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BOUNDED SOLUTIONS OF SECOND ORDER

SEMICOERCIVE EVOLUTION EQUATIONS IN A HILBERT

SPACE AND OF NONLINEAR TELEGRAPH EQUATIONS

Abstract. Motivated by the problem of the existence of a solution of thenonlinear
telegraph equation

ut t + cut − uxx + h(u) = f (t, x) ,

such thatu(t, ·) satisfies suitable boundary conditions over(0, π) and‖u(t, ·)‖ is
bounded over

�
for some function space norm‖ · ‖, we prove the dissipativeness

and the existence of bounded solutions over
�

of semilinear evolution equations in
a Hilbert space of the form

ü + cu̇ + Au + g(t,u) = 0 ,

wherec > 0, A : D(A) ⊂ H → H is self-adjoint, semi-positive definite, has
compact resolvant andg :

� × H → H , bounded and sufficiently regular, satisfies
some semicoercivity condition.

1. Introduction

The problem of the existence of a solutionu(t, ·) of the nonlinear telegraph equation

ut t + cut − uxx + h(u) = f (t, x) ,(1)

such thatu(t, ·) satisfies suitable boundary conditions over a compact interval of
�

and‖u(t, ·)‖
is bounded over

�
for a suitable function space norm‖ · ‖, leads to the study of the bounded

solutions of evolution equations of the form

ü + cu̇ + Au + g(t, u) = 0 ,(2)

whereu takes values in a Hilbert spaceH . Here,c > 0, A : D(A) ⊂ H → H is self-adjoint,
semi-positive definite, has compact resolvant andg :

� × H → H is bounded and satisfies
suitable regularity conditions. The linear case

ü + cu̇ + Au = f (t) ,(3)

whenc > 0 and A is a positive definite isomorphism, has been considered by Ghidaglia and
Temam [6] (see also [14]). They proved the existence of a solution of (3) bounded over

�

in a suitable norm. The positive definiteness ofA is satisfied for the special case (1) when
u(t, ·) satisfies the Dirichlet boundary conditions. The case of Neumann or periodic boundary
conditions leads to a semi-positive definiteA and is more delicate. This is the one considered in
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362 J. Mawhin

this paper, which essentially summarizes [1], and introduces [11], where complete proofs can be
found.

In Theorem 1, we prove that, ifP denotes the projector onto kerA, then equation (2) is
dissipative, when the condition ofsemi-coercivity

(g(t,u), u) ≥ α|Pu| − β|(I − P)u| − γ ,

holds for all(t, u) ∈ � × H and some positiveα, β, γ . Notice that this assumption is a con-
sequence of the previous ones ifP = 0. In Theorem 2, we show that the dissipativeness of
equation (2) implies the existence of a solutionu such thatu and u̇ are bounded over

�
in a

suitable norm. Theorems 1 and 2 are used to prove, in Theorem 3, a necessary and sufficient
condition for the existence of a bounded solution of (3) whenA is semi-positive definite.

The proofs of Theorems 1 and 2 require a preliminary study of the Cauchy problem for (2)
and (3), which is done in Section 3.

For the nonlinear telegraph equation (1) with Neumann boundary conditions inx, with

sup
t∈
�

∫ π

0
f 2(t, x) dx < +∞ ,

andh such that
h(−∞) := lim

z→−∞
h(z) , h(+∞) := lim

z→+∞
h(z) ,

exist, the existence of a solutionu(t, x) such that

sup
t∈
�

∫ π

0

[
u(t, x)2 + ux(t, x)2 + ut (t, x)2

]
dx < +∞

is proved in Theorem 4, whenf satisfies aLandesman-Lazer typecondition of the form

h(−∞) < AL

(
1

π

∫ π

0
f (t, x) dx

)
≤ AU

(
1

π

∫ π

0
f (t, x) dx

)
< h(+∞) ,

where AL and AU respectively denote some lower and upper mean values of a bounded con-
tinuous function introduced by Tineo [15]. Such a conditionwas introduced for a second order
ordinary differential equations in [12, 13]. We end the paper with some applications to other
partial differential equations or boundary conditions, bysome remarks about situations where

h(−∞) = h(+∞) .

