)

)
with:

(x1, y1, z1, w1,t1) ◦ (x2, y2, z2, w2, t2) =

= (x1 + x2, y1 + y2, z1 + z2, w1 + w2 + x1y2,

t1 + t2 − x1x2y1 − x1x2y2 −
1

2
x2
2 y1 + x1w2 + x1z2)

and
D(λ) (x, y, z, w, t) =

(
λx, λy, λ2z, λ2w, λ3t

)
.

The natural base for̀ consists of:

X =
∂

∂x
− xy

∂

∂t
; Y =

∂

∂y
+ x

∂

∂w
; Z =

∂

∂z
+ x

∂

∂t
;

W =
∂

∂w
+ x

∂

∂t
; T =

∂

∂t
.

We can see that̀ is graded setting

` = V1 ⊕ V2 ⊕ V3 with V1 = 〈X, Y〉, V2 = 〈Z, W〉, V3 = 〈T〉.

The nontrivial commutation relations are:

[X,Y] = W; [X, Z] = T ; [X, W] = T.

Therefore, if we set̃V1 = 〈X, Y, Z〉, we see that the Lie algebra generated byṼ1 is `; moreover
Ṽ2 =

[
Ṽ1, Ṽ1

]
= 〈W, T〉 and Ṽ3 =

[
Ṽ1, Ṽ2

]
= 〈T〉, so that` is not stratified. Noting that

X, Y, Z are homogeneous of degrees 1, 1, 2 respectively, we have that the operator

L = X2 + Y2 + Z

is hypoelliptic and homogeneous of degree two.

2.2. Function spaces

Before going on, we need to introduce some notation and function spaces. First of all, ifX0,
X1,. . . , Xq are the vector fields appearing in (13)-(14), define, forp ∈ [1,∞]

‖Du‖p ≡
q∑

i=1

‖Xi u‖p ;

∥∥∥D2u
∥∥∥

p
≡

q∑

i, j =1

∥∥Xi X j u
∥∥

p + ‖X0u‖p .

More in general, set ∥∥∥Dku
∥∥∥

p
≡
∑∥∥X j1 . . . X jl u

∥∥
p

where the sum is taken over all monomialsX j1 . . . X jl homogeneous of degreek. (Note thatX0
has weight two while the remaining fields have weight one. Obviously, in Case A the fieldX0
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does not appear in the definition of the above norms). Let� be a domain inRN , p ∈ [1,∞] and
k be a nonnegative integer. The spaceSk,p (�) consists of allLp (�) functions such that

‖u‖Sk,p(�) =
k∑

h=0

∥∥∥Dhu
∥∥∥
Lp(�)

is finite. We shall also denote bySk,p
0 (�) the closure ofC∞

0 (�) in Sk,p (�).

Since we will often consider the casek = 2, we will briefly write Sp (�) for S2,p (�) and

Sp
0 (�) for S2,p

0 (�).

Note that the fieldsXi , and therefore the definition of the above norms, are completely
determined by the structure ofG.

We define the Hölder spaces3k,α(�), for α ∈ (0, 1), k nonnegative integer, setting

|u|3α(�) = sup
x 6=y

x,y∈�

|u(x) − u(y)|
d(x, y)α

and

‖u‖3k,α (�) =
∣∣∣Dku

∣∣∣
3α(�)

+
k−1∑

j =0

∥∥∥D j u
∥∥∥
L∞(�)

.

In §4, we will also use the fractional (but isotropic) Sobolev spacesH t,2
(
RN

)
, defined in the

usual way, setting, fort ∈ R,

‖u‖2
H t,2 =

∫

RN
|̂u(ξ)|2

(
1 + |ξ |2

)t
dξ ,

whereû(ξ) denotes the Fourier transform ofu.

The structure of space of homogenous type allows us to define the space of Bounded Mean
Oscillation functions (BM O, see [18]) and the space of Vanishing Mean Oscillation functions
(V M O, see [30]). If f is a locally integrable function, set

(16) η f (r ) = sup
ρ<r

1∣∣Bρ

∣∣
∫

Bρ

∣∣∣ f (x) − fBρ

∣∣∣ dx for everyr > 0,

whereBρ is any ball of radiusρ and fBρ
is the average off over Bρ .

We say thatf ∈ BM O if ‖ f ‖∗ ≡ supr η f (r ) < ∞.

We say thatf ∈ V M O if f ∈ BM O andη f (r ) → 0 for r → 0.

We can also define the spacesBM O(�) andV M O (�) for a domain� ⊂ RN , just replac-
ing Bρ with Bρ ∩ � in (16).

2.3. Assumptions and main results

We now state precisely our assumptions, keeping all the notation of §§2.1, 2.2.

Let G be a homogeneous group of homogeneous dimensionQ ≥ 3 and` its Lie algebra; let
{Xi } (i = 1, 2, . . . , N) be the basis of̀ constructed as in §2.1, and assume that the conditions of
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Case A or Case B hold. Accordingly, we will study the following classes of operators, modeled
on the translation invariant prototypes (13), (14):

L =
q∑

i, j =1

ai j (x)Xi X j

or

(17) L =
q∑

i, j =1

ai j (x)Xi X j + a0(x)X0

whereai j anda0 are real valued bounded measurable functions and the matrix{
ai j (x)

}
satisfies a uniform ellipticity condition:

(18) µ |ξ |2 ≤
q∑

i, j =1

ai j (x) ξi ξ j ≤ µ−1 |ξ |2 for everyξ ∈ R
q, a.e.x,

for some positive constantµ. Analogously,

(19) µ ≤ a0(x) ≤ µ−1.

Moreover, we will assume
a0, ai j ∈ V M O.

Then:

THEOREM2. Under the above assumptions, for every p∈ (1,∞) there exist c= c(p, µ, G)

and r = r (p, µ, η, G) such that if u∈ C∞
0

(
RN

)
and sprt u⊆ Br (Br any ball of radius r)

then ∥∥∥D2u
∥∥∥

p
≤ c‖Lu‖p

whereη denotes dependence on the “V M O moduli” of the coefficients a0, ai j .

THEOREM3 (LOCAL ESTIMATES FOR SOLUTIONS TO THE EQUATION

Lu = f IN A DOMAIN ). Under the above assumptions, let� be a bounded domain ofRN and
�′ ⊂⊂ �. If u ∈ Sp (�), then

‖u‖Sp(�′) ≤ c
{
‖Lu‖Lp(�) + ‖u‖Lp(�)

}

where c= c(p, G, µ, η, �,�′).

THEOREM4 (LOCAL HÖLDER CONTINUITY FOR SOLUTIONS TO THE

EQUATION Lu = f IN A DOMAIN ). Under the assumptions of Theorem 3, if u∈ Sp (�) for
some p∈ (1, ∞) andLu ∈ Ls(�) for some s> Q/2, then

‖u‖3α(�′) ≤ c
{
‖Lu‖Lr (�) + ‖u‖Lp(�)

}

for r = max(p, s), α = α(Q, p, s) ∈ (0, 1), c = c(G, µ, p, s, �,�′).
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THEOREM5 (REGULARITY OF THE SOLUTION IN TERMS OFSOBOLEV SPACES). Under
the assumptions of Theorem 3, if a0, ai j ∈ Sk,∞(�), u ∈ Sp (�) andLu ∈ Sk,p (�) for some
positive integer k (k even, in Case B),1 < p < ∞, then

‖u‖Sk+2,p(�′) ≤ c1

{
‖Lu‖Sk,p(�) + c2 ‖u‖Lp(�)

}

where c1 = c1(p, G, µ,η,�, �′) and c2 depends on the Sk,∞(�) norms of the coefficients.

THEOREM6 (REGULARITY OF THE SOLUTION IN TERMS OFHÖLDER

SPACES). Under the assumption of Theorem 3, if a0, ai j ∈ Sk,∞(�), u ∈ Sp (�) andLu ∈
Sk,s (�) for some positive integer k (k even, in Case B),1 < p < ∞, s > Q/2, then

‖u‖3k,α (�′) ≤ c1

{
‖Lu‖Sk,r (�) + c2 ‖u‖Lp(�)

}

where r =max(p, s), α = α(Q, p, s) ∈ (0, 1), c1 = c1(p, s, k, G, µ,η,�,�′) and c2 depends
on the Sk,∞(�) norms of the coefficients.

THEOREM 7 (OPERATORS WITH LOWER ORDER TERMS). Consider an operator with
“lower order terms” (in the sense of the degree of homogeneity), of the following kind:

L ≡
( q∑

i, j =1

ai j (x)Xi X j + a0(x)X0

)
+
( q∑

i=1

ci (x)Xi + c0 (x)

)
≡

≡ L2 + L1.

i) If ci ∈ L∞ (�) for i = 0, 1, . . . , q, then:

if the assumptions of Theorem 3 hold forL2, then the conclusions of Theorem 3 hold forL;

if the assumptions of Theorem 4 hold forL2, then the conclusions of Theorem 4 hold forL.

ii) If c i ∈ Sk,∞(�) for some positive integer k, i= 0, 1, . . . , q, then:

if the assumptions of Theorem 5 hold forL2, then the conclusions of Theorem 5 hold forL;

if the assumptions of Theorem 6 hold forL2, then the conclusions of Theorem 6 hold forL.

REMARK 1. Since all our results are local, it is unnatural to assume that the coefficientsa0,
ai j be defined on the wholeRN . Actually, it can be proved that any functionf ∈ V M O(�),

with � bounded Lipschitz domain, can be extended to a functionf̃ defined inRN with V M O
modulus controlled by that off . (For more details see [3]). Therefore, all the results of Theorems
2, 7 still hold if the coefficients belong toV M O(�), but it is enough to prove them fora0,
ai j ∈ V M O.

2.4. Relations with operators of Ḧormander type

Here we want to point out the relationship between our class of operators and operators of
Hörmander type (2).

THEOREM8. Under the assumptions of §2.3:

(i) if the coefficients ai j (x) are Lipschitz continuous (in the usual sense), then the operator
L can be rewritten in the form

L =
q∑

i=1

Y2
i + Y0
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where the vector fields Yi (i = 1, . . . , q) have Lipschitz coefficients and Y0 has bounded mea-
surable coefficients;

(ii ) if the coefficients ai j (x) are smooth (C∞), thenL is hypoelliptic;

(iii ) if the coefficients ai j are constant, thenL is left invariant and homogeneous of degree

two; moreover, the transposeLT ofL is hypoelliptic, too.

Proof. Let us split the matrixai j (x) in its symmetric and skew-symmetric parts:

ai j (x) = 1

2

(
ai j (x) + a j i (x)

)
+ 1

2

(
ai j (x) − a j i (x)

)
≡ bi j (x) + b̃i j (x).

If the matrix A =
{
ai j (x)

}
satisfies condition (18), the same holds forB =

{
bi j (x)

}
. Therefore

we can writeB = M MT whereM = {mi j (x)} is an invertible, triangular matrix, whose entries
areC∞ functions of the entries ofB.

To see this, we can use the “method of completion of squares” (seee.g. [17], p. 180),
writing

q∑

i, j =1

bi j ξi ξ j = η2
1 +

q∑

i, j =2

b∗
i j ηi η j

with

η1 =


√b11ξ1 +

q∑

j =2

b1 j√
b11

ξ j


 ; ηi = ξi for i ≥ 2;

b∗
i i = bi i −

b2
1i

b11
; b∗

i j = bi j for i, j = 2, . . . , q, i 6= j .

