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ARE CONTINUOUS DISTRIBUTIONS OF

INHOMOGENEITIES IN LIQUID CRYSTALS POSSIBLE?

Abstract. Within a theory of liquid-crystals-like materials based ona generalized
Cosserat-type formulation, it is shown that continuous distributions of inhomo-
geneities may exist at the microstructural level.

1. Introduction

In the conventional theories of liquid crystals, the free-energy density is assumed to be a function
of a spatial vector field and its spatial gradient. Starting from the pioneering work of Frank
[6], various improvements were proposed by Leslie [9] and byEricksen [4] [5]. A different
point of view was advocated by Lee and Eringen [7] [8], as early as 1972, when considering a
liquid criystal within the framework of the theory of materials with internal structure. The main
difference between these points of view is that the second approach emphasizes the dependence
of the constitutive equations on themappingsbetween vectors or tensor fields, rather than on
their values alone. This mapping-dependence is essential not only for sustaining continuous
distributions of inhomogeneities, but also, as shown by Maugin and Trimarco [10], for the proper
setting of a definition of Eshelby stresses. The general connection between these two aspects of
material behaviour is described in [3].

2. The generalized Cosserat medium

A generalized Cosserat body(GCB) consists of the frame bundle of an ordinary bodyB. In other
words, a GCB is a body plus the collection of all its local frames at each point. Denoting byX I

(I = 1, 2, 3) andxi (i = 1, 2, 3) Cartesian coordinate systems for the bodyB and for physical
space, respectively, a configuration of a GCB consists of thetwelve independent functions:

xi = xi (XJ )

H i
I = H i

I (XJ )

whereH i
I represents the mapping of the frames attached at pointXJ . It is important to stress

that the ordinary deformation gradientF i
I = ∂xi

∂ X I and the mappingH i
I are of the same nature,

but represent two independent vector-dragging mechanisms.

A GCB is hyperelasticof the first grade if its material response can be completely charac-
terized by a single scalar (“strain-energy”) function:

W = W(F i
I , H i

I , H i
I ,J ; XK )
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where comma subscripts denote partial derivatives. Under achange of reference configuration
of the form

YA = YA(XJ )

H A
I = H A

I (XJ )

where the indicesA, B,C are used for the new reference, the energy function changes to:

W = W′(F i
A, H i

A, H i
A,B; YC)

= W(F i
AF A

I , H i
AH A

I , H i
A,B F B

J H A
I + H i

AH A
I ,J ; XK (YC))(1)

Notice the special form of the composition law for the derivatives of H i
I .

Generalizing Noll’s idea of uniformity [11], by taking intoaccount the composition laws in
Equation (1), one can show [1] [2] that in terms of an archetypal energy function

Wc = Wc(F i
α, H i

α, H i
αβ )

where Greek indices are used for the archetype, a GCB isuniform (namely, it is made of “the
same material” at all points) if there exist three uniformity fields of tensorsPI

α(XJ ), QI
α(XJ )

andRI
αβ (XJ ) such that the equation

W(F i
I , H i

I , H i
I ,J ; XK ) = Wc(F i

I PI
α, H i

I QI
α, H i

I ,J PJ
β QI

α + H i
I RI

αβ )

is satisfied identically for all non-singularF i
I andH i

I and for allH i
I ,J . Homogeneity(global

or local) follows if, and only if, there exists a (global or local) reference configuration such that
these fields become trivial.

3. The liquid-crystal-like model

We call aliquid-crystal-like model(LCM) a material whose internal structure can be represented
by the deformation of one or more vector or tensor fields. Morespecifically, we say that a GCB
is of the LCM type if a nowhere-zero material vector fieldD = D I EI and a material tensor field
A = AI

JEI ⊗ EJ exist such that the energy density function depends on its arguments in the
following way:

(2) W = W(F i
I , H i

I , H i
I ,J ; XK ) = f (F i

I , H i
I D I , H i

I ,J D I + H i
I AI

J ; XK )

where we have used the letterf to denote the new functional dependence.

