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WEAK FORMULATION
FOR NONLINEAR HYPERBOLIC STEFAN PROBLEMS

Abstract.

The aim of this paper is to analyze a suitable weak formulatioan abstract
hyperbolic doubly nonlinear problem. The results apply ¢eeaeral version of the
hyperbolic Stefan problem with memory.

1. Introduction

LetV, H be a pair of real Hilbert spaces such thaic H c V’ with continuous and densely
defined embeddings. Hek¢ denotes the antidual &f. Denote by(v’, v) the duality pairing
betweeny in V/ andv in V; if v/ € H this is the ordinary inner produ¢t’, v) in H. Let (., -))
define the scalar product M. The norms inV, H, V’ will be denoted byl - ||, | - |, II - I,
respectively.

LetF : v+ F[v] andG : v — G[v] define two functional mappings such that

F:whiot; H) > whtiot; H), G:whiot;v) - w210, t;v/) vt €]o, T],

GO =goeV' vvewWltloT;V),
for some prescribed valug). Let B be a maximal monotone setihx V andL : V — V' a
linear, continuous, selfadjoint, and weakly coercive apmr

Then, under suitable boundedness and continuity hypathe@se andG, Colli and Gras-
selli [4] showed that there exists a unique functioa W2’°°(0, T;H)N W1’°°(0, T; V) satis-
fying

(N uge (t) + Bug(t) + Lut) > Flug](t) + G[ul(t), t €10, T[,
(2 u@@ =ug eV, ut(0) =vg € D(B),

for some initial dataug and vg, whereut stands for the usual derivative of the vector-valued
functionu.

This paper is devoted to investigate the well-posednesswéak formulation of (1-2),
looking for solutionai € CO([0, T]; V)NCL([0, T]; H) in the special case wheis a maximal
monotone and sublinear operator frd#nin H. Let us point out at once the interest of this case,
since the main application of [4] fits into our framework. &tf, Section 6 is concerned with a
nonlinear extension of the hyperbolic Stefan problem wignrory discussed in [4].

In our setting, the right hand side+G of (1) is replaced by one map: v — Sj[v]+ S[v]
with the properties

s: LYo, t; vinwro,t; H) » LYo, t; H) + Wi, t; V) vt elo, T],
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SO0 =s0e V' Vel O T:v)nwhio T; H).

By assumingug € V andvg € H, we can establish existence, uniqueness and continuous
dependence theorems. Then, these results will be appltad tgeneral version of the hyperbolic
Stefan problem with memory.

The study of the abstract problem is carried out as followisst ve consider the explicit
problem, with a fixed right hand side, and analyze it by an@xipration and passage to the limit
procedure where we can recover strong convergences as ing8how that the actual implicit
version is well posed, we use the Contraction Mapping Rplaciocally in time and extend
the solution by a global estimate, as in [4]. Then, we alsaudedhe Lipschitz continuous
dependence of the solution on the initial data.

2. Main results

Keeping the same notation as above, we can specify our hygpeth
a) L is linear continuous symmetric operator frafmo V’ such that
®) (Lv,v) + L2 = clv?  VveV,

for some¢, ¢ > 0. Hence, denoting bl the identity (or injection) operator i, £1 + L
is strongly monotone fror to V’. Besides, we fix a consta@t such that

“ [v = Cljvll, [Lvlle <Clvll Vv eV.

b) B is maximal monotone fronD(H) = H to H and satisfies

®) B(0) >0,
(6) dA >0 : VYueH, VYweBu lw] < AQ+ |u]).

0 S=S + S fulfills

@) sifo] e L0, T;H),
(8) 0] e whio T Vv,
(9) SO0 = s0 Vvello T:v)nwbio T;H)

and there is a positive constadg such that

11001 = ST 10,1, ) + 10k (S2ld] = SAD T 10 .11
(20) w w
= Cs (19— 3210,y + 10 = DtI210 041

for anyt €]0, T], 9, o € L0, T; V) nw11(0, T; H), whered; := d/dt.
From (7-10) it results that the inequality

1S 10 4.y + 10 S2LV1E 1 g o
< C5 (14 101210 0y, + 1001210 4:11))

holds for anyt €10, T], v € L1(0, T;: V) nWL1(0, T; H), with the constan€y depend-
ing only on|$[0] L1, T:H): llck S‘Z[O]”LI(O,T;V')a Is20llv/, andCs.