Since
(
η1, . . . , ηq

)
are a linear invertible function of

(
ξ1, . . . , ξq

)
, and the quadratic form∑q

i, j =1 bi j ξi ξ j is positive (onRq), also the quadratic form
∑q

i, j =2 b∗
i j ηi η j is positive (on

Rq−1), and we can iterate the same procedure. Note thatη1 =
∑q

k=1 m1kξk with m1k smooth
functions of thebi j ’s; moreover,b∗

i j are smooth functions of thebi j ’s. Therefore iteration of this
procedure allows us to write

q∑

i, j =1

bi j ξi ξ j =
q∑

k=1

λ2
k with:

λk =
q∑

h=k

mkhξh and mkh are smooth functions of thebi j ’s.

This means thatbi j =
∑

k≥i, j mki mkj with mkh smooth functions of thebi j ’s.

Therefore we can write:

L =
q∑

i, j =1

q∑

k=1

mik (x) m j k(x)Xi X j +
∑

i< j

b̃i j (x)
[
Xi ,X j

]
+ a0(x)X0

where the functionsmik (x) have the same regularity of theai j (x)’s. (To simplify the notation,
from now on we forget the fact thatmik = 0 if k < i ). If the ai j (x)’s are Lipschitz continuous,
the above equation can be rewritten as

(20) L =
q∑

k=1

Y2
k + Y0
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with

Yk =
q∑

i=1

mik (x)Xi and

Y0 =
∑

i< j

b̃i j (x)
[
Xi ,X j

]
+ a0(x)X0 −

q∑

i, j =1

q∑

k=1

mik (x) ·
(

Xi m j k (x)

)
X j ,

which proves (i). If the coefficientsai j (x) areC∞, theYi ’s areC∞ vector fields and satisfy
Hörmander’s condition, because every linear combinationof the Xi (i = 0, 1, . . . , q) can be
rewritten as a linear combination of theYi and their commutators of length 2. Therefore, by
Theorem 1,L is hypoelliptic, that is (ii). Finally, if the coefficientsai j are constant, then (20)
holds with

Yk =
q∑

i=1

mik Xi and Y0 =
∑

i< j

b̃i j
[
Xi ,X j

]
+ a0 X0,

which means thatL is left invariant and homogeneous of degree two. Moreover, since the fields
Xi are translation invariant, the transposeXT

i of Xi equals−Xi and as a consequenceLT is
hypoelliptic as well. This proves(iii ).

REMARK 2. By the above Theorem, ifai j ∈ C∞, our class of operators is contained in that
studied by Rothschild-Stein [28], so in this case our results follow from [28], without assuming
the existence of a structure of homogeneous group. If the coefficients are less regular, but at least
Lipschitz continuous, our operators can be written as “operators of Hörmander type”; however,
in this case we cannot check Hörmander’s condition for the fieldsYi and therefore our estimates
do not follow from known results about hypoelliptic operators. Finally, if the coefficients are
merelyV M O, we cannot even writeL in the form (20).

2.5. More properties of homogeneous groups

We recall some known results which will be useful later. First of all, we define the convolution
of two functions inG as

( f ∗ g)(x) =
∫

RN
f (x ◦ y−1) g(y) dy =

∫

RN
g(y−1 ◦ x) f (y) dy,

for every couple of functions for which the above integrals make sense. From this definition we
read that ifP is any left invariant differential operator,

P( f ∗ g) = f ∗ Pg

(provided the integrals converge). Note that, ifG is not abelian, we cannot writef ∗Pg = P f ∗g.
Instead, ifX andXR are, respectively, a left invariant and right invariant vector field which agree
at the origin, the following hold (see [31], p. 607)

(21) (X f ) ∗ g = f ∗
(

XRg
)

; XR ( f ∗ g) =
(

XR f
)

∗ g.

In view of the above identities, we will sometimes use the right invariant vector fieldsXR
i which

agree with∂/∂xi (and therefore withXi ) at the origin (i = 1, . . . , N), and we need some prop-
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erties linkingXi to XR
i . It can be proved that

Xi = ∂

∂xi
+

N∑

k=i+1

qk
i (x)

∂

∂xk

XR
i =

∂

∂xi
+

N∑

k=i+1

q̃k
i (x)

∂

∂xk

whereqk
i (x), q̃k

i (x) are polynomials, homogeneous of degreeωk−ωi (theωi ’s are the exponents
appearing in (6)). From the above equations we find that

Xi =
N∑

k=i

ck
i (x) XR

k

whereck
i (x) are polynomials, homogeneous of degreeωk−ωi . In particular, sinceωk−ωi < ωk,

ck
i (x) does not depend onxh for h ≥ k and therefore commutes withXR

k , that is

(22) Xi u =
N∑

k=i

XR
k

(
ck
i (x) u

)
(i = 1, . . . , N)

for every test functionu. This representation ofXi in terms ofXR
i will be useful in §6.

THEOREM 9. (See Theorem 2.1 and Corollary 2.8 in[11]). Let L be a left invariant
differential operator homogeneous of degree two on G, such thatL andLT are both hypoelliptic.
Moreover, assume Q≥ 3. Then there is a unique fundamental solution0 such that:

(a) 0 ∈ C∞
(
RN \ {0}

)
;

(b) 0 is homogeneous of degree(2 − Q);

(c) for every distributionτ ,

L (τ ∗ 0) = (Lτ) ∗ 0 = τ.

THEOREM 10. (See Proposition 8.5 in[13]), Proposition 1.8 in[11])). Let Kh be a kernel
which is
C∞

(
RN \ {0}

)
and homogeneous of degree(h − Q), for some integer h with0 < h < Q; let

Th be the operator
Th f = f ∗ Kh

and let Ph be a left invariant differential operator homogeneous of degree h.

Then:
PhTh f = P.V.

(
f ∗ Ph Kh

)
+ α f

for some constantα depending on Ph and Kh;

the function Ph Kh is C∞
(
RN \ {0}

)
, homogeneous of degree−Q and satisfies the van-

ishing property: ∫

r<‖x‖<R
PhKh (x) dx = 0 for 0 < r < R < ∞;
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the singular integral operator

f 7→ P.V.
(

f ∗ Ph Kh

)

is continuous onLp for 1 < p < ∞.

To handle the convolution of several kernels, we will need also the following

LEMMA 1. Let K1 (·, ·), K2(·, ·) be two kernels satisfying the following:

(i) for every x∈ RN Ki (x, ·) ∈ C∞(RN \ {0}) (i = 1, 2);

(ii) for every x∈ RN Ki (x, ·) is homogeneous of degreeαi , with−Q < αi < 0, α1+α2 <

−Q;

(iii ) for every multiindexβ,

sup
x∈RN

sup
‖y‖=1

∣∣∣∣∣

(
∂

∂y

)β

Ki (x, y)

∣∣∣∣∣ ≤ cβ .

Then, for every test function f and any x0, y0 ∈ RN ,

( f ∗ K1(x0, ·)) ∗ K2(y0, ·) = f ∗ (K1(x0, ·) ∗ K2(y0, ·)) .

Moreover, setting K(x0, y0,·) = K1(x0, ·) ∗ K2(y0, ·), we have the following:

(iv) for every(x0, y0) ∈ R2N , K(x0, y0,·) ∈ C∞(RN \ {0});
(v) for every(x0, y0) ∈ R2N , K(x0, y0,·) is homogeneous of degreeα1 + α2 + Q;

(vi) for every multiindexβ,

(23) sup
(x,y)∈R2N

sup
‖z‖=1

∣∣∣∣∣

(
∂

∂z

)β

K (x, y, z)

∣∣∣∣∣ ≤ cβ .

The above Lemma has been essentially proved by Folland (see Proposition 1.13 in [11]),
apart from the uniform bound onK , which follows reading carefully the proof.

3. Proof of Theorem 2

All the proofs in this section will be written for the Case B. The results in Case A (which is
easier) simply follow dropping the termX0.

3.1. Fundamental solutions

For anyx0 ∈ RN , let us “freeze” atx0 the coefficientsai j (x), a0(x) of the operator (17), and
consider

(24) L0 =
q∑

i, j =1

ai j (x0)Xi X j + a0(x0)X0.

By Theorem 8, the operatorL0 satisfies the assumptions of Theorem 9; therefore, it has a funda-
mental solution with pole at the origin which is homogeneousof degree(2 − Q). Let us denote
it by 0 (x0; ·), to indicate its dependence on the frozen coefficientsai j (x0), a0 (x0). Also, set
for i, j = 1, . . . , q,

0i j (x0 ; y) = Xi X j
[
0 (x0 ; ·)

]
(y).
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Next theorem summarizes the properties of0 (x0; ·) and 0i j (x0 ;·) that we will need in the
following. All of them follow from Theorem 9 and Lemma 1.

THEOREM11. For every x0 ∈ RN :

(a) 0 (x0,·) ∈ C∞
(
RN \ {0}

)
;

(b) 0 (x0,·) is homogeneous of degree(2 − Q);

(c) for every test function u and every x∈ RN ,

u(x) = (L0u ∗ 0 (x0 ;·)) (x) =
∫

RN
0
(

x0 ; y−1 ◦ x
)
L0u(y)dy;

moreover, for every i, j = 1, . . . , q, there exist constantsαi j (x0) such that

(25) Xi X j u(x) = P.V.

∫

RN
0i j

(
x0 ; y−1 ◦ x

)
L0u(y)dy + αi j (x0) · L0u(x);

(d) 0i j (x0 ;·) ∈ C∞
(
RN \ {0}

)
;

(e) 0i j (x0 ;·) is homogeneous of degree−Q;

( f ) for every R> r > 0,

∫

r<‖y‖<R
0i j (x0; y) dy =

∫

‖y‖=1
0i j (x0; y) dσ (y) = 0.

The above properties hold for any fixedx0. We also need some uniform bound for0, with
respect tox0. Next theorem contains this kind of result.

THEOREM12. For every multi-indexβ, there exists a constant
c1 = c1(β,G, µ) such that

(26) sup
x∈R

N

‖y‖=1

∣∣∣∣∣

(
∂

∂y

)β

0i j (x; y)

∣∣∣∣∣ ≤ c1,

for any i, j = 1, . . . , q. Moreover, for theαi j ’s appearing in(25),a uniform bound holds:

(27) sup
x∈RN

∣∣αi j (x)
∣∣ ≤ c2,

for some constant c2 = c2 (G, µ).

We postpone the proof of the above Theorem to §4. The proof of Theorem 2 from Theorems
11, 12 proceeds in three steps, which are explained in §§3.2,3.3, 3.4.

3.2. Representation formula and singular integrals

Let us consider (25). WritingL0 = L + (L0 − L) and then lettingx be equal tox0, we get the
following representation formula:
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THEOREM13. Let u ∈ C∞
0

(
RN

)
. Then, for i, j = 1, . . . , q and every x∈ RN

Xi X j u(x) = P.V.

∫
0i j (x; y−1 ◦ x)

( q∑

h,k=1

[
ahk(x) − ahk(y)

]
Xh Xk u(y) +

(28) +
[
a0(x) − a0(y)

]
X0u(y) + Lu(y)

)
dy + αi j (x) · Lu(x).

In order to rewrite the above formula in a more compact form, let us introduce the following
singular integral operators:

(29) Ki j f (x) = P.V.

∫
0i j (x;y−1 ◦ x) f (y) dy.

Moreover, for an operatorK and a functiona ∈ L∞
(
RN

)
, define the commutator

C[K , a]( f ) = K (a f ) − a · K ( f ).