2. Fundamental assumptions and concept of solution

Let A be a linear self-adjoint unbounded operator in a Hilbert spaceH , such that, for eachλ < 0,
(A−λI )−1 : H → H exists and is compact. We consider the class of evolution equations in the
spaceH of the type (2), wherec > 0 andg :

� × H → H is continuous, Lipschitz continuous
with respect to the variableu, i.e.,

|g(t, x) − g(t, y)| ≤ L |x − y| ,(4)

for someL > 0 and allx, y ∈ H , t ∈ �
, and bounded, i.e.,

sup
(t,u)∈

�
×H

|g(t, u)| < +∞ .
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Here| · | denotes the norm associated to the scalar product(·, ·) on H .

If {λn} denotes the sequence of eigenvalues ofA with corresponding eigenvectors{ϕn}, so
that

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , lim
n→∞

λn = +∞ ,

we consider the subspace ofH

V1 :=



u ∈ H :

∞∑

n=1

λn(u, ϕn)2 < +∞



 ,

endowed with the product

(u, v)1 :=
∞∑

n=1

λn(u, ϕn)(v, ϕn) , (u, v ∈ V1) ,

and the associated pseudonorm

|u|1 := (u, u)
1/2
1 , (u ∈ V1) .

If P denotes the spectral projection fromH onto kerA, V1 is a Hilbert space for the scalar
product

(u, v)1 + (Pu, Pv) .(5)

We will use the fact that there exists a constantR > 0 such that

|u|2 ≤ R2
[
|u|21 + |Pu|2

]
,(6)

for all u ∈ V1.

We denote byBC(
�

, H) the set of all continuous functionsf :
� → H such that

sup
t∈
�

| f (t)| < +∞ ,

and byBC(
�

, V1 × H) the set of all continuous functions(u, v) :
� → V1 × H such that

sup
t∈
�

[
|u(t)|21 + |Pu(t)|2 + |v(t)|2

]
< +∞ .

We say that a functionh ∈ BC(
�

, H) has abounded primitiveif

sup
t∈
�

∣∣∣∣
∫ t

0
h(s) ds

∣∣∣∣ < +∞

and denote byB P(
�

, H) the set of those functions. The special casesBC(
�

,
�

) andB P(
�

,
�

)

will be used as well.

This functional setting allows us to make precise the concept of solution of Eq. (2) we are
using in this paper.
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DEFINITION 1. We say that u(t) is a solution of Eq. (2) if

u ∈ C(
�

, V1) ∩ C1(
�

, H)

and for eachw ∈ V1 one has

d2

dt2
(u(t), w) + c

d

dt
(u(t), w) + (u(t),w)1 + (g(t, u(t)), w) = 0(7)

in the sense of distributions, or, equivalently

d2

dt2
(u(t), w) + c

d

dt
(u(t),w) +

(
A1/2u(t), A1/2w

)
+ (g(t, u(t)), w) = 0 .

DEFINITION 2. We say that a solution u(t) of Eq. (2) isbounded(or bounded on the whole
line) if (u, u̇) ∈ BC(

�
, V1 × H). We say that a solution u(t) of Eq. (2) isbounded in the future

if, for each t0 ∈ �
, one has

sup
t≥t0

[
|u(t)|21 + |Pu(t)|2 + |u̇(t)|2

]
< +∞ .

A case in which all the solution of Eq. (2) are bounded in the future is when the equation
is dissipative. Among the various notions of dissipativeness which exist for evolution equations
(see [3, 7, 8, 9, 16]), we use the following one.

DEFINITION 3. The equation (2) is calleddissipativeif there exists a constantρ > 0 and a
map T :

�+ → �+ such that, for each M> 0, each t0 ∈ �
, and each solution u(t) of (2) with

|u(t0)|21 + |Pu(t0)|2 + |u̇(t0)|2 ≤ M ,

one has
|u(t)|21 + |Pu(t)|2 + |u̇(t)|2 ≤ ρ ,

for all t ≥ T(M) + t0.