(11



Weak formulation 71

ProOBLEM 1. Findu € CO([O, T V)N cl([o, T]; H)andw € L®°(0, T; H) satisfying

(12) uit € L10, T: v/,

(13) (Utt (), v) + (w(t), v) 4 (Lu(t), v) = (U] (1), v)
fora.a. t€]0, T[, YveV,

(14) w(t) € B(ut(t)) fora.a. t€]0, T,

(15) u(0) = ug, (du/dt)(0) = vg.

THEOREM1 (EXISTENCE AND UNIQUENESS. Assume that Hypotheses, &), ¢) hold
and let wy, vg, S0 be given such that

(16) Ug €V, vg € H, soe V.
Then there exists one and one solution of Problem 1.

THEOREM2 (CONTINUOUS DEPENDENCE. Assume that Hypothesey, &), ¢) hold. Let
{00, 09, 520}, {To, Vo, S0} be two sets of data satisfying (16), and (@t w), (T, w) be the cor-
responding solutions of Problem 1. Then there is a constarddpending only o, ¢, C, Cg
and T, such that

(17) la— G”Co([O,T];V)ﬂcl([O,T];H) =< N(HOO =t + |ﬁO — gl + ||§20 —S0ll%) -

The above theorems are shown in Section 5, after proving slieay lemma in Section 3
and looking at the explicit problem in Section 4. The lastisecis devoted to the mentioned
application.

3. Auxiliary lemma

LEMMA 1. Let(V, H, V’) be a Hilbert triplet and B denote a maximal monotone operator
from D(B) = H to H. If the condition

(18) dA >0 : VYueH, VweBu, lw| < AQ+ |u]),

is fulfilled, then the restriction A of B to V is maximal monwdrom V to V.

Proof. Without loss of generality we may assume that BO0: this can be achieved by shifting
the range oB. The monotonicity ofA is obvious. We check its maximal monotonicity. Given
f in V/, we try to solve inV the equationf € 7u + Au by approximating it with the equation

f € Tu® + B®u® (¢ > 0), whereT is the Riesz operator frod to V’, that is,

(Tu,v) = ((u, v)) Yu,veV,

and B¢ the Yosida approximation d8 in H. Being| the identity operator oH, we recall that

| —J¢
B¢ = , Whered® = (1 + z;B)_1 denotes the resolvent &f,
&€

u-—uf . )
Béu = , whereu?® is defined by(l + ¢B)u® =u.
&

It is important to distinguish between the single-valueérapor B¢ of H and the multivalued
operatorB J¢. We haveB®u € B Jéufor allu € H. Infact, Béu € B(J¢u) meang| — Jé)u e



72 S. Durando

¢B(J%u), that is,u € (J%u) + ¢B(J®u), and this is true owing to the definition df. As B¢
is maximal monotone and Lipschitz continuous of constafat ]BS|V is also monotone and
Lipschitz continuous fronv to V’. As7 : V — V' is obviously coercive, [1, Corollary 1.3, p.
48] ensures the existencewf € V satisfying7 u® + Béu® = f. Multiply this equation byu®.
Note that(7u, ué) = [[u®||2, (BEu®, u¢) > 0 (becausedt0 = 0), (f, u®) < | f|lx|luf]. Then
we easily get

U I1Z < 1 F el
whence{u®}, . g is bounded inv. Settingw® := B¢u?, from [1, Proposition 1.1. (iii), p. 42],
(4), and (18) we recover the estimate

Iw®| = |Bfuf| < Wéanug Wl < AL+ |u®) < AL+ CJu|) <c,

for some constart independent of. Therefore, there are a subsequefice } weakly converg-
ing tou in V and a subsequende/n} weakly converging tavin H. Asn goes tooco, en | 0
and the equality

(Tun vy + (BN v) = (f, v), veV,

tends to
(Tu,v) + (w,v) = (f, v), veV,

thanks to the continuity of. Now we show that

(19) lim sup(w®n, u®n) < (w, u).
ntoo

In order to simplify the notation, we replaeg with n. On account of the relation
(Tu",uM + W, U = (f,u"),
we deduce that

liminf u"2

— limsup(—(7u", uM)

= —limsup(w",u™ — (f,u")
= (f,u)— limsupw", u"

2
flull

and consequently
lim supw", u") < (f,u) — [u|? = (f,u) — (Tu,u) = (W, u).