Then (28) becomes

Xi X j u = Ki j (Lu) −
q∑

h,k=1

C
[
Ki j ,ahk

]
(Xh Xk u)+

(30) +C
[
Ki j ,a0

]
(X0u) + αi j · Lu

for i, j = 1, . . .,q.

Now the desiredLp-estimate onXi X j u depends on suitable singular integral estimates.
Namely, we will prove the following:

THEOREM 14. For every p∈ (1, ∞) there exists a positive constant c= c(p, µ, G) such

that for every a∈ BM O, f ∈ Lp
(
RN

)
, i, j = 1, . . . , q:

(31)
∥∥Ki j ( f )

∥∥
Lp(RN)

≤ c‖ f ‖
Lp
(
RN

)

(32)
∥∥C

[
Ki j , a

]
( f )

∥∥
Lp
(
RN

) ≤ c‖a‖∗ ‖ f ‖
Lp
(
RN

) .

The estimate (32) can be localized in the following way (see [6] for the technique of the
proof):

THEOREM15. If the function a belongs to V M O, then for everyε > 0 there exists r> 0,
depending onε and the V M O modulus of a, such that for every f∈ Lp, with sprt f ⊆ Br

(33)
∥∥C

[
Ki j , a

]
( f )

∥∥
Lp(Br )

≤ c (p, µ, G) · ε ‖ f ‖Lp(Br ) .

Finally, using the bounds (27), (31), (33) in the representation formula (30), we get Theorem
2. Note that the termX0u can be estimated either by the same method used forXi X j u for
i, j = 1, . . . , q, or by difference.

So the proof of Theorem 2 relies on Theorem 14 (which will follow from §§3.3, 3.4), and
Theorem 12 (which will follow from §4).
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3.3. Expansion in series of spherical harmonics and reduction of singular integrals “with
variable kernel” to singular integrals of convolution type

To prove Theorem 14, we have to handle singular integrals of kind (29), which are not of con-
volution type because of the presence of the first variablex in the kernel, which comes from
the variable coefficientsai j (x) of the differential operatorL. To bypass this difficulty, we can
apply the standard technique of expanding the kernel in series of spherical harmonics. This idea
dates back to Calderón-Zygmund [10], in the case of “standard” singular integrals, and has been
adapted to kernels with mixed homogeneities by Fabes-Rivi`ere [12]. We briefly describe this
technique. (See [10] for details). Let

{Ykm}m=0,1,2,...
k=1,...,gm

be an orthonormal system of spherical harmonics inRN , complete inL2(6N) (m is the degree
of the polynomial,gm is the dimension of the space of spherical harmonics of degree m in RN ).
For any fixedx ∈ RN , y ∈ 6N , we can expand:

(34) 0i j (x;y) =
∞∑

m=1

gm∑

k=1

ckm
i j (x) Ykm (y) for i, j = 1, . . . ,q.

We explicitly note that form = 0 the coefficients in the above expansion are zero, because of
the vanishing property (f ) of Theorem 11. Also, note that the integral ofYkm (y) over6N , for

m ≥ 1, is zero. Ify ∈ RN , let y′ = D
(
‖y‖−1

)
y; recall that, by (ii) at page 393,y′ ∈ 6N . By

(34) and homogeneity of0i j (x; ·) we have

0i j (x; y) =
∞∑

m=1

gm∑

k=1

ckm
i j (x)

Ykm
(
y′)

‖y‖Q
for i, j = 1, . . . ,q.

Then

(35) Ki j ( f ) (x) =
∞∑

m=1

gm∑

k=1

ckm
i j (x) Tkm f (x)

with

(36) Tkm f (x) = P.V.

∫
Hkm(y−1 ◦ x) f (y) dy

and

(37) Hkm (x) =
Ykm

(
x′)

‖x‖Q
.

We will use the following bounds about spherical harmonics:

(38) gm ≤ c(N) · mN−2 for everym = 1, 2, . . .

(39)

∣∣∣∣∣

(
∂

∂x

)β

Ykm(x)

∣∣∣∣∣ ≤ c(N) · m

(
N−2

2 +|β|
)
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for x ∈ 6N , k = 1, . . . , gm, m = 1, 2, . . ..

Moreover, if f ∈ C∞(6N ) and if f (x) ∼
∑

k,m bkm Ykm(x) is the Fourier expansion of

f (x) with respect to
{
Ykm

}
, that is

bkm =
∫

6N

f (x) Ykm(x) dσ(x)

then, for every positive integerr there existscr such that

(40) |bkm| ≤ cr · m−2r sup
x∈6N
|β|=2r

∣∣∣∣
( ∂

∂x

)β
f (x)

∣∣∣∣ .

In view of Theorem 12, we get from (40) the following bound on the coefficientsckm
i j (x) ap-

pearing in the expansion (34): for every positive integerr there exists a constantc = c(r, G, µ)

such that

(41) sup
x∈RN

∣∣∣ckm
i j (x)

∣∣∣ ≤ c(r, G, µ) · m−2r

for everym = 1, 2,. . .; k = 1, . . . , gm; i, j = 1, . . . , q.

3.4. Estimates on singular integrals of convolution type and their commutators, and con-
vergence of the series

We now focus our attention on the singular integrals of convolution type defined by (36), (37)
and their commutators. Our goal is to prove, for these operators, bounds of the kind (31), (32);
moreover, we need to know explicitly the dependence of the constants on the indexesk, m,
appearing in the series (35). To this aim, we apply some abstract results about singular integrals
in spaces of homogeneous type, proved by Bramanti-Cerutti in [4]. To state precisely these
results, we recall the following:

DEFINITION 1. Let X be a set and d: X × X → [0,∞). We say that d is a quasidistance
if it satisfies properties (9), (10), (11). The balls defined by d induce a topology in X; we assume
that the balls are open sets, in this topology. Moreover, we assume there exists a regular Borel
measureµ on X, such that the “doubling condition” is satisfied:

µ (B2r (x)) ≤ c · µ (Br (x))

for every r > 0, x ∈ X, some constant c. Then we say that(X, d, µ) is a space of homogenous
type.

Let (X, d, µ) be an unbounded space of homogenous type. For every x∈ X, define

rx = sup{r > 0 : Br (x) = {x}}

(here sup∅ = 0). We say that(X, d, µ) satisfies a reverse doubling condition if there exist
c′ > 1, M > 1 such that for every x∈ X, r > rx

µ(BMr (x)) ≥ c′ · µ(Br (x)).
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THEOREM 16. (See [4]). Let (X, d, µ) be a space of homogenous type and, if X is un-
bounded, assume that the reverse doubling condition holds.Let k : X × X \ {x = y} → R be a
kernel satisfying:

i) the growth condition:

(42) |k(x, y)| ≤ c1

µ

(
B (x, d(x, y))

) for every x, y ∈ X, some constant c1

ii ) the “Hörmander inequality”: there exist constants c2 > 0, β > 0, M > 1 such that for
every x0 ∈ X, r > 0, x ∈ Br (x0), y /∈ BMr (x0),

|k(x0,y) − k(x, y)| + |k(y, x0) − k(y, x)| ≤

(43) ≤
c2

µ

(
B (x0, d(x0, y))

) ·
d(x0,x)β

d(x0,y)β
;

iii ) the cancellation property: there exists c3 > 0 such that for every r, R,0 < r < R < ∞,
a.e. x

(44)

∣∣∣∣
∫

r<d(x,y)<R
k(x, y) dµ(y)

∣∣∣∣+
∣∣∣∣
∫

r<d(x,z)<R
k(z, x) dµ(z)

∣∣∣∣ ≤ c3.

iv) the following condition: for a.e. x∈ X there exists

(45) lim
ε→0

∫

ε<d(x,y)<1
k(x, y) dµ(y).

For f ∈ Lp, p ∈ (1, ∞), set

Kε f (x) =
∫

ε<d(x,y)<1/ε
k(x, y) f (y) dµ(y).

Then Kε f converges (strongly) inLp for ε → 0 to an operator K f satisfying

(46) ‖K f ‖p ≤ c‖ f ‖p for every f ∈ L
p,

where the constant c depends on X, p and all the constants involved in the assumptions.

Finally, for the operator K the commutator estimate holds:

(47) ‖C [K , a] f ‖p ≤ c‖a‖∗ ‖ f ‖p

for every f ∈ Lp, a ∈ BM O, and c the same constant as in(46).

REMARK 3. The constantc in (46), (47) has the following form:

c(p, X, β, M) · (c1 + c2 + c3).

Proof. To see this, note that ifk satisfies (42), (43), (44) with constantsc1, c2, c3, thenk′ ≡
k/(c1 + c2 + c3) satisfies (42), (43), (44) with constants 1, 1, 1, so that for the kernelk′ c =
c(p, X, β, M).
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Let us apply Theorem 16 to our case. By (12), our space satisfies also the reverse doubling
condition. Consider the kernels:

k(x, y) = Hkm

(
y−1 ◦ x

)
with Hkm (x) =

Ykm
(
x′)

‖x‖Q
.

By homogeneity,k satisfies (42) with

(48) c1 = c(G) · sup
x∈6N

|Ykm (x)| .

To check condition (43) we need the following:

PROPOSITION1. Let f ∈ C1
(
RN \ {0}

)
be homogeneous of degreeλ < 1. There exist

c = c(G, f ) > 0, M = M(G) > 1 such that

(49) | f (x ◦ y) − f (x)| + | f (y ◦ x) − f (x)| ≤ c‖y‖ ‖x‖λ−1

for every x, y such that‖x‖ ≥ M ‖y‖. Moreover

c = c(G) · sup
z∈6N

|∇ f (z)| .

Proof. This proposition is essentially proved in [11], apart from the explicit form of the constant
c.

ChooseM > 1 such that if‖x‖ = 1 and‖y‖ ≤ 1/M then‖x ◦ y‖ ≥ 1/2. Set:

F(x, y) = f (x ◦ y), L(x, y) = x ◦ y

and
K ≡

{
(x, y) : ‖x‖ = 1 and‖y‖ ≤ 1/M

}
.

By homogeneity, it is enough to prove (49) for(x, y) ∈ K . Since f (z) is smooth for‖z‖ ≥ 1/2
andL is smooth (everywhere), by the mean value theorem

| f (x ◦ y) − f (x)| = |F(x, y) − F(x, 0)| ≤ |y| ·
∣∣∇F

(
x, y∗)∣∣

with
(
x, y∗) ∈ K . But:

sup
(x,y)∈K

∣∣∣∣
∂F

∂xi
(x, y)

∣∣∣∣ ≤
N∑

j =1

sup
(x,y)∈K

∣∣∣∣
∂L j

∂xi
(x, y)

∣∣∣∣ · sup
‖z‖≥ 1

2

∣∣∣∣
∂ f

∂z j
(z)

∣∣∣∣ ≤

≤ c(G) · sup
z∈6N

|∇ f (z)| ,

and the same holds for sup(x,y)∈K

∣∣∣ ∂F
∂yi

(x, y)

∣∣∣.
Recalling that|y| ≤ c(G) ‖y‖ when‖y‖ ≤ 1 (see (8)), and repeating the argument for

| f (y ◦ x) − f (x)|, we get the result.
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By Proposition 1,k satisfies (43), withβ = 1, M = M(G), and

(50) c2 = c(G) · sup
x∈6N

|∇Ykm (x)| .

As to (44), the left hand side equals:

∣∣∣∣
∫

r<‖y‖<R
Hkm(y) dy

∣∣∣∣+
∣∣∣∣∣

∫

r<
∥∥y−1

∥∥<R
Hkm(y) dy

∣∣∣∣∣ .