To clarify the rationale behind this definition, we considerfirst the particular case of a ref-
erence configuration in whichD(X) constitutes a parallel unit vector field andA(X) vanishes
identically. We can then write (for that particular reference configuration, if it exists) that

W = f (F i
I , H i

I D I , (H i
I D I ),J ; XK )

This constitutive equation is unable to detect any difference between different deformations of
triads that happen to map the director into the same vector inspace. In other words, all that
matters is the resulting vector and its gradient, just as in the “conventional” theory of liquid
crystals, and it is in this sense that Equation (2) constitutes a generalization. More importantly,
when seen under this light, the tensorA no longer appears as an artificial construct, but as the
natural outcome of describing the manner in which the conventional archetype has been inserted
in the body in a pointwise fashion.
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It is apparent that the particular form of the constitutive law adopted for an LCM must
entail certainminimal symmetries, namely, certain local changes of reference configuration that
are indistinguishable as far as the material response is concerned. In addition, an LCM may have
other non-generic symmetries, but here we are interested inderiving those symmetries that are
already inherent in the definition. Now, any symmetry of a GCBconsists of a triple{G, K , L}

satisfying:

f (F i
J , H i

J DJ , H i
M,N DM + H i

M AM
N ; XK ) =

f (F i
I GI

J , H i
I K I

J DJ , (H i
I ,J GJ

N K I
M + H i

I L I
M N )DM + H i

I K I
M AM

N ; XK )

for all non-singularF i
I andH i

I and for allH i
I ,J . Since we are looking for minimal symme-

tries, namely, those stemming from the particular dependence assumed onH and its gradient,
we setG equal to the identity. It then follows that the energy function will have the same values
for all K andL satisfying the following identities:

H i
J DJ = H i

I K I
J DJ

and

H i
M,N DM + H i

M AM
N = H i

I ,N K I
M DM + H i

I L I
M N DM + H i

I K I
M AM

N

for all non-singularF i
I and H i

I and for all H i
I ,J . It follows immediately that the minimal

symmetries are those satisfying the following conditions:

(3) K I
J DJ = D I

and

(4) L I
M N DM = (δ I

M − K I
M )AM

N

The first condition is the obvious one: the energy function ata point remains invariant under
any change of reference configuration which leaves the director at that point unchanged. In
other words, the matrixK has the director as an eigenvector corresponding to a unit eigenvalue.
The second condition, on the other hand, is far from obvious and could not have been predicted
except by means of the kinematically based method we have used. Note that in the particular
case in which the tensor fieldA is zero, the right-hand side of the second condition vanishes. It
is not difficult to show by a direct calculation that the collection of all the symmetries satisfying
the above two conditions forms a groupGmin, which we will call theminimal symmetry group
of any LCM, under the multiplication law given by Equation (1).

Although not strictly necessary, we will adopt as theLCM archetypea point whose consti-
tutive law is of the form

Wc = Wc(F i
α, H i

α, H i
αβ ) = fc(F i

α, H i
α Dα, H i

αβ )

namely, we adoptAα
βγ = 0 at the archetype. According to the general prescription for unifor-

mity, then, fieldsPI
α(XK ), QI

α(XK ) andRI
αβ (XK ) must exist such that:

W(F i
I , H i

I , H i
I ,J ; XK )

= Wc(F i
I PI

α, H i
I QI

α, H i
I ,J PJ

β QI
α + H i

I RI
αβ )

= fc(F i
I PI

α, H i
I QI

α Dα, (H i
I ,J PJ

β QI
α + H i

I RI
αβ )Dα)
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It is a straightforward matter to verify that the resulting functionW has the requisite form:

W(F i
I , H i

I , H i
I ,J ; XK ) = f (F i

I , H i
I D I , (H i

I ,J D I + H i
I AI

J ))

where
D I = QI

α Dα

and
AI

J = RI
αβ (P−1)β J Dα

Indeed

fc(F i
I PI

α, H i
I QI

α Dα, (H i
I ,J PJ

β QI
α + H i

I RI
αβ )Dα)

= fc(F i
I PI

α, H i
I D I , PJ

β (H i
I ,J D I + H i

I AI
J ))

= f (F i
I , H i

I D I , H i
I ,J D I + H i

I AI
J ; XK )

Under a change of reference configuration we know that the tensor fieldAI
J transforms to

AA
B = (H A

I ,J D I + H A
I AI

J)(F−1)J
B

and we ask the question: does there exist a change of reference configuration leading to an
identically vanishingAA

B in an open neighbourhood of a point? It is not difficult to showthat a
sufficient condition for this local homogeneity requirement to take place is that:

AI
J = D I

,J

identically in that neighbourhood. Indeed, if that is the case, we can write:

AA
B = (H A

I D I ),J(F−1)J
B

Therefore, any change of reference configuration of the form

YA = YA(XK )

H A
I = (Q−1)α I δ

A
α

will do the job. We conclude then that the local homogeneity of an LCM body is guaranteed, in
addition to the ordinary condition of homogeneity of the macromedium, by the equation

(5) AI
J = D I

,J

describing the compatibility of the liquid crystal superstructure. If, however, the underlying
macromedium is homogeneous but condition (5) is violated, we have a genuine distribution of
inhomogeneities at the microstructural level. On the otherhand, it can be shown that the two
conditions taken together are not only sufficient, but also necessary, for local homogeneity of
an LCM uniform body whose symmetry group is minimal. This fact holds true even though the
minimal symmetry group is continuous. More surprisingly, perhaps, the same conclusion holds
even when the macromedium is a genuine liquid, namely, when its symmetry group is the whole
unimodular group.

Assume that we have a reference configuration that is homogeneous as far as the underly-
ing macromedium is concerned and in which the director field is unit and parallel. The only
source of inhomogeneity left is, therefore, a smooth second-order tensor fieldA(X). By the po-
lar decomposition theorem, this field can be seen geometrically as a field of ellipsoids, whose
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axes and eccentricities vary smoothly from point to point. In principle, then, we have a situation
equivalent to that of a standard liquid crystal, except thatthe standard ellipsoids of orientational
distribution are now replaced by the ellipsoids arising form the inhomogeneity of the microstruc-
ture. These last ellipsoids are manifest, as already noted,even if the director field is perfectly
unitary and parallel! The typical optical patterns, whose beautiful curvy shapes have become
associated in popular imagination with liquid crystals, and usually explained as a manifestation
of the variation of the mean orientational order of the molecules, could therefore be explained
equivalently by the presence of continuous distributions of inhomogeneities.

4. Concluding remarks

We have shown that, at least in principle, it is possible to formulate a theory of liquid-crystal-like
uniform bodies that admit continuous distributions of inhomogeneities. The main ingredient of
this theory is the inclusion of maps, and derivatives thereof, between whole fibres of the princi-
pal frame bundle of the underlying body. This stands in contrast with the conventional theory,
which recognizes only the transformation of a single vectorfield and its derivative. Although
the treatment of a liquid crystal as some kind of generalizedCosserat body is not new, the way
in which a particular director field is made to enter the formulation is different from previous
formulations. Instead of imposing a constitutive symmetryupon a standard Cosserat medium,
we emphasize a kinematic motivation as a rationale for constraining the constitutive functional
to a particular form, and only then derive a-posteriori results for the minimal symmetry group.
These results differ form the a-priori counterparts in [7] and [8] in the rather complicated sym-
metry requirement for the microstructural component, a requirement that is absent in the a-priori
statement. But it is precisely this condition that allows for the existence of legitimate microstruc-
tural inhomogeneities. Further mathematical details of the theory are now under investigation,
including differential-geometric implications.
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