Hence, (19) is true and [1, Proposition 1.1 (iv), p. 42] abawé to conclude that € Bu. Thus
u € V solvesTu+ Bu > f and the lemma is completely proved.

a

REMARK 1. In fact, the assumption (18) has been used only to dededeotimdedness of
{w?} from that of {u®}. Therefore the same proof hold if (18) is replaced by the nyameral
condition

B is bounded on bounded sets



Weak formulation 73

4. The explicit problem

Forv e CO([O, T]; V) nCL([0, T]; H) andt €]0, T], we introduce the auxiliary norm

(20) IIE 1= 1000 :v) + 1t 1Z0g0.4: ) -
and let

(21) s=s +se L0 T:H)+whlo, T:Vv),
with

(22) $(0) = 0.

We recover useful properties for the following reductionRsbblem 1, which is expressed in
terms of the single variable functian for the sake of convenience.

PROBLEM 2. Find u e C9([0, T]; V) n C([0, T]; H) fulfilling (12), (14-15), and

(23) (et (1), v) + (w(®), v) + (Lu®), v) = (s1.(D) + S2(D), v)

fora.a. t€]0, T[ and anyv € V, for somew € L*°(0, T; H).

Indeed, we can state

THEOREM 3. Assume that Hypothese3 and b, (21-22) and (16) are satisfied. Then
Problem 2 has a unique solution. Moreover, lettifiy, g, $0, 51, 5}, {{g. U0, 0. 51, ) be
two sets of data and letting, G represent the related solutions, the estimate

0= a)? <Cx (1160 — Goll® + 50 — ol + 180 — Sp0l12
(24) ) 5
+ 181 = 81121 0y + 162 — 2122 o))

holds for any t€]0, T], where the constant {depends just of, ¢, C,and T.

Proof. We start from the existence result given in [4], where stesragsumptions are required
on data. Therefore we regulariggug, vg and choose three familigs®}, {ug}, {vS} such that

s eWLlO,T;H), s —s in LY, T;H)NnWHLO T; V),
upeV, LugeH, ujg—up ?n vV,
v8 eV, vS —uvg in H

ase | 0. For instanceyy could be taken as the solution of the elliptic problem (sgeA3-
pendix])

ug+eLug =up.
for ¢ sufficiently small (cf. (3)). Thanks to Lemma 1 and [4, Lemm3, . 88], Problem 2 with
S, Ug, vo replaced bys®, vg, ug has a unique solutiofu®, w®) satisfyingu® e wl© T:v)n
W20, T: H), w® € L%(0, T; V). Actually, in our casev® belongs toL°°(0, T; H) owing
to (6). Now, we can use [4, estimate (3.5), p. 87] as contrgastimate. Indeed, since (14) and
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(5) yield (w, ut) > 0 a.e. in]Q T[, the procedure followed in [4, Lemma 3.2, p. 87] enables us
to infer

I0° — 12 <Cq (105 — G2 + 12§ — T512 + 1855 — Soll2
(25) , .
18 = 81210 1y + 1685 = 210 1vr)

with obvious notation, and (note that 0 solves Problem 2 witthdata)

26) I = Co (IUgl? + 10612 + issollZ + 15121,y + 15N 10, 11)
for allt €]0, T] and for some constaft; independent of. Consequently, alsfw? ||, T: H)
is uniformly bounded.
Due to well-known compactness results, we can find subsegaeronverging weakly star
(&) Letu, w, anden | O fuil

" S uin L0, T; V) nWLe0, T H),

w' X in L0, Ti H),
whereu" andw" stand foru®n andw?®n, respectively. Now, one can show that the gairw)
solves the equations of Problem 2. In fact, it turns out that
(27) u" > u  strongly inC°([0, T]; V) nC1([0, T]; H),
(28) w € B(ut) a.e. in]QT[.
The proof of (27) consists in a direct check of the Cauchy &@rdin CO([O, T]; V)nci(o, T];
H) for u", by applying again [4, estimate (3.5), p. 87]. Further, acting for the strong
convergence ofuf'} in L2(0, T; H) and arguing as in the proof of (19), thanks to [1, Lemma
1.3, p. 42] one verifies the second condition (28).