The first term is a multiple of ∣∣∣∣
∫

6N

Hkm(y) dσ (y)

∣∣∣∣

and therefore vanishes; the second term, by (42), (48) and (10) can be seen to be bounded by
c(G) ·c1 (see for instance Remark 4.6 in [4]). Hencec3 has the same form ofc1. Moreover, (45)
is trivially satisfied, by the vanishing property ofHkm.

Finally, combining (39) with (48), (50) we get, by Theorem 16and Remark 3, the following:

THEOREM17. For every p∈ (1,∞) there exists a constant c such that for every a∈ BM O,

f ∈ Lp
(
RN

)
, m = 1, 2,. . .; k = 1, . . . , gm

‖Tkm( f )‖
Lp
(
RN

) ≤ c‖ f ‖
Lp(RN)

∥∥C
[
Tkm , a

]
( f )

∥∥
Lp(RN)

≤ c‖a‖∗ ‖ f ‖
Lp(RN) .

Explicitly, c= c(p, G) · mN/2.

We now turn to the expansion (35). Combining Theorem 17 with the uniform bound (41)
on the coefficients in the expansion (which crucially depends on Theorem 12), and using (38),
we get Theorem 14, where the constant in (31), (32) isc(p, G, µ).

4. Uniform bounds for the derivatives of fundamental solutions of families of operators

In this section we prove Theorem 12; this will complete the proof of Theorem 2. The proof of
Theorem 12 is carried out repeating an argument by Rothschild-Stein (contained in §6 of [28]);
this, in turn, is based on several results proved by Kohn in [21]. We will not repeat the whole
proof, but will state its steps, pointing out the necessary changes to adapt the argument to our
case. As in the previous section, it will be enough to write the proof for Case B.

LetAµ be the set ofq × q constant matricesA ={ai j }, satisfying:

µ2 |ξ |2 ≤
q∑

i, j =1

ai j ξi ξ j ≤ µ−2 |ξ |2 for everyξ ∈ R
q,

whereµ is the same as in (18), (19). Throughout this section we will consider the operator

LA =
q∑

i, j =1

ai j Xi X j + X0
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whereA ={ai j }∈ Aµ and the fieldsXi satisfy the assumptions stated in §2.1. Let0A be the
fundamental solution forLA, homogeneous of degree(2 − Q) (see §3.1), and let:

TA : f 7→ f ∗ 0A.

By Theorem 9,TALA = LATA =identity. We will prove that:

(51) sup
‖x‖=1

∣∣∣∣∣

(
∂

∂x

)β

0A(x)

∣∣∣∣∣ ≤ c(β, G, µ).

Note that, ifL0 is the frozen operator defined in (24),L0 = a0(x0)·LA with
A =

{
ai j (x0)/a0 (x0)

}q
i, j =1 ∈ Aµ and0 (x0, ·) = a0 (x0) · 0A. This shows that (26) follows

from (51).

The operatorTA can be regarded as a fractional integral operator, for whichthe following
estimates hold:

THEOREM18. a) If 1 < p <
Q
2 and 1

s = 1
p − 2

Q , then

‖TA f ‖s ≤ c‖ f ‖p

with
c = c(p, G) · sup

6N

∣∣∣0A
∣∣∣ .

b) If Q
2 < p < Q andβ = 2 − Q

p (henceβ ∈ (0, 1)), then for every f∈ C∞
0 and every

x1, x2 ∈ RN

|(TA f )(x1) − (TA f )(x2)| ≤ c‖ f ‖p d(x1, x2)β

with

c = c(p, G) ·
{

sup
6N

∣∣∣0A
∣∣∣+ sup

6N

∣∣∣∇0A
∣∣∣
}

.

c) If p >
Q
2 and sprt f ⊆ Br (x0) for some r> 0, x0 ∈ RN

‖TA f ‖L∞(Br ) ≤ c‖ f ‖Lp(Br )

with
c = c(p, G,r) · sup

6N

∣∣∣0A
∣∣∣ .

Note: partsb-c of Theorem 18 will be used only in §6(proof of Theorem 4).

Proof. Parta) follows from Proposition 1.11 in [11], or also from resultsabout fractional inte-
grals on general spaces of homogeneous type, see [15]. The form of the constantc depends on
the bound:

(52)
∣∣∣0A(x)

∣∣∣ ≤ sup
6N

∣∣∣0A
∣∣∣ · 1

‖x‖Q−2
.

Partb) could also be proved as a consequence of results in [15], butit is easier to prove it
directly. LetM be the same number as in Proposition 1; let us write:

|(TA f )(x1) − (TA f )(x2)| ≤
∫

RN

∣∣∣
[
0A(y−1 ◦ x1) − 0A(y−1 ◦ x2)

]
f (y)

∣∣∣ dy ≤
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≤
∫
∥∥y−1◦x1

∥∥≥M
∥∥∥x−1

2 ◦x1

∥∥∥
. . . dy +

∫
∥∥y−1◦x1

∥∥≤M
∥∥∥x−1

2 ◦x1

∥∥∥
. . . dy = I + I I .

By Proposition 1,

I ≤ c(p, G) · sup
6N

∣∣∣∇0A
∣∣∣
∥∥∥x−1

2 ◦ x1

∥∥∥
∫
∥∥y−1◦x1

∥∥≥M
∥∥∥x−1

2 ◦x1

∥∥∥

| f (y)|
∥∥y−1 ◦ x1

∥∥Q−1
dy.

Let p, p′ be conjugate exponents; by Hölder’s inequality and a change of variables

I ≤ c
∥∥∥x−1

2 ◦ x1

∥∥∥ ‖ f ‖p



∫

‖y‖≥M
∥∥∥x−1

2 ◦x1

∥∥∥

1

‖y‖(Q−1)p′ dy




1/p′

≤

computing the integral, under the assumptionp < Q,

≤ c
∥∥∥x−1

2 ◦ x1

∥∥∥
β

‖ f ‖p

whereβ = 1 − 1
q [(Q − 1)(q − 1) − 1] = 2 − Q

p ∈ (0, 1).

By (52),

I I ≤ sup
6N

∣∣∣0A
∣∣∣ ·

·
∫
∥∥y−1◦x1

∥∥≤M
∥∥∥x−1

2 ◦x1

∥∥∥
| f (y)|

{
1

∥∥y−1 ◦ x1
∥∥Q−2

+ 1
∥∥y−1 ◦ x2

∥∥Q−2

}
dy =

= I I ′ + I I ′′.

By Hölder’s inequality and reasoning as above, we get, ifp > Q/2,

I I ′ ≤ c
∥∥∥x−1

2 ◦ x1

∥∥∥
β

‖ f ‖p .

As to I I ′′, if
∥∥∥y−1 ◦ x1

∥∥∥ ≤ M
∥∥∥x−1

2 ◦ x1

∥∥∥, then
∥∥∥y−1 ◦ x2

∥∥∥ ≤ c
∥∥∥x−1

2 ◦ x1

∥∥∥ and thereforeI I ′′

can be handled asI I ′.
As to c), noting thatx, y ∈ Br (x0) ⇒ y−1 ◦ x ∈ BKr (0) for someK = K (G), we can

write, by Hölder’s inequality (letp′ be the conjugate exponent ofp):

‖TA f ‖L∞(Br (x0))
≤ ‖ f ‖Lp(Br (x0))

·
∥∥∥0A

∥∥∥
Lp′

(BKr (0))
≤ (by (52))

≤ ‖ f ‖Lp(Br (x0))
· c(p, G) · sup

6N

∣∣∣0A
∣∣∣ · r 2−Q/p,

which proves the result, assumingp > Q/2.

Now, let
SA

i j f = Xi X j TA f.

By (c) of Theorem 11, setting0A
i j = Xi X j 0

A, we can write

(53) SA
i j f = P.V.

(
0A

i j ∗ f
)

+ αi j (A) · f.

Let us apply Theorem 16 and Remark 3 to the kernel0A
i j . By the properties (d), (e), ( f ) listed

in Theorem 11 and Proposition 1, we get:
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THEOREM19. For every p∈ (1, ∞), f ∈ C∞
0

(
RN

)
,

∥∥∥P.V.

(
0A

i j ∗ f
)∥∥∥

p
≤ c‖ f ‖p

with

c = c(p, G) ·
{

sup
6N

∣∣∣0A
∣∣∣+ sup

6N

∣∣∣∇0A
∣∣∣
}

.

LEMMA 2. For every p∈ (1,∞) and for every A0 ∈ Aµ, there existsε > 0 such that if
|A − A0| < ε, then

‖EA f ‖p ≤ 1

2
‖ f ‖p

where|A| denotes the Euclidean norm of the matrix A and

EA =
(
LAo − LA

)
TAo .

This Lemma is proved in [28] (Lemma 6.5), for a different class of operators.

Proof. Let us write

LAo − LA =
q∑

i, j =1

(
ao

i j − ai j

)
Xi X j .

Then

EA f =
q∑

i, j =1

(
ao

i j − ai j

)
Xi X j TAo f.

By (53) and Theorem 19 we get the result.

LEMMA 3. Let p ∈ (1, Q/2) and let 1
s = 1

p − 2
Q . There exists c= c(G, µ, p) such that

for every A∈ Aµ

(54) ‖TA f ‖s ≤ c‖ f ‖p .

This Lemma is an adjustment of Lemma 6.7 proved in [28], whichcontains a minor mistake
(it implicitly assumesQ > 4).

Proof. Let A0 ∈ Aµ and letEA andε be as in the previous lemma. For everyf ∈ Lp, if
|A − A0| < ε, then for everyp ∈ (1, ∞), ‖EA f ‖p ≤ 1

2 ‖ f ‖p , so that we can write

(55)
∞∑

n=0

(
En

A
)

f = (I − EA)−1 f ≡ g.

Therefore
f = (I − EA)g = g − LAo TAo g + LATAo g = LATAo g,

that is
TA f = TAo g.
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Again from (55) we have

‖g‖p ≤
∞∑

n=0

‖EA‖n ‖ f ‖p = 2‖ f ‖p ,

hence by Theorem 18.a, if p, s are as in the statement of the theorem,

‖TA f ‖s =
∥∥TAo g

∥∥
s ≤ c(G, p, A0) ‖g‖p ≤ 2c‖ f ‖p .

Since this is true for every fixedA0 ∈ Aµ and any matrixA such that|A − A0| < ε, by the

compactness ofAµ in Rq2
we can choose a constantc = c(G, p,µ) such that (54) holds for

everyA ∈ Aµ.

THEOREM 20. Let ϕ, ϕ1 ∈ C∞
0

(
RN

)
with ϕ1 = 1 on sprtϕ. There existsε = ε (G)

and, for every t∈ R, there exists c= c(t, µ,G, ϕ, ϕ1) such that for every A∈ Aµ and every

u ∈ C∞
0

(
RN

)

‖ϕu‖H t+ε,2 ≤ c
{
‖ϕ1LAu‖H t,2 + ‖ϕ1u‖

L2
}
.

(Recall that the norm of Ht,2
(
RN

)
has been defined is §2.3).

This Theorem is proved in [21] for a different class of operators and without taking into
account the exact dependence of the constant on the parameters. To point out the slight modi-
fications which are necessary to adapt the proof to our case, we will state the main steps of the
proof of Theorem 20. Before doing this, however, we show how from Lemma 3 and Theorem
20, the uniform bound (26) follows. This, again, is an argument contained in [28], which we
include, for convenience of the reader, to make more readable the exposition. Moreover, a minor
correction is needed here to the proof of [28].

