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WEAK FORMULATION

FOR NONLINEAR HYPERBOLIC STEFAN PROBLEMS

Abstract.
The aim of this paper is to analyze a suitable weak formulation of an abstract

hyperbolic doubly nonlinear problem. The results apply to ageneral version of the
hyperbolic Stefan problem with memory.

1. Introduction

Let V , H be a pair of real Hilbert spaces such thatV ⊂ H ⊂ V ′ with continuous and densely
defined embeddings. HereV ′ denotes the antidual ofV . Denote by〈v′, v〉 the duality pairing
betweenv′ in V ′ andv in V ; if v′ ∈ H this is the ordinary inner product(v′, v) in H . Let ((·, ·))
define the scalar product inV . The norms inV , H , V ′ will be denoted by‖ · ‖, | · |, ‖ · ‖∗,
respectively.

Let F : v 7→ F [v] andG : v 7→ G[v] define two functional mappings such that

F : W1,1(0, t; H) → W1,1(0, t; H), G : W1,1(0, t; V) → W2,1(0, t; V ′) ∀t ∈]0, T ] ,

G[v](0) = g0 ∈ V ′ ∀v ∈ W1,1(0, T; V) ,

for some prescribed valueg0. Let B be a maximal monotone set inV × V ′ andL : V → V ′ a
linear, continuous, selfadjoint, and weakly coercive operator.

Then, under suitable boundedness and continuity hypotheses onF andG, Colli and Gras-
selli [4] showed that there exists a unique functionu ∈ W2,∞(0, T; H)∩ W1,∞(0, T; V) satis-
fying

ut t (t)+ But (t)+ Lu(t) 3 F [ut ](t)+ G[u](t), t ∈]0, T [ ,(1)

u(0) = u0 ∈ V, ut (0) = v0 ∈ D(B) ,(2)

for some initial datau0 andv0, whereut stands for the usual derivative of the vector-valued
functionu.

This paper is devoted to investigate the well-posedness of aweak formulation of (1-2),
looking for solutionsu ∈ C0([0, T ]; V)∩C1([0, T ]; H) in the special case whenB is a maximal
monotone and sublinear operator fromH in H . Let us point out at once the interest of this case,
since the main application of [4] fits into our framework. In fact, Section 6 is concerned with a
nonlinear extension of the hyperbolic Stefan problem with memory discussed in [4].

In our setting, the right hand sideF+G of (1) is replaced by one mapS : v 7→ S1[v]+S2[v]
with the properties

S : L1(0, t; V) ∩ W1,1(0, t; H) → L1(0, t; H)+ W1,1(0, t; V ′) ∀t ∈]0, T ] ,
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S2[v](0) = s20 ∈ V ′ ∀v ∈ L1(0, T; V) ∩ W1,1(0, T; H) .

By assumingu0 ∈ V and v0 ∈ H , we can establish existence, uniqueness and continuous
dependence theorems. Then, these results will be applied tothe general version of the hyperbolic
Stefan problem with memory.

The study of the abstract problem is carried out as follows. First we consider the explicit
problem, with a fixed right hand side, and analyze it by an approximation and passage to the limit
procedure where we can recover strong convergences as in [2]. To show that the actual implicit
version is well posed, we use the Contraction Mapping Principle locally in time and extend
the solution by a global estimate, as in [4]. Then, we also deduce the Lipschitz continuous
dependence of the solution on the initial data.

2. Main results

Keeping the same notation as above, we can specify our hypotheses.

a) L is linear continuous symmetric operator fromV to V ′ such that

〈Lv, v〉 + `|v|2 ≥ c‖v‖2 ∀v ∈ V ,(3)

for some`, c > 0. Hence, denoting byI the identity (or injection) operator inH , `I + L
is strongly monotone fromV to V ′. Besides, we fix a constantC such that

|v| ≤ C‖v‖, ‖Lv‖∗ ≤ C‖v‖ ∀v ∈ V .(4)

b) B is maximal monotone fromD(H) = H to H and satisfies

B(0) 3 0 ,(5)

∃3 > 0 : ∀u ∈ H, ∀w ∈ Bu |w| ≤ 3(1 + |u|) .(6)

c) S= S1 + S2