3. The Cauchy problem

Under the assumptions of Section 2, let us consider the initial value problem

ü + cu̇ + Au = f (t) , (t ∈ J) , u(t0) = u0 , u̇(t0) = v0 ,(8)

whereJ is a bounded interval in
�

, f ∈ L2(J, H), t0 ∈ J, u0 ∈ V1 andv0 ∈ H . It is well
known that the problem (8) has a unique solution (see [14]). Aproof can be based on Galerkin’s
method, from which, using the classical theory of ordinary differential equations and Gronwall’s
Lemma, one can deduce not only the existence of a unique solution (u, u̇) ∈ C(J, V1 × H) of
Eq. (8) and its continuous dependence onu0, v0 and f in the strong topologies ofV , H and
L2(J, H), but also its continuous dependence in the weak topologies.

LEMMA 1. Let u(t) be the solution of Eq. (8) and let un(t) be the solution of

ü + cu̇ + Au = fn(t) , (t ∈ J) , u(t0) = u0n , u̇(t0) = v0n ,
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where fn ∈ L2(J, H). Assume that

u0n ⇀ u0 weak in V1 , v0n ⇀ v0 weak in H, fn ⇀ f weak in L2(J, H) .

Then, for each t∈ J ,

un(t) ⇀ u(t) weak in V1 , u̇n(t) ⇀ u̇(t) weak in H.

The following lemma is useful to construct Lyapunov functions. It follows from the similar
result for the Galerkin approximations, and a limit process.

LEMMA 2. Let u(t) be a solution of Eq. (3) and define

η(t) = c2|u(t)|2 + 2c (u(t), u̇(t)) + 2 |u̇(t)|2 + 2|u(t)|21 .

Thenη ∈ W1,1(J;�) and

η̇(t) = −2c

[
|u̇(t)|2 + |u(t)|21 −

(
f (t),

2

c
u̇(t) + u(t)

)]

in the sense of distributions on J .

Remark that the derivativėη(t) can be understood in the classical sense (andη ∈ C1(J)) as
soon asf (t) is continuous.

Let us consider the initial value problem

ü + cu̇ + Au + g(t,u) = 0 , (t ∈ J) , u(t0) = u0 , u̇(t0) = v0 ,(9)

whereJ is a bounded interval in
�

, t0 ∈ J, u0 ∈ V1 andv0 ∈ H . Let us assume thatA and
g(t, u) satisfy the hypotheses in Section 2. Under these conditions, the problem (9) possesses
a unique solution which is defined inJ (see e.g. [14]). The following proposition shows its
continuous dependence in the weak topology.

LEMMA 3. Let u(t) be the solution of Eq. (9) and un be the solution of the same equation
with initial conditions un(t0) = u0n, u̇n(t0) = v0n. Assume that

u0n ⇀ u0 weak in V1 , v0n ⇀ v0 weak in H,

Then, for each t∈ J ,

un(t) ⇀ u(t) weak in V1 , u̇n(t) ⇀ u̇(t) weak in H.

4. Dissipativeness

Let us consider the evolution equation (2) and assume that all the hypotheses stated in Section
2 on the operatorA and the functiong hold. The dissipativeness of (2) will follow from a
semi-coercivity condition upong.
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THEOREM 1. Assume that there existsα, β, γ > 0 such that

(g(t, u), u) ≥ α|Pu| − β|(I − P)u| − γ ,(10)

for all (t, u) ∈ � × H. Then Eq. (2) is dissipative. Moreover, there existsρ > 0 such that if u(t)
is a solution of Eq. (2) and

|u(t0)|21 + |Pu(t0)|2 + |u̇(t0)|2 < ρ2

for some t0 ∈ �
, then

|u(t)|21 + |Pu(t)|2 + |u̇(t)|2 < ρ2

for all t ≥ t0.

Proof. The expression

‖(u, v)‖ :=
(
c2|u|2 + 2c(u, v) + 2|v|2 + 2|u|21

)1/2
,

defines a norm inV1 × H equivalent to the usual one, and can be used in Definition 3. The
function

η(t) := ‖(u(t), u̇(t))‖2

is differentiable (see Lemma 2) and

η̇(t) = −2c

[
|u̇(t)|2 + |u(t)|21 + 2

c
(g(t, u(t)), u̇(t)) + (g(t, u(t)),u(t))

]
.