Proof of (26) from Lemma 3 and Theorem 20.Throughout the proof,Br will be a ball centered

at the origin. Letg ∈ C∞
0 (B2 \ B1) such that‖g‖2 ≤ 1, and letϕ, ϕ1 ∈ C∞

0

(
RN

)
such that:

ϕ = 1 in B1/4, sprtϕ ⊆ B1/2, ϕ1 = 1 in B1/2, sprtϕ1 ⊆ B1. Let f = TAg. SinceLA f = g = 0
in B1 andLA is hypoelliptic, f ∈ C∞ (B1).

Pick a positive numberp such that max
(

1
2, 2

Q

)
< 1

p < min
(

1
2 + 2

Q , 1
)

and lets be as in

Lemma 3. Note that 1< p < Q/2 andp < 2 < s. Then, by Lemma 3:

‖ϕ1 f ‖2 ≤ c(ϕ1) ‖ f ‖s ≤ c(ϕ1,G, µ, p) ‖g‖p ≤ c(ϕ1,G, µ) ‖g‖2 ≤ c(ϕ1,G, µ).

Applying Theorem 20 toϕ, ϕ1, f , sinceLA f = 0 on sprtϕ1, we get:

‖ϕ f ‖H t+ε,2 ≤ c ‖ϕ1 f ‖2 ≤ c(t ,ϕ,ϕ1,G, µ)

for everyt ∈ R. Therefore, by the standard Sobolev embedding Theorems, wecan bound any
(isotropic) Hölder normCh,α of f on B1/4 with a constantc(h, G, µ); in particular, for every
differential operatorP:

(56) |P f (0)| ≤ c(P, G, µ).
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Now, recall thatf = g ∗ 0A. If P is any left invariant differential operator,

(57) P f (0) =
∫

P 0A(y−1) g(y) dy.

Since (56) holds for everyg ∈ C∞
0 (B2 \ B1) such that‖g‖2 ≤ 1, from (57) we get

(58)
∥∥∥P 0A(y−1)

∥∥∥
L2(B2\B1)

≤ c(P, G, µ).

Now, writing any differential operator
(

∂
∂x

)β
in terms of left invariant vector fields, (58) gives

us a bound on everyHk,2-norm of0A on B2 \ B1, and therefore, reasoning as above, on every
Hölder normCh,α of 0A on a smaller spherical shellC ≡ B7/4 \ B5/4. In particular, we get

sup
x∈C

∣∣∣∣∣

(
∂

∂x

)β

0A(x)

∣∣∣∣∣ ≤ c(β, G, µ),

from which (51) follows, by homogeneity of0A.

Now we come to Theorem 20, which is proved by Kohn in [21] for anoperator of the kind

Pu ≡
q∑

i=1

X2
i u + X0u + cu,

where the fieldsXi (i = 0, 1, . . . , q) satisfy Hörmander’s condition. Reading carefully the
paper [21], one can check that the whole proof can be repeatedreplacing the operatorP with
LA; moreover, the constants depend on the matrixA only through the numberµ. Actually,
the matrixA is involved in the proof only through the boundedness of its coefficients and the
following elementary inequality:

|(LAu, u)| ≥ µ

q∑

i=1

‖Xi u‖2 , for everyu ∈ C∞
0

(
R

N
)

.

We can rephrase as follows the steps of the proof of Theorem 20given in [21]:

(i) There existε = ε(G), c = c(G, µ) such that for everyu ∈ C∞
0

(
RN

)
and everyA ∈ Aµ

‖u‖Hε,2 ≤ c
{
‖LAu‖2 + ‖u‖2

}
.

(ii ) For everyt ∈ R, M > 0, there existsc = c(t, M, µ, G) such that for everyu ∈
C∞

0

(
RN

)
and everyA ∈ Aµ

‖u‖H t+ε,2 ≤ c
{
‖LAu‖H t,2 + ‖u‖H−M,2

}
,

whereε is the same of (i).

(iii ) (Localization of the above estimate).

‖ϕu‖H t+ε,2 ≤ c
{
‖ϕ1LAu‖H t,2 + ‖ϕ1u‖H−M,2

}
,

whereϕ, ϕ1 ∈ C∞
0

(
RN

)
with ϕ1 = 1 on sprtϕ, c = c(ϕ,ϕ1,t, M, µ, G).

Since‖·‖H−M,2 ≤ ‖·‖2 , from point (iii) we get Theorem 20.
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REMARK 4 (AN ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS

ADAPTED TO THE FIELDSXi ).
For the reader who is interested in reviewing the proof of [21], we point out that, under our
assumptions, many of the arguments of [21] can be simplified and made more self-contained by
the following remark. We can precisely define an algebra of pseudodifferential operators, acting
on the Schwarz’ spaceS of smooth functions with fast decay at infinity. Consider thefollowing
kinds of operators:

(a) multiplication by a polynomial;

(b) Xi (i = 0, 1, . . . , q);

(c) for t ∈ R, 3t defined bŷ
(
3t u

)
(ξ) =

(
1 + |ξ |2

)t/2
û(ξ).

By general properties of homogeneous groups (see [31], p. 621), the vector fieldsXi are
linear combinations of∂/∂xi with polynomial coefficients (and, by Hörmander’s condition, the
∂/∂xi ’s are linear combinations of theXi ’s and their commutators, with polynomial coefficients).
ThereforeXi mapsS into itself, while the same is true for the operators (a) and (c). The transpose
of an operator of kind (a), (c) is the operator itself, while,since the fieldsXi are translation
invariant, the transpose ofXi is −Xi . (This fact also simplifies many of the arguments in [21];
in particular, note that(X0u, u) = 0). LetP be the algebra generated by operators (a), (b), (c)
under sums, composition and transpose. This algebra is the suitable context where the whole
proof can be carried out. On the contrary, in [21] some technical problems arise, sinceXi are

defined only onC∞
0

(
RN

)
.

To complete the proof of Theorem 12 we have now to prove estimate (27). We actually
prove a more general result which will be useful in §6.

Let
{
kγ

}
γ∈3

be a family of kernels such thatkγ is homogeneous of degreeh− Q for some

h > 0 andkγ ∈ C∞
0

(
RN \ {0}

)
. Let Tγ be the distribution associated tokγ and letPh be a

left invariant differential operator homogeneous of degree h. Then, Theorem 9 states that

(59) PhTγ = P.V.
(

Phkγ

)
+ αγ δ.

(Observe that (25) is a particular case of (59)). With these notations, we can prove the following:

LEMMA 4. If kγ satisfies a uniform bound like (26), that is, for every multiindexβ

sup
γ∈3

sup
‖y‖=1

∣∣∣∣∣

(
∂

∂y

)β

kγ (y)

∣∣∣∣∣ ≤ c (β) ,

then
sup
γ∈3

∣∣αγ

∣∣ ≤ c.

Proof. Let u be a test function withu(0) 6= 0, sprtu ⊆ B1 (0). By (59)

αγ u(0) = 〈 (Ph)T u, Tγ 〉 − 〈u, P.V.
(

Phkγ

)
〉 =

=
∫

(Ph)T u(x) kγ (x) dx − lim
ε→0

∫

‖x‖>ε
Phkγ (x) u(x) dx
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(here (·)T denotes transposition). Sincekγ is locally integrable, the first integral is bounded,
uniformly in γ by (59). As to the second term, by the vanishing property of the kernelPhkγ

(see Lemma 1), homogeneity and (59) we can write
∣∣∣∣
∫

‖x‖>ε
Phkγ (x) u(x) dx

∣∣∣∣ =
∣∣∣∣
∫

ε<‖x‖<1
Phkγ (x) [u(x) − u(0)] dx

∣∣∣∣ ≤

≤ sup
‖y‖≤1

|∇u(y)|
∫

ε<‖x‖<1

c

‖x‖Q
· |x| dx ≤ c.

(The convergence of the last integral follows from (8)).

5. Some properties of the Sobolev spacesSk,p

We start pointing out the following interpolation inequality for Sobolev norms:

PROPOSITION2. Let X be a left invariant vector field, homogeneous of degreeα > 0. Then

for everyε > 0, u ∈ Sp
(
RN

)
, p ∈ [1, ∞)

(60) ‖Xu‖p ≤ ε

∥∥∥X2u
∥∥∥

p
+ 2

ε
‖u‖p .

Proof. The following argument is taken from the proof of Theorem 9.4in [13]. Let γ (t) be the
integral curve ofX with γ (0) = 0. Then, applying Taylor’s theorem to the functionF(t) =
u (x ◦ γ (t)),

u(x ◦ γ (1) ) = u(x) + Xu(x) +
∫ 1

0
(1 − t) X2u(x ◦ γ (t))dt.

Using the translation invariance of‖·‖p and Minkowski’s inequality, we get

‖Xu‖p ≤
∥∥∥X2u

∥∥∥
p

+ 2‖u‖p .

SinceX is homogeneous, by a dilation argument we get the result.

We will need a version of (60) for functions defined on a ball (not necessarily vanishing at
the boundary). For standard Sobolev norms, this result follows from the analog of (60) using an
extension theorem (see for instance [14], pp. 169-173). However, it seems not easy to construct
a continuous extension operatorE: Sp (Br ) → Sp

0 (B2r ). We are going to show how to bypass
this difficulty.

First we construct a suitable family of cutoff functions. Given two ballsBr1, Br2 and a

functionϕ ∈ C∞
0

(
RN

)
, let us writeBr1 ≺ ϕ ≺ Br2 to say that 0≤ ϕ ≤ 1, ϕ ≡ 1 on Br1 and

sprtϕ ⊆ Br2.

LEMMA 5 (RADIAL CUTOFF FUNCTIONS). For anyσ ∈ (0, 1), r > 0, k positive integer,

there existsϕ ∈ C∞
0

(
RN

)
with the following properties:

Bσ r ≺ ϕ ≺ Bσ ′r with σ ′ = (1 + σ) /2;
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∣∣∣P j ϕ
∣∣∣ ≤ c(G, j )

σ j −1 (1 − σ) j r j
for 1 ≤ j ≤ k,

where Pj is any left invariant differential monomial homogeneous ofdegree j .

Proof. For simplicity, we prove the assertion fork = 2. The general case is similar. Pick a
function f : [0, r ) → [0, 1] such that:

f ≡ 1 in [0, σ r ), f ≡ 0 in [σ ′r, r ), f ∈ C∞ (0, r ) ,

∣∣ f ′∣∣ ≤
c

(1 − σ) r
,
∣∣ f ′′∣∣ ≤

c

(1 − σ)2 r 2
.

Setting ϕ(x) = f (‖x‖), we can compute:

Xi ϕ(x) = f ′(‖x‖)Xi (‖x‖) ;

Xi X j ϕ (x) = f ′′(‖x‖)Xi (‖x‖) X j (‖x‖) + f ′(‖x‖)Xi X j (‖x‖) .

SinceXi (‖x‖) is homogeneous of degree zero fori = 1, . . . , q, Xi X j (‖x‖)
(for i, j = 1, . . . , q) andX0 (‖x‖) are homogeneous of degree−1 and f ′(‖x‖) 6= 0 for ‖x‖ >

σ r , we get the result.

Another tool we need in this context is an approximation result by suitable mollifiers. For a
fixed cutoff functionϕ, B1 (0) ≺ ϕ ≺ B2 (0), set, for everyε > 0,

ϕε(x) = c · ε−Q ϕ

(
D

(
1

ε

)
x

)

with c =
(∫

RN ϕ(x) dx
)−1. Then

LEMMA 6. For u ∈ Sk,p
(
RN

)
(k nonnegative integer, 1≤ p < ∞) and ϕε as above,

define uε = ϕε ∗ u. Then uε ∈ C∞ and uε → u in Sk,p for ε → 0.