At this point, we can first take the limit in (25) on some suhssgesy | 0 and recover
(24). Then, the unigueness wfandw) follows from (24) (and a comparison in (23)).

|

5. Existence, uniqueness and continuous dependence

. The next step for proving Theorem 1 consists in showing tmablem 1 has one and only
one solution in some time interval [@], t €]0, T]. The main tool is the classical Contraction
Mapping Principle.
Introduce the metric spaces
X = co%0,7};v)nck(o, <] H),
Xo = (&€ X:£0) =up, &(0) =uvo, |52 < Cy},

where the constantS; andr are specified later. Fix an elemenbf Xy and letu € X and
w € L®(0, t; V) satisfy (14-15) and

(29) ((d2u/dt?) (1), v) + (Lu(t), v) + (w(t), v) = (Y2 (1), v)

fora.a.t €]0, [ and anyv € V. Due to the assumptions éhand to Theorem 3, the operator
D mappingz into the unique solutiomu of the above explicit problem is well defined. Since
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u(0) = ug andut(0) = v, the claim is thaD(Xg) S Xg providedC; is suitably chosen and
is small enough. Indeed, (24) and (11) enable us to dedute tha

lul? = C1(lluol + vol? + liszol?) + CoC(L+ 12121 g 1oy + 1201210 .11y )-

whence, taking, = 2C1(Cg + lugli? + |vol? + Isp0ll2) andC3 = C1Ck, it results that
C2
(30) luli? < =2 + Car?jz)Z.

on account of (20). Therefore, i < 2_c1:3 it is ensured thab : Xg — Xg. On the other hand,
Xp is a complete metric space with respect to the distalize?) := ||2— Z||;, 2, Z € Xg. Thus,

it becomes important to find conditions erin order thatD yields a contraction mapping. Let
2,2 € Xgandl = D(2), G = D(2). Owing to (24) and (10), one can infer that

(31) 10— a2 < Cqr?)2 - 2)12,

1
with C4 = C1Cgs. Then, choosing = min {T, (2—é4) 2! we can conclude that the operalr

has a unique fixed point € Xq. Clearly, suchu provides, along with the related, the solution
to Problem 1 in the preliminary time interval,[0].

To complete the proof of Theorem 1 it remains to verify thegiufity of extending the
solution to the whole interval [OT']. Here we perform that by deriving a global estimate.

Owing to the assumptions (10-d2.9), we can argue as in thectied of (30) (recalling (13)
in place of (29)) and, in view of Theorem 3 and the Holder irdiy, conclude that

T
(32) Il < Co + ch/O luli2ds,

wheret is now an arbitrary value in [Or]. As the functiont — |ult is continuous, the
Gronwall lemma implies thafu[|2 < C, €“377. Then, integrating from 0 to < [0, T], by (4)
we find a constan€s, independent aof, such that

(33) lullcoqo.tg:vincio.a: Hy = Cs

for anyt €]0, T]. Moreover, (14) and (6) provide us a bound fo || oo, T: H)-
To prove Theorem 2, consider two sets of initial daig, ©o, $0), (lo, U0, $20) and denote

by (G, w), ({4, w) the corresponding solutions of Problem 1. Thanks to (24)(@0), we have
that
la—aif = Ca(lto— ol + lio — ol® + 1520 — Spol
+Csll0 = 0121 .., + Cslllt = @110 4.11))

whence, estimating the normslirt by the norms in_2, we infer
2 <2 2 & 112 ! 12
(34) la—alf < Cl(”UO — Uoll® + 190 — vol” + 1520 — Szoll*) + C4T/O G — dllsds

for anyt €]0, T]. Finally, (17) comes out from applying the Gronwall lemnog(34).