From the boundedness ofg and from inequality (6), we obtain that

η̇(t) ≤ −2c

[
|u̇(t)|2 + |u(t)|21 −

2M̃

c
|u̇(t)| + α|Pu(t)| − βR|u(t)|1 − γ

]
.(11)

Using the fact that

lim
|x|+|y|+|z|→∞

[
x2 + y2 −

2M̃

c
|x| + α|z| − βR|y| − γ

]
= +∞ ,

it follows that there existρ, δ > 0 such that

η(t) ≥ ρ2 H⇒ η̇(t) < −δ .(12)

We deduce from (12) that there existsτ ≥ t0 such that

τ ≤ t0 + max
{
0, δ−1

(
η(t0) − ρ2

)}
,

and
‖(u(τ), u̇(τ))‖ < ρ .

Now, we assert that
‖(u(t), u̇(t))‖ < ρ ,

for all t > τ . Otherwise there must existt∗ > τ such that
∥∥(

u(t∗), u̇(t∗)
)∥∥2 = ρ2

and
‖(u(t), u̇(t))‖2 < ρ2 ,

for all t ∈ [τ, t∗). In consequence,̇η(t∗) ≥ 0, a contradiction with (12).
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5. Bounded solutions

We use the results obtained in Section 4 to prove the existence of a solution of Eq. (2) that is
bounded on the whole line.

THEOREM 2. If Eq. (2) is dissipative, it has a solution u(t) such that

(u, u̇) ∈ BC(
�

, V1 × H) .(13)

Proof. Let un(t) be the solution of Eq. (2) with initial conditions

un(−n) = 0 , u̇n(−n) = 0 .

By definition, there existsT, ρ > 0 such that

|un(t)|21 + |Pun(t)|2 + |u̇n(t)|2 < ρ2 ,(14)

for all t ≥ T − n. We can assume, without loss of generality, that there exists u0 ∈ V1 and
v0 ∈ H such that

un(0) ⇀ u0 weak inV1, u̇n(0) ⇀ v0 weak inH .

Let u(t) be the solution of (2) with initial conditions

u(0) = u0 , u̇(0) = v0 .

Lemma 3 applies and we obtain for eacht ∈ �

un(t) ⇀ u(t) weak inV1, u̇n(t) ⇀ u̇(t) weak inH .

Moreover it follows from (14) that

|u(t)|21 + |Pu(t)|2 + |u̇(t)|2 ≤ ρ2 ,

for all t ∈ �
, and therefore (13) holds.

We make a first use of Theorem 2 to prove the existence of a bounded solution of the linear
equation (3) wheref ∈ BC(

�
, H), a problem studied in [6, 14] whenλ1 > 0. In the resonant

caseλ1 = 0, an additional hypothesis is required. We treat both casesin the following Theo-
rem 3, whose proof requires a result of Ortega [12] on second order linear ordinary differential
equations, that we include here for completeness.

LEMMA 4. Let p :
� → �

be continuous and c6= 0. Then the equation

y′′(t) + cy′(t) = p(t)(15)

has a bounded solution if and only if p∈ B P(
�

,
�

).

Proof. Necessity. Lety be a bounded solution of Eq. (15) (i.e.y andy′ are bounded on
�

), and
set

P(t) =
∫ t

0
p(s) ds.(16)



368 J. Mawhin

Then
y′(t) − y′(0) + c[y(t) − y(0)] = P(t) ,

and soP is bounded.

Sufficiency. Letp ∈ B P(
�

,
�

) and consider the equation

u′(t) + cu(t) = P(t) ,(17)

whereP is defined in (16). By a classical result (see e.g. [4]), equation (17) has a unique bounded
solution U . From the equation, we see immediately thatU ′ is also bounded. AsP ∈ C1,
U ∈ C1, and satisfies the differential equation (15).

THEOREM 3. If λ1 > 0, all solutions of Eq. (3) are bounded in the future and Eq. (3)has a
solution u(t) which satisfies(u, u̇) ∈ BC(

�
, V1 × H). If λ1 = 0, the same statement is valid if

and only if

P f ∈ B P(
�

, ker A) .(18)

Proof. If λ1 > 0, condition (10) withP = 0 holds forg(t, u) = − f (t) taking α = 1, β =
supt∈

� | f (t)|, γ = 1. Consequently, Theorems 1 and 2 apply.