Proof. The proof follows the same line as in the Euclidean case. We just point out the following
facts:

(i) convergence inLp is established first foru ∈ 3β (G,RN), u with bounded support.
The density of this space inLp can be proved in a general space of homogeneous type (see for
instance [4]);

(ii) sinceXi is right invariant,Xi (uε) =
(

Xi u
)
ε
: from this remark and convergence inLp

we get convergence inSk,p;

(iii ) to see thatuε ∈ C∞, one has to consider right invariant vector fieldsXR
i , write

XR
i (ϕε ∗ u) =

(
XR

i ϕε

)
∗u, and iterate. The possibility of representing any Euclidean derivative

in terms of right invariant vector fields (see §2.5) providesthe conclusion.

The above Lemma is useful for us mainly in view of the following

COROLLARY 1. If u ∈ Sk,p (�) (1 ≤ p < ∞, k ≥ 1) and ϕ ∈ C∞
0 (�), then uϕ ∈

Sk,p
0 (�).
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Proof. The functionuϕ is compactly supported in� and, extended to zero outside�, belongs to

Sk,p
(
RN

)
. Then(uϕ)ε converges touϕ in Sk,p. Since, forε small enough,(uϕ)ε is compactly

supported in�, (uϕ)ε ∈ C∞
0 (�) anduϕ ∈∈ Sk,p

0 (�).

THEOREM21 (INTERPOLATION INEQUALITY IN CASE A). Assume we are in Case A. For
any u∈ SH,p(Br ), p ∈ [1, ∞), H ≥ 2, r > 0, define the following quantities:

8k = sup
1
2<σ<1

(
(1 − σ)kr k

∥∥∥Dku
∥∥∥
Lp(Brσ )

)
for k = 0, 1, 2, . . . , H.

Then for every integer j ,1 ≤ j ≤ H − 1, there exist positive constants c, δ0 depending on
G, j, H such that for everyδ ∈ (0, δ0) we have

(61) 8 j ≤ δ 8H + c

δ j /(H− j )
80.

Proof. We proceed by induction onH . Let H = 2.

Let u ∈ Sp(Br ) andϕ a cutoff function as in Lemma 5. By Corollary 1,uϕ ∈ Sp
0 (Br ),

hence by density we can apply Proposition 2, writing

‖Xi (uϕ)‖p ≤ ε
{
‖ϕ Xi Xi u‖p + ‖2 Xi u Xi ϕ‖p + ‖u Xi Xi ϕ‖p

}
+ 2

ε
‖ϕu‖p

for anyε > 0. Hence

‖Du‖Lp(Bσ r ) ≤ ε

{∥∥∥D2u
∥∥∥
Lp(Bσ ′r )

+
c(G)

(1 − σ) r
‖Du‖Lp(Bσ ′r )

+

+
c(G)

σ (1 − σ)2 r 2
‖u‖Lp(Bσ ′r )

}
+

2

ε
‖u‖Lp(Bσ ′r )

.

Multiplying both sides for(1 − σ) r and choosingε = δσ (1 − σ) r we find

(1 − σ) r ‖Du‖Lp(Bσ r ) ≤ δσ (1 − σ)2 r 2
∥∥∥D2u

∥∥∥
Lp(Bσ ′r )

+

+c(G)δσ (1 − σ) r ‖Du‖Lp(Bσ ′r )
+ c(G)

(
δ + 1

δσ

)
‖u‖Lp(Bσ ′r )

≤

(noting that (1− σ ′) = (1 − σ )/2)

≤ 4δ82 + C(G)δ81 + c(G)

(
δ +

2

δ

)
80.

Therefore

81 ≤ 4δ

1 − c(G)δ
82 +

c(G)
(
δ + 2

δ

)

1 − c(G)δ
80

which, forδ small enough, is equivalent to

(62) 81 ≤ δ82 + c

δ
80.

Assume now that (61) holds forH − 1. An argument similar to that used to obtain (62) applied
to DH−2u yields

8H−1 ≤ δ8H + c

δ
8H−2
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while, by induction,

8H−2 ≤ η8H−1 +
c

ηH−2
80.

Therefore

8H−1 ≤ δ8H +
c

δ

(
η8H−1 +

c

ηH−2
80

)

and, choosingη = δ
2c we get

(63) 8H−1 ≤ 2δ8H + c

δH−1
80.

If j = H − 1, this is exactly what we have to prove; ifj < H − 1, by induction

8 j ≤ ε8H−1 + c

ε j /(H−1− j )
80 ≤ by (63)

≤ ε

(
2δ8H + c

δH−1
80

)
+ c

ε j /(H−1− j )
80.

Choosing 2δ = η1/(H− j ) andε = η1−1/(H− j ) we get the result.

REMARK 5. Note that the second part of the above proof does not hold inCase B since in

that caseDku cannot be obtained asD
(

Dk−1u
)
. However, the proof forH = 2 holds also in

Case B, since the fieldX0 does not play any role in the definition ofDu. We are going to prove
an analogous interpolation inequality, in Case B, which will hold for H even. This proof will be
achieved in several steps.

Let

L ≡
q∑

i=1

X2
i + X0,

and let0 be the fundamental solution ofL homogeneous of degree two; recall that the transpose
of L is just

LT ≡
q∑

i=1

X2
i − X0.

LEMMA 7. Let Q > 4. For every integer k≥ 2 and any couple of left invariant differential
monomials P2k−1 and P2k−2, homogeneous of degrees2k − 1 and 2k − 2, respectively, we
can determine two kernels K(1), K (2) (depending only on these monomials) which are smooth
outside the origin and homogeneous of degrees(1 − Q) , (2 − Q), respectively, such that for
any test function u

P2k−1u(x) =
(

(L L . . . Lu)
k times

∗ K (1)

)
(x);

(64) P2k−2u(x) =
(

(L L . . . Lu)
k times

∗ K (2)

)
(x).

Proof. By induction onk. Let k = 2. By Lemma 1, we can write

u = Lu ∗ 0 = (L Lu ∗ 0) ∗ 0 = L Lu ∗ K ,
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whereK = 0 ∗ 0 is homogeneous of degree(4 − Q). Hence

P3u = L Lu ∗ P3K = L Lu ∗ K (1); P2u = L Lu ∗ P2K = L Lu ∗ K (2),

with K (1), K (2) homogeneous of degree(1 − Q), (2 − Q), respectively.

Now, assume (64) holds fork − 1, that is

P2k−3u(x) =
(

(L L . . . Lu)
(k−1) times

∗ K (1)

)
(x);

P2k−4u(x) =
(

(L L . . . Lu)
(k−1) times

∗ K (2)

)
(x).

Any differential monomialP2k−2 can be written either asXi P2k−3 (for somei = 1, . . . , q) or
asX0 P2k−4. In the first case, we can write

P2k−2 u(x) = Xi

(
(L L . . . Lu)
(k−1) times

∗ K (1)

)
(x) =

= Xi

(
(L L . . . Lu)

k times
∗
(
0 ∗ K (1)

))
(x) =

=
(

(L L . . . Lu)
k times

∗ Xi

(
0 ∗ K (1)

))
(x) =

(
(L L . . . Lu)

k times
∗ K̃ (2)

)
(x),

with K̃ (2) homogeneous of degree((2 − Q) + (1 − Q) + Q) − 1 = 2 − Q (we have applied
Lemma 1). In the second case,

P2k−2 u(x) = X0

(
(L L . . . Lu)
(k−1) times

∗ K (2)

)
(x) =

=
(

(L L . . . Lu)
k times

∗ X0

(
0 ∗ K (2)

))
(x) =

(
(L L . . . Lu)

k times
∗ ˜̃K (2)

)
(x),

with, again,˜̃K (2)
homogeneous of degree (2− Q).

Similarly, any differential monomialP2k−1 can be written either asP2 P2k−3 (with P2 =
X0 or P2 = Xi X j for somei, j = 1, . . . , q) or as P3 P2k−4 (with P3 = Xi X0 for some
i = 1, . . . , q). Reasoning as above we get the result for this case, too.

LEMMA 8. For every integer k≥ 2 there exists a constant c(G, k) such that for everyε > 0
and every test function u,

∥∥∥D2k− j u
∥∥∥

p
≤ ε

∥∥∥D2ku
∥∥∥

p
+ c(G, k)

ε2k− j
‖u‖p for j = 1, 2, k ≥ 2.
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Proof. Let K (1), K (2) be as in Lemma 7. We split the kernelK (1) as

K (1) = ϕK (1) + (1 − ϕ) K (1) ≡ K (1)
0 + K (1)

∞ ,

whereϕ is a cutoff function,B1(0) ≺ ϕ ≺ B2(0). ThereforeK (1)
0 is homogeneous of degree

(1 − Q) near the origin and has compact support, hence it is integrable, while K (1)
∞ is homoge-

neous of degree(1 − Q) near infinity and vanishes near the origin. Writing̃f (x) = f (x−1), we
can compute

∫
K (1)

∞
(

y−1 ◦ x
)

L L . . . Lu(y) dy =
∫

K̃ (1)
∞
(

x−1 ◦ y
)

L L . . . Lu(y) dy =

=
∫

LT K̃ (1)
∞ (x−1 ◦ y) (L L . . . L)

k−1 times
u(y) dy = . . .

=
∫ (

LT LT . . . LT
)

k times

K̃ (1)
∞
(

x−1 ◦ y
)

u(y) dy =

= u ∗



(

LT LT . . . LT
)

k times

K̃ (1)
∞




∼

(x) ≡
(
u ∗ K (1)

1

)
(x).

Therefore
P2k−1u(x) =

(
(L L . . . L)

k times
u ∗

[
K (1)

0 + K (1)
∞
])

(x) =

= (L L . . . Lu) ∗ K (1)
0 + u ∗ K (1)

1 ,

whereK (1)
1 is homogeneous of degree(1 − Q − 2k) near infinity and vanishes near the origin,

hence it is integrable. Integrability ofK (1)
0 , K (1)

1 gives

∥∥∥D2k−1u
∥∥∥

p
≤ c(G, k)

{∥∥∥D2ku
∥∥∥

p
+ ‖u‖p

}
.

The same reasoning applied toK (2) gives
∥∥∥D2k−2u

∥∥∥
p

≤ c(G, k)

{∥∥∥D2ku
∥∥∥

p
+ ‖u‖p

}
.

The conclusions follows from the last two inequalities and adilation argument.

THEOREM22. [Interpolation inequality in Case B] For any function
u ∈ S2k,p(Br ) (k ≥ 1, p ∈ [1, ∞), r > 0), let 8h (h = 0, 1, . . . , 2k) be the seminorms defined
in Theorem 21. Then

8 j ≤ ε82k + c(ε, k)80

for every integer j with1 ≤ j ≤ 2k − 1 and everyε > 0.

Proof. Let ϕ be a cutoff function as in Lemma 5. By Corollary 1uϕ ∈ S2k,p
0 (Br ), hence, by

density, we can apply Lemma 8 touϕ. By standard arguments (see the first part of the proof of
Theorem 21) we get, for everyδ > 0,

82k− j ≤ δ

2k∑

h=0

8h +
c

δ(2k− j )/ j
80 ( j = 1, 2).
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The previous inequality clearly holds ifk is replaced by any integeri with 2 ≤ i ≤ k. Adding
up these inequalities for 2≤ i ≤ k, j = 1, 2, we get

k∑

i=2

(
82i−1 + 82i−2

)
=

2k−1∑

i=2

8i ≤ 2δ

k∑

i=2




2i∑

h=0

8h


+ c(δ, k) · 80 ≤

≤ 2δk
2k∑

h=0

8h + c(δ, k) · 80.