76 S. Durando

6. The Stefan problem

Consider a two-phase material which occupies a boundedrandth domair2 ¢ RN, at any
timet € [0, T], T > 0O being given. In addition, suppose that the material is fgeneous
with unit density. Denote by : Q — R its relative temperature and ky : Q — [0, 1] the
proportion of one of the two phases, whépe= Qx]0, T[.

Assume that the evolution @f, x) is governed by the system

(35) O +op*x0+v*xx)—AK=*x09)=Tf+9gXt,0(xt), (@=x0)(X, 1), (y*xVO)(X,1)),
(36) x € H(O),

where these conditions must hold in the cylind@r Here the symbob; denotes the partial
derivatived/dt, A is the standard Laplace operator in space variablestaiiglthe Heaviside
graph, i.e.H(n) = 0if n < 0, H(0) = [0, 1], H(n) = 1if n > 0. Moreover, the functions
¢, v, K, o,y : [0,00[—> R are memory kernels, and the symbostands for the convolution
product over(, t), that is,

t
(axb)t) = / a(s)b(t — s)ds, te[0,T],
0

wherea andb may depend also on the space variables. The sourcefter@ — R is a known
function related to both the heat supply and the prescrilastilpistories of and x up tot = 0,
g is a Lipschitz continuous function with respect to the las¢é variables.

We recall that equation (35) is obtained, via energy balainoe a set of constitutive laws
for the internal energy and the heat flux in the framework efttteory of materials with memory
(cf. [4, 5] and references therein). On the other hand,icelahip (36) represents the usual Stefan
equilibrium condition when the phase change temperatwegposed to be zero.

Let us associate with equations (35) and (36) the initiabigm
(37) 0(-,00=6p InQ
and, for instance, the homogeneous Dirichlet boundaryitiond
(38) 6=0 ona2x]0, T[.

The Stefan problem (35-38) may be terntggberbolicas thefreezing index

t
(39) ux,t) == Ax0)(x,t) = / 0(x, s)ds, x,1)eQ
0

obeys a nonlinear Volterra integrodifferential equatiémyperbolic type, provided that(0) is
positive andk is sufficiently smooth (see, e.g., [2]).

In order to state a variational formulation of the problers-@B), we takeH = L2(Q) and
introduce a closed subspaxeof H () containingH&(Q), whose choice depends on the type
of boundary conditions one wants to deal with (see the lagend&k 3). If we identifyH with
its dual spaceH’ by the Riesz theorent] turns out to be a subset df and

(v/,v)z(v/,v) voyeH, YveV,

where (-, -) is the duality pairing betweed’ andV and (-, -) is the scalar product itl. The
injectionsV < H < V' are both dense and, thanks to the assumptior®,mempact. Owing
to (35), and recalling (39) and the formula

oxvt = (0 *xv)t —v(0)o =00 +ot*xv—v0)0o,
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which holds whenever it makes sense, we derive immediateggaality inu,

(Ot (Ut + @ * Ut + ¥ x x)(), v) + /;2 V(kO)u + K s u)(t) - Vv
= (f (1), v) + (9C, t, up (), (@ * Up) (1), (¥ (O VU + ¥’ % Vu)(1)), v)

forallv e V, for a.a.t €]0, T[. Suppose that

(40) ¢ e Wht, T)

(41) v, ke W20, T),  v(0), k©0) >0
(42) feLlo T;H)+W-©O,T; V)

(43) foeH.

Regarding the term

GlUul(x, 1) i= g(x, t, Ut (X, 1), (@ * U (X, 1), (Y Q) VU + y' x VU)(X, 1))
with
g:Qx]0, T[xR xR xRN — R,
we require that

(44) aell0T)., yewrloT,

(45) V(z, w, p) € R x R x RN the function(x, t) — g(x, t, z, w, p) is measurable
l9(x, t, 21, w1, P1) — (X, t, Z2, w2, P2l

(46) < M(lz1 — 22| + w1 — wa2| + |P1 — P2l) fora.a.(x,t) € Q,

whereM denotes a positive constant. Since we have a fixed ddtupossibly translating, we
can assume

(47) g(x,t,0,0,00 =0  fora.a.(x,t) € 2x]0, T[.
Let us couple the variational problem (6) with

(48) x € Hup) a.e.inQ,
(49) u© =0 and ut(0) =6g.