If λ1 = 0, andm = dim kerA, let H̃ := span{ϕm+1, ϕm+2, . . . } be the orthogonal comple-
ment of kerA. The restrictioñA of the operatorA to H̃ ∩ D(A) is positive definite and we can
apply the first assertion to deduce that the equation

ü + cu̇ + Ãu = (I − P) f (t)

has a bounded solutioñu(t) which satisfies
(
ũ, ˙̃u

)
∈ BC

(�
, Ṽ1 × H̃

)

whereṼ1 = V1 ∩ H̃ is endowed with the norm| · |1. On the other hand, by Lemma 4, the
equation

ü + cu̇ = P f (t)(19)

in the finite dimensional space kerA has a bounded solution, denoted byu0(t), if and only if
P f ∈ B P(

�
, ker A). Now, the functionu(t) = u0(t) + ũ(t) is a solution of Eq. (3) which

satisfies (13). In addition, all the solutions of the autonomous equation

ü + cu̇ + Au = 0

are bounded in the future and this implies that all the solutions of Eq. (3) are also bounded in the
future. Conversely, if Eq. (3) has a bounded solutionu(t), thenPu(t) is a bounded solution of
Eq. (19). Because condition (18) is both necessary and sufficient for the existence of a bounded
solutions of Eq. (19), we deduce that (18) holds.

6. Nonlinear telegraph equation

We use the previous results to study the boundedness of the solutions of the nonlinear telegraph
equation with Neumann boundary conditions

ut t + cut − uxx + h(u) = f (t, x) , (t ∈ �
, x ∈ (0, π)) ,(20)

ux(t, 0) = ux(t, π) = 0 , (t ∈ �
) ,(21)
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wherec is a real positive constant,h :
� → �

is Lipschitz continuous andf :
� × (0, π) → �

is a function in the spaceBC(
�

, L2(0, π)). We also assume thath is bounded and that the limits

h(−∞) := lim
z→−∞

h(z) , h(+∞) := lim
z→+∞

h(z)(22)

exist. The abstract framework in Section 2 applies in this case takingH = L2(0, π) and the
operatorAu = −uxx defined in

D(A) =
{
u ∈ H2(0, π) : ux(0) = ux(π) = 0

}
.

The operatorA1/2 is given byA1/2u = ux and its domain is the spaceV1 = H1(0, π). Thus, a
solutionof Eq. (20)-(21) is a functionu(t, x) which satisfies

u ∈ C
(
�

, H1(0, π)
)

∩ C1
(
�

, L2(0, π)
)

,

such that, for eachw ∈ H1(0, π), one has

d2

dt2

∫ π

0
u(t, x)w(x) dx + c

d

dt

∫ π

0
u(t, x)w(x) dx +

∫ π

0
ux(t, x)wx(x) dx

+
∫ π

0
h(u(t, x))w(x) dx =

∫ π

0
f (t, x)w(x) dx .

The space kerA is the space of constant functions on(0, π), and the spectral projection from
L2(0, π) onto kerA is given by the mean value

Pu =
1

π

∫ π

0
u(x) dx ,

(
u ∈ L2(0, π)

)
.

When the functionf (t, x) is 2π-periodic in t and x, it is proved in [10, 5] that Eq. (20) has
at least one solutionu(t, x) 2π-periodic in t and x provided the following condition of the
Landesman-Lazer typeis fulfilled

h(−∞) < (2π)−2
∫ 2π

0

∫ 2π

0
f (t, x) dxdt < h(+∞) .(23)

To find a condition similar to (23), that guarantees the existence of a bounded solution of problem
(20)-(21) whenf (t, x) is bounded but not necessarily periodic, we introduce thelowerandupper
mean valuesof a given functione ∈ B P(

�
,
�

) + BC(
�

,
�

) as in [15],

AL(e) := lim
r→+∞

inf
t−s≥r

1

t − s

∫ t

s
e(τ) dτ ,

AU (e) := lim
r→+∞

sup
t−s≥r

1

t − s

∫ t

s
e(τ) dτ ,

which both coincide with the mean value if the functione(t) is periodic. Elementary consid-
erations show that ife = e∗ + e∗∗ is any decomposition ofe ∈ B P(

�
,
�

) + BC(
�

,
�

) with
e∗ ∈ B P(

�
,
�

) ande∗∗ ∈ BC(
�

,
�

), then one has

inf e∗∗ ≤ AL
(
e∗∗

)
= AL(e) ≤ AU (e) = AU

(
e∗∗

)
≤ supe∗∗ .(24)

The following result is due to Ortega and Tineo [13]. We include its proof for the reader’s
convenience.
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LEMMA 5. Let e∈ B P(
�

,
�

) + BC(
�

,
�

) be a given function andα < β real numbers.
Then the following statements are equivalent:

(i) α < AL (e) ≤ AU (e) < β.