Adding also (62) (which holds in Case B, too, as noted in Remark 5):

81 ≤ δ82 + c

δ
80

we can write
2k−1∑

h=0

8h ≤ 2δk
2k∑

h=0

8h + c(δ, k) · 80

and, finally, for everyε > 0,

2k−1∑

h=0

8h ≤ ε · 82k + c(ε, k) · 80

which proves the result.

Next, we need the following Sobolev-type embedding theorem:

THEOREM23. Let u ∈ Sp
0 (Br ) for some r> 0. Then:

a) if 1 < p <
Q
2 and 1

p∗ = 1
p − 2

Q , then

‖u‖p∗ ≤ c (p, G)

∥∥∥D2u
∥∥∥

p
;

b) if Q
2 < p < Q andβ = 2 − Q

p , then

‖u‖3β (Br )
≤ c(p, G, r )

∥∥∥D2u
∥∥∥
Lp(Br )

.

Proof. Let L , 0 be as in the proof of Lemma 7. Then for anyu ∈ C∞
0 (Br ) we can write

u = Lu ∗ 0.

Theorem 18 then gives the assertion.

The results contained in Theorem 23 have been proved by Folland in [11], where a more
complete theory of Sobolev and Hölder spaces defined by the vector fieldsXi is developed (see
§§4, 5 in [11], in particular Theorems 4.17 and 5.15). However, Folland’s theory relies on a deep
analysis of the sub-Laplacian on stratified groups, and therefore does not cover completely the
cases we are considering here: remember that under our assumptions, the groupG is graded but
not necessarily stratified.
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6. Local estimates for solutions to the equationLu = f in a domain

In this section we will prove Theorems 3 to 7, as a consequenceof the basic estimate contained
in Theorem 2 and the properties of Sobolev spaces expounded in §5. For convenience of the
reader, we recall the statement of each Theorem before its proof.

THEOREM 3 (LOCAL Lp-ESTIMATES FOR SOLUTIONS TO THE EQUATIONLu = f IN

A DOMAIN ). Under the assumptions stated in §2.3, let� be a bounded domain ofRN and
�′ ⊂⊂ �. If u ∈ Sp (�), then

‖u‖Sp(�′) ≤ c
{
‖Lu‖Lp(�) + ‖u‖Lp(�)

}

where c= c(p, G, µ, η, �,�′).

Proof of Theorem 3.Let u ∈ Sp (�), Br ⊂ �, and fix r0 = r0 (p, G, µ, η) in such a way
that for r < r0 Theorem 2 holds. Letϕ be a cutoff function as in Lemma 5. By Corollary 1,
uϕ ∈ Sp

0 (Br ); then, by density, we can apply Theorem 2 touϕ:

∥∥Xi X j (uϕ)
∥∥

p ≤ c‖L (uϕ)‖p .

From the above inequality we get:

∥∥Xi X j u
∥∥
Lp(Bσ r )

≤ c
{
‖Lu‖Lp(Bσ ′r )

+
c(G)

(1 − σ) r
‖Du‖Lp(Bσ ′r )

+

+
c(G)

σ (1 − σ)2 r 2
‖u‖Lp(Bσ ′r )

}
.

Multiplying both sides for(1 − σ)2 r 2, adding to both sides(1 − σ) r ‖Du‖Lp(Bσ r ), reasoning
like in the first part of the proof of Theorem 21 and applying (62) we get

82 + 81 ≤ c
{
r 2 ‖Lu‖Lp(Br ) + ‖u‖Lp(Br )

}
.

Hence

r 2
∥∥∥D2u

∥∥∥
Lp
(
Br/2

) + r ‖Du‖
Lp
(
Br/2

) ≤ c
{
r 2 ‖Lu‖Lp(Br ) + ‖u‖Lp(Br )

}
,

that is
‖u‖Sp(Br/2) ≤ c

{
‖Lu‖Lp(Br ) + ‖u‖Lp(Br )

}
,

with c = c(p, G, µ, η, r ), r < r0(p, G, µ, η). The last estimate and a covering argument give
the result.

THEOREM 4 (LOCAL HÖLDER CONTINUITY FOR SOLUTIONS TO THE EQUATIONLu =
f IN A DOMAIN ). Under the assumptions of Theorem 3, if u∈ Sp (�) for some p∈ (1,∞) and
Lu ∈ Ls(�) for some s> Q/2, then

‖u‖3α(�′) ≤ c
{
‖Lu‖Lr (�) + ‖u‖Lp(�)

}

for r = max(p, s), α = α(Q, p, s) ∈ (0, 1), c = c(G, µ, p, s, �,�′).
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Proof of Theorem 4.Let u ∈ Sp (B2R) (for somep ∈ (1, ∞)) be a solution toLu = f in a ball
B2R, with f ∈ Ls(B2R) for somes > Q/2. We can always assumep, s < Q.

Let ϕ be a cutoff function,BR/2 ≺ ϕ ≺ BR. By Corollary 1,uϕ ∈ Sp
0 (BR). If p > Q/2,

then by (b) of Theorem 23,u ∈ 3α(BR/2). If p ≤ Q/2 (we can assumep < Q/2), then by (a)

of Theorem 23,uϕ ∈ Lp∗
(BR), andu ∈ Lp∗

(BR/2).

Assumep∗ < s. Then by Theorem 3,‖u‖Sp∗(BR/4
) is bounded. Hence, we can fixϕ1

with BR/8 ≺ ϕ1 ≺ BR/4 and repeat the argument finding thatu ∈ Sp∗∗
(BR/16), and so on.

After a numberk of iterations depending only onp, Q, we find thatu ∈ Sp̄
(

BR/4k

)
for some

p̄ > Q/2: more precisely,k must be the integer belonging to the interval
(

Q
2p − 1,

Q
2p

)
. This

k exists providedQ/2p is not an integer, what we can always assume, replacingp, if necessary,
with a slightly smallerp1. Therefore, by (b) of Theorem 23,u ∈ 3α(BR/22k+1) for some
α ∈ (0, 1).

If u ∈ Lp∗
(BR/2) with p∗ ≥ s, Theorem 3 implies thatu ∈ Ss (BR/4

)
and sinces > Q/2,

u ∈ 3α
(
BR/8

)
for someα ∈ (0, 1).

In any case, the following estimate holds:

‖u‖3α
(
BR/K

) ≤ c
{
‖ f ‖Ls(BR) + ‖u‖Sp(BR)

}
≤

by Theorem 3
≤ c

{
‖ f ‖Ls(BR) + ‖ f ‖Lp(B2R) + ‖u‖Lp(B2R)

}
.

By a covering argument, we get the result for a bounded domain�.

THEOREM5 (REGULARITY OF THE SOLUTION IN TERMS OFSOBOLEV SPACES). Under
the assumptions of Theorem 3, if a0, ai j ∈ Sk,∞(�), u ∈ Sp (�) andLu ∈ Sk,p (�) for some
positive integer k (k even in Case B),1 < p < ∞, then

‖u‖Sk+2,p(�′) ≤ c1

{
‖Lu‖Sk,p(�) + c2 ‖u‖Lp(�)

}

where c1 = c1(p, G, µ, η,�, �′) and c2 depends on the Sk,∞(�) norms of the coefficients.

REMARK 6. Similarly to the proof of the interpolation inequality contained in Theorems
21 and 22, also the proof of Theorem 5 is more difficult in Case Bthan in Case A. The reason of
this appears clear if one tries to adapt our proof of Case A also to Case B. In doing so, the main
difficulty is the presence of the fieldX0, which has weight two but cannot be seen as composition
of two fields of weight one. This is also why the definition of the spaceSk,p in Case B is not
optimal whenk is odd, as already noted in [28]. Therefore our proof of Theorem 5 in Case B will
follow a different line and will require the restrictionk even. This also (but not only) depends
on the restrictionk even that appears in Theorem 22. We also note that in the commutative case
(that isL uniformly elliptic, in Case A, or uniformly parabolic, in Case B) this Theorem follows
immediately from Theorem 3 (just differentiating the equation Lu = f ).

Proof of Theorem 5 in Case A.The proof is divided into two parts: first we prove an estimate
for the derivatives of orderk + 2 of a test functionu supported in a small ball, in terms ofLu (as
in Theorem 2); then we derive from this result a local estimate for any function inSk+2,p (�)

(as in the proof of Theorem 3).
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Part I. The idea of this proof, in the case of the Kohn-laplacian on the Heisenberg group, is
contained in [31]. Recall thatXR

i (i = 1, . . . , N) are the right invariant vector fields which

agree withXi (and therefore with∂/∂xi ) at the origin. Here we will use the properties ofXR
i

stated in §2.5. Moreover, sinceXR
1 ,. . .,XR

q generate the Lie algebra of right invariant vector
fields, for everyk > q we can write

(65) XR
k =

∑

1≤i j ≤q

ϑi1...iωk
XR

i1
XR

i2
. . . XR

iωk

for suitable constantsϑi1...iωk
depending only onG.

Let us consider a test functionu. We are going to establish a representation formula forXi u
in terms ofD (Lu). For a fixed pointx0 ∈ RN , let us write

u(x) =
∫

RN
0
(

x0 ; y−1 ◦ x
)
L0u(y)dy.

Then, for everyi = 1, . . . , q:

Xi u(x) =
∫

RN
Xi 0

(
x0 ; y−1 ◦ x

)
L0u(y)dy = by (22)

=
∫

RN

N∑

k=i

XR
k

(
ck
i (·) 0 (x0 ;·)

) (
y−1 ◦ x

)
L0u(y) dy = by (65)

=
∫

RN

q∑

k=i

XR
k

(
ck
i (·) 0 (x0 ;·)

) (
y−1 ◦ x

)
L0u(y) dy +

+
∫

RN

N∑

k=q+1

∑

1≤i j ≤q

ϑk
i1...iωk

XR
i1

XR
i2

. . . XR
iωk

(
ck
i (·) 0 (x0 ;·)

) (
y−1 ◦ x

)
L0u(y) dy =

by (21)

=
∫

RN

q∑

k=i

(
ck
i (·) 0 (x0 ;·)

) (
y−1 ◦ x

)
Xk L0u(y) dy +

+
∫

RN

N∑

k=q+1

∑

1≤i j ≤q

ϑk
i1...iωk

XR
i2

. . . XR
iωk

(
ck
i (·) 0 (x0 ;·)

) (
y−1 ◦ x

)
Xi1L0u(y) dy =

=
∫

RN

q∑

k=1

0̃ k,i
(

x0 ; y−1 ◦ x
)

Xk L0u(y) dy,

where the kernels̃0 k,i (x0 ; ·) satisfy properties analogous to those of0 (x0 ; ·):
• 0̃ k,i (x0 ; ·) is homogeneous of degree(2 − Q), sinceck

i (·) is homogeneous of degree
ωk − ωi andωi = 1 for i ≤ q;

• 0̃ k,i (x0 ; ·) is smooth outside the origin;

• the derivatives of any order of̃0 k,i (x0 ; ·) satisfy the uniform bound expressed by Theo-
rem 12, because the functionsck

i (·) are smooth and do not depend onx0.
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The whole previous reasoning can be iterated, getting, for every positive integerk and any
left invariant differential monomial homogeneous of degree k,

(66) Pku(x) =
∫

RN

q∑

i1,i2,...,ik=1

0̃ i1,i2,...,ik
(

x0 ; y−1 ◦ x
)

Xi1 Xi2 . . . XikL0u(y) dy,

where the kernels̃0 i1,i2,...,ik (x0 ; ·) satisfy the same properties of0̃ k,i (x0 ; ·).
Differentiating twice the representation formula (66), applying Theorem 9, writingL0 =

(L0 − L) + L and letting finallyx = x0 we get

X j Xh Pku(x) =
q∑

i1,i2,...,ik=1

(
P.V.