Of course, we aim to set the problem (6), (48-49) in some edgrit form which fits into
the frame of Problem 1. The maximal monotone grapls easily extended to an operatBr
fulfilling (6) with A = 1. Hencey € L°(0, T; H) plays (not exactly, cf. (51)) the role of
and we look for solutions € CO([0, T]; H1(2)) N C1([0, T]); L2(Q)).

REMARK 2. Thanks to our positions faj,a,y and to the regularizing properties of the con-
volution product (referring to [6], we just remind thigt * v{[_po,T) < llo | L10,T) IviiLeo,T)

whenevers € L1(0, T), v € LP®©, T), p € [1, o)), it turns out thatG[u] € L, T; H).
Thus equation (6) makes sense.

REMARK 3. The homogeneous Dirichlet boundary condition (38) apoads just to the
choiceV = H&(Q), whereas the optio = H1(Q) imply a Neumann boundary condition.

For mixed boundary conditions one should chodsas the subspace #f1(Q2) whose elements
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vanish at points of the boundary @fwhere the (homogeneous) Dirichlet condition is prescribed
Note moreover that the assumption érallows to consider non homogeneous Neumann data,
for instance in the case of the Neumann problem; indeed tineuia

(f(t),v):/ h(,t)v, veV,
Q2

definesf € L2(0, T; V') if, e.g.,h € L2(02x]0, T[).
Now, we rewrite (6) in a suitable form. By a time differentiat of 1/ x x we deduce that
(50) YO)x +v *x =R inV’,

where
(R, v) :=(f+Q[U]—8t(ut+¢*ut),v>—/ VK@OU + K xu) - Vv Yv eV
Q

in ]0, T[. Equation (50) can be solved with respectydsee, e.g., [6, Ch. 2]) making use of
the resolvent of(y(0))~1y’. In fact, there is a unique functior € W11(0, T) such that
Y ()W + ' * U = ', This enables us to transform (50) intq0)x = R — ¥ * R (holding

in Ll(O, T;V’)). Now, since the convolution product is associative androatative, with the
help of integrations by parts and of (49), we conclude that

(51) (e, 0)+ ¥ O, 0 +kO) [ -0 = (STl o),
where
(S[ul,v) = (f +Gu] =¥ (f +G[u]) — Vg + (¥(0) — ¢ (O)ut, v)
(Y — ¢+ POV + W ') x ut, v)
+/ V(KO + ¥ s k' — k') u)- Vv
Q

foranyv € V, a.e. in]Q T[. Note thatS[u] depends om andu in a non local way and that the
kernels(¥’ — ¢’ + ¢ (0) ¥ + W x ¢') and(k(O)W + ¥ x k' — k') stay inL1(0, T) andwl-1(0, T),
respectively. Moreover, it is not difficult to check (see {6f details) that, due to (40-47), the

mappings satisfies (7-10).
Then the system (51), (48-49) fits into our abstract framkwamd we can state

THEOREM4. Assume (40-47). Then there exists a unique pair

(52) u e cO%o, T V)nck(o, TI; Hy,
(53) X € L®Q

solving Problem (6), (48-49).

Note that Theorem 1 actually yielgse L°°(0, T; H); the additional regularity (53) plainly
results from the boundedness?of At this point, let us stress that, due to the special deparale
on Vu of the nonlinearityg, the results of [4] do not apply to this case.
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THEOREMS5. Consider two sets of datef, 4o}, { f, fp} satisfying (42-43) and denote by
@, x), (G, x) the corresponding solutions of Problem (6), (48-49). Thenfbllowing estimate
holds

10 = llcogo,T1:vynci(o,T):H) =N (” f = fllLsom:Hyswrio v + 100 — éO') ’

where the constaritl is independent ofd, x) and (0, ¥).

We refer the reader to the dissertation [5] for further gassapplications.
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