(ii) There exists a decomposition e= e∗ + e∗∗ with e∗ ∈ B P(
�

,
�

), e∗∗ ∈ BC(
�

,
�

) and

α < inf e∗∗ ≤ supe∗∗ < β .(25)

Proof. If (ii) holds, then, using (24), we immediately obtain (i). Conversely, assume that (i)
holds, writee = e1 + e2, with e1 ∈ B P(

�
,
�

) ande2 ∈ BC(
�

,
�

), and let

Ei (t) =
∫ t

0
ei (u) du , (i = 1, 2) , E(t) = E1(t) + E2(t) .

If t1, t2 ∈ �
, the Lagrange mean value theorem applied toE − E1 implies that

|E(t1) − E(t2)| ≤ b + a|t1 − t2| ,(26)

whereb = 2|E1|L∞ anda = |E2|L∞ . Let ε > 0 be such that

α < AL(e) − 2ε < AU (e) + 2ε < β ,

andT > 0 such that

inf
t−s≥r

1

t − s

∫ t

s
e(u) du > AL(e) − ε > α + ε ,

sup
t−s≥r

1

t − s

∫ t

s
e(u) du < AU (e) + ε < β − ε ,

wheneverr ≥ T . Hence we have, for allt ∈ �
,

α + ε <
1

T

∫ t+T

t
e(u) du < β − ε .(27)

Defining

e∗∗(t) = 1

T

∫ t+T

t
e(u) du , e∗(t) = e(t) − e∗∗(t) ,

we see thate∗∗ ∈ BC(
�

,
�

) and (25) holds. To prove thate∗ ∈ B P(
�

,
�

), let

E∗(t) = E(t) − 1

T

∫ t+T

t
E(u) du .

Then,

(
E∗

)′
(t) = e(t) − 1

T
[E(t + T) − E(t)]

= e(t) − 1

T

∫ t+T

t
e(u) du = e(t) − e∗∗(t) = e∗(t) ,

so thatE∗ is a primitive ofe∗. Now

E∗(t) = E(t) − E(τ)

for someτ ∈ ]t, t + T [, and hence, using (26), we get

|E∗(t)| ≤ b + a|t − τ | ≤ b + aT ,

for all t ∈ �
, which shows thate∗ ∈ B P(

�
,
�

).
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THEOREM 4. If

h(−∞) < AL

(
1

π

∫ π

0
f (t, x) dx

)
≤ AU

(
1

π

∫ π

0
f (t, x) dx

)
< h(+∞) ,(28)

then Eq. (20)-(21) is dissipative and has a solution u(t, x) such that

sup
t∈
�

∫ π

0

[
u(t, x)2 + ux(t, x)2 + ut (t, x)2

]
dx < +∞ .(29)

Proof. Since kerA is a one dimensional space, we can use Lemma 5 to deduce thatP f admits
a decomposition of the formP f = f ∗ + f ∗∗ with f ∗, f ∗∗ ∈ BC(

�
, ker A) such that

f ∗ ∈ B P(
�

, ker A)

and

h(−∞) < inf
t∈
� f ∗∗(t) ≤ sup

t∈
�

f ∗∗(t) < h(+∞)(30)

for all t ∈ �
. Thus we can write

f = f ∗ + f ∗∗ + (I − P) f ,

and by the second assertion in Theorem 3, there exists a bounded solutionϕ(t) of

ü + cu̇ + Au = f ∗(t) + (I − P) f (t) .

Now, the change of variablesu = z+ ϕ(t) reduces the abstract form of problem (20)-(21) to the
equation

z̈ + cż + Az+ h(z + ϕ(t)) = f ∗∗(t) .(31)

On the other hand, it follows from (22) and (30) that there exists two positive real constantsa
andb such that

z
(
h(z) − f ∗∗(t)

)
≥ a|z| − b

for all z ∈ �
. From this, it is not too difficult to show that we have, for allu ∈ L2(0, π),

(
u, h(u) − f ∗∗(t)

)
L2(0,π)

≥ a
√

π |Pu|L2(0,π) − a
√

π |(I − P)u|L2(0,π) − πb .