∫
X j Xh 0̃ i1,i2,...,ik

(
x ; y−1 ◦ x

)
·



Xi1 Xi2 . . . XikLu(y) + Xi1 Xi2 . . . Xik




q∑

r,s=1

[ars(x) − ars(y)] Xr Xs u (y)





 dy

+α i1,i2,...,ik (x) Xi1 Xi2 . . . XikLu(x)

)

for j , h ∈ {1, . . . , q}, where the functionsα i1,i2,...,ik (x) are uniformly bounded, by Lemma 4.

Reasoning like in the proof of Theorem 2 and setting
∥∥∥Dha

∥∥∥
∞

= max
r,s

∥∥∥Dhars

∥∥∥
∞

we conclude that

∥∥∥Dk+2u
∥∥∥

p
≤ c




∥∥∥Dk(Lu)

∥∥∥
p

+
k∑

j =1

∥∥∥Dk+2− j u
∥∥∥

p

∥∥∥D j a
∥∥∥
∞



 ≤

(67) ≤ c

{∥∥∥Dk (Lu)

∥∥∥
p

+ ‖a‖Sk,∞ ‖u‖Sk+1,p

}

with c = c(p, G, µ, η, k). By density, (67) holds for everyu ∈ Sk+2,p
0 (Br ).

Part II. Now, let u ∈ Sk+2,p (�), Br ⊂ � with r small enough so that (67) holds for every

function in Sk+2,p
0 (Br ). For anyσ ∈

(
1
2, 1

)
, pick a cutoff functionϕ ∈ C∞

0

(
RN

)
like in

Lemma 5,Bσ r ≺ ϕ ≺ Bσ ′r (σ ′ =(1 + σ )/2). Applying (67) touϕ and using Lemma 5 we get,
with some computation:

(1 − σ)k+2 r k+2
∥∥∥Dk+2u

∥∥∥
Lp(Bσ r )

≤

≤ c



(1 − σ)2 r 2 ‖Lu‖Sk,p(Bσ ′r )

+ ‖a‖Sk,∞(Bσ ′r )
·

k+1∑

h=0

(1 − σ)h r h
∥∥∥Dhu

∥∥∥
Lp(Bσ ′r )



 .

Therefore:
k+2∑

h=0

8h ≤ c



r 2 ‖Lu‖Sk,p(Br )

+ ‖a‖Sk,∞(Br )
·

k+1∑

h=0

8h
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with c = c(p, G, µ, η, k), r < r0(p, G, µ, η). By Theorem 21, we get

k+2∑

h=0

8h ≤ c1

{
r 2 ‖Lu‖Sk,p(Br )

+ c2 · 80

}

with c1 = c1(p, G, µ,η,k), c2 = c2

(
‖a‖Sk,∞(Br )

)
, and finally

‖u‖Sk+2,p(Br/2) ≤ c 1

{
r 2 ‖Lu‖Sk,p(Br )

+ c2 ‖u‖Lp(Br )

}

which implies the desired result, by a covering argument.

Proof of Theorem 5 in Case B.Again, the proof is divided in two parts. First we prove inequal-
ity (67) for any even integerk, in Case B. Then the Theorem follows by the same argument of
the proof in Case A, Part II, applying the suitable interpolation inequality (Theorem 22).

In proving (67), we will consider in detail the casek = 2, and then we will briefly show
how to iterate the argument.

Let u be a test function, fix two pointsx0, y0 ∈ RN and writeLx0, Ly0 to indicate the
operators “frozen” atx0, y0, respectively (see §§3.1, 3.2). Let us write:

u(x) =
(
Lx0u ∗ 0(x0, ·)

)
(x) =

([
Ly0(Lx0u) ∗ 0(y0, ·)

]
∗ 0(x0, ·)

)
(x) =

=
(
Ly0

(
Lx0u

)
∗ K (x0, y0,·)

)
(x),

whereK (x0, y0,z) =
(
0(y0, ·) ∗ 0(x0, ·)

)
(z) and we have applied Lemma 1 withα1 = α2 =

2− Q. Note that conditionα1+α2 < −Q in Lemma 1 gives, in our case,Q > 4. This condition
certainly holds since the homogeneous group correspondingto the simplest noncommutative Lie
algebra satisfying the assumptions of Case B isQ = 6 (see Example 2).

Now, let P4 be any left invariant differential operator homogeneous ofdegree 4. By Lemma
1 and Theorem 9,P4K (x0, y0,·) is a singular kernel satisfying conditions (d), (e), ( f ) of Theo-
rem 11 and a uniform bound (23); reasoning like in §§3.1, 3.2 we can write

P4u(x) = P.V.

∫

RN
P4K

(
x0, y0, z−1 ◦ x

)
Ly0(Lx0u)(z)dz+

+α(x0, y0) · Ly0(Lx0u)(x) =

(writing Lx0 = (Lx0 − L) + L and setting finallyx0 = x)

= P.V.

∫

RN
P4K

(
x, y0, z−1 ◦ x

)
Ly0

( q∑

h,k=1

[
ahk(x) − ahk(z)

]
Xh Xk u(z) +

+
[
a0(x) − a0(z)

]
X0u(z) + Lu(z)

)
dz+ α(x, y0) · Ly0(Lu)(x),

whereα is a bounded function by Lemma 4. Now, if the support ofu is contained in a ball with
radiusr small enough,

∥∥∥P4u
∥∥∥

p
≤ c

{∥∥Ly0(Lu)
∥∥

p +
∥∥∥D2a

∥∥∥
∞

∥∥∥D2u
∥∥∥

p
+ ‖Da‖∞

∥∥∥D3u
∥∥∥

p

}
+ 1

2

∥∥∥D4u
∥∥∥

p
.
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Therefore ∥∥∥D4u
∥∥∥

p
≤ c

{∥∥∥D2 (Lu)

∥∥∥
p

+ ‖a‖S2,∞ ‖u‖S3,p

}

which is exactly (67), fork = 2. From now on Part II of the proof of Theorem 5 in Case A can
be repeated, to get

‖u‖S4,p
(
Br/2

) ≤ c 1

{
r 2 ‖Lu‖S2,p(Br )

+ c2 ‖u‖Lp(Br )

}
.

We now briefly discuss how to iterate the above proof for any even integerk. Assume, for
instance that we want to bound theLp-norm of P6u. If we tried to write

u(x) =
(
Ly0Ly0Lx0u ∗ 0(y0, ·) ∗ 0(y0, ·) ∗ 0(x0, ·)

)
(x)

the problem would be to assure the existence of the convolution of three fundamental solutions
(this would lead to the restrictionQ > 6, by Lemma 1). Instead, we must perform part of the
differentiationP6 before doing the third convolution. First of all, let us split P6 as a composition
of the kindP4P2 or P3P3 (note that the possible presence ofX0, which has weight two, implies
that one of these cases occurs). IfP6 = P4P2 we proceed as follows:

u(x) =
(
Ly0(Lx0u) ∗ K (x0, y0,·)

)
(x),

with K as above;

P2u(x) =
(
Ly0(Lx0u) ∗ P2K (x0, y0,·)

)
(x),

whereP2K is homogeneous of degree(2 − Q);

P2u(x) =
(
Ly0Ly0Lx0u ∗

[
0(y0, ·) ∗ P2K (x0, y0,·)

])
(x) =

=
(
Ly0Ly0Lx0u ∗ K̃ (x0, y0,·)

)
(x),

whereK̃ is homogeneous of degree(4 − Q); now applyingP4 to both sides of the last equality
we can repeat the proof of the casek = 2. A similar reasoning applies to the caseP6 = P3P3.
This completes the proof of Theorem 5.

THEOREM 6 (REGULARITY OF THE SOLUTION IN TERMS OFHÖLDER SPACES). Under
the assumption of Theorem 3, if a0, ai j ∈ Sk,∞(�), u ∈ Sp (�) andLu ∈ Sk,s (�) for some
positive integer k (k even in Case B),1 < p < ∞, s > Q/2, then

‖u‖3k,α (�′) ≤ c1

{
‖Lu‖Sk,r (�) + c2 ‖u‖Lp(�)

}

where r = max(p, s), α = α(Q, p, s) ∈ (0, 1), c1 = c1(p, s, k, G, µ, η, �,�′) and c2 depends
on the Sk,∞(�) norms of the coefficients.

Proof of Theorem 6.Let us note that (b) of Theorem 23 implies the following embedding esti-
mate:

let u ∈ Sk+2,p
0 (Br ) for somer > 0. Then if Q

2 < p < Q andβ = 2 − Q
p ,

‖u‖3k,β (G,Br )
≤ c(p, k, G, µ, r ) ‖u‖Sk+2,p(Br )

.

(It’s enough to apply Theorem 23 toDku). Then, Theorem 6 follows from Theorem 5 as The-
orem 4 follows from Theorem 3, with (b) of Theorem 23 replaced by the above inequality. We
omit the details.
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Finally, let us come to the proof of:

THEOREM 7 (OPERATORS WITH LOWER ORDER TERMS). Consider an operator with
lower order terms, of the following kind:

L ≡




q∑

i, j =1

ai j (x)Xi X j + a0(x)X0


+




q∑

i=1

ci (x)Xi + c0 (x)


 ≡ L2 + L1.

i) If ci ∈ L∞ (�) for i = 0, 1, . . . , q, then:
if the assumptions of Theorem 3 hold forL2, then the conclusions of Theorem 3 hold for
L;
if the assumptions of Theorem 4 hold forL2, then the conclusions of Theorem 4 hold for
L.

ii) If c i ∈ Sk,∞(�) for some positive integer k, i= 0, 1, . . . , q, then:
if the assumptions of Theorem 5 hold forL2, then the conclusions of Theorem 5 hold for
L;
if the assumptions of Theorem 6 hold forL2, then the conclusions of Theorem 6 hold for
L.

Proof. Under the assumptions of Theorem 2, we can write, for everyu ∈ Sp
0 (Br ), with r small

enough, ∥∥Xi X j u
∥∥

p ≤ c
{
‖Lu‖p + ‖L1u‖p

}
.

If ci ∈ L∞ (�) for i = 0, 1, . . . , q, then

‖L1u‖p ≤ c‖u‖S1,p ≤ by Proposition 2

≤ ε

∥∥∥D2u
∥∥∥

p
+

c

ε
‖u‖p .

Therefore ∥∥Xi X j u
∥∥

p ≤ c
{
‖Lu‖p + ‖u‖p

}
.

Using the last inequality instead of Theorem 2, we can repeatthe proof of Theorem 3 for the
complete operatorL. The same is true for Theorem 5, assumingci ∈ Sk,∞(�). Finally, Theo-
rems 4, 6 follow from Theorems 3, 5, respectively, without taking into account the form of the
operatorL. We omit the details.
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Università degli Studi di Bergamo
viale Marconi 5
24044 Dalmine (BG), ITALIA
e-mail:brandolini@unibg.it

Lavoro pervenuto in redazione il 20.03.1999 e in forma definitiva il 01.02.2000.



434 M. Bramanti - L. Brandolini