Since we are assuming thatϕ, h and f ∗∗ are bounded, it follows that condition (10) holds. We
deduce, by Theorem 1, that Eq. (31) is dissipative and, by Theorem 2, that Eq. (31) has a solution
z(t) which is bounded in the whole line. Now it is clear thatu(t) = ϕ(t) + z(t) is a solution of
Eq. (20) that is bounded in the whole line.

REMARK 1. The condition (28) is alsonecessaryfor the existence of a bounded solution
whenh is such that

h(−∞) < h(z) < h(+∞)

for all z ∈ �
, and hence is a characterization of the dissipativeness of Eq. (20)-(21) for this class

of nonlinearities.
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EXAMPLE 1. The equation

ut t + cut − uxx + arctanu =
(
µ arctant + sint2

)
(1 + 7 cos 7x)

with Neumann boundary condition (21) is dissipative and possesses a bounded solution if and
only if

|µ| < 1 .(32)

To prove this fact, note that a primitive of sint2 is a Fresnel type function and it remains
bounded on the whole line; in consequence, the upper and lower mean values of sint2 are both
0. On the other hand, the lower and upper mean values of arctant are−π

2 and π
2 respectively.

Thus, the condition (28) becomes condition (32) and Theorem4 and Remark 1 apply.

The monotone character of the functionh is by no means necessary for the sufficiency
condition, as shown by the following example, whose nonlinear term has, besides 0,m negative
and m positive zeros, but is chosen to have the same limits at±∞ as the nonlinear term in
Example 1.

EXAMPLE 2. The equation

ut t + cut − uxx +
π

2
sin[(4m + 1) arctanu] =

(
µ arctant + sint2

)
(1 + 7 cos 7x)

with Neumann boundary conditions (21) andm ≥ 0 an integer, is dissipative and possesses a
bounded solution if condition (32) holds.

REMARK 2. Similar results can be obtained for the telegraph equation (20) with theperi-
odic boundary conditionsin x on [0, 2π ]

u(t, 0) = u(t, 2π) , ux(t, 0) = ux(t, 2π) , (t ∈ �
) ,(33)

or for thedamped beam equation

ut t + cut + uxxxx+ h(x) = f (t, x) ,(34)

with theperiodic boundary conditionsin x on [0, 2π ]

u(t, 0) = u(t, 2π) , ux(t, 0) = ux(t, 2π)

uxx(t, 0) = uxx(t, 2π) , uxxx(t, 0) = uxxx(t, 2π) , (t ∈ �
) .

REMARK 3. The assumptions of Theorem 4 require thath(−∞) < h(+∞) and one can
raise the question of obtaining existence theorems in situations whereh(−∞) = h(+∞) (for
exampleh(u) = u

1+u2 ). The recent paper [11] proposes in particular amethod of weak upper

and lower solutionsfor the bounded solutionsu ∈ L∞(
� × �), of equation

ut t + cut − uxx = F(t, x, u) ,

satisfying periodic boundary conditions inx on [0, 2π ], when

F(t, x, u) − F(t, x, v)

u − v
≥ −c2

4
whenever u ≥ v .
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This approach allows to prove the following existence result:
If h is Lipschitzian with constant

L ≤ c2

4
(35)

and if there exists R> 0 such that

h(u)u ≥ 0 whenever |u| ≥ R ,(36)

then the problem (20)-(33) has at least one solution u∈ L∞(
�×�) for each f ∈ BC(

�×�,
�

)

such that
1

2π

∫ 2π

0
f (t, x) dx ∈ B P(

�
,
�

) .

The proof consists in making the change of variableu = ϕ + v, whereϕ is the unique bounded
solution of the problem

ut t + cut − uxx = f (t, x)

which is 2π-periodic in x, (it exists by the second assertion in Theorem 3 and belongs to
L∞(

�
, �) by Sobolev’s imbedding theorem), and showing that, becauseof condition (36), the

equivalent equation
vt t + cvt − vxx + h(ϕ(t, x) + v) = 0

admits, if R∗ > 0 is sufficiently large,−R∗ as a lower solution andR∗ as an upper solution. It
is an open problem to know if condition (35) can be dropped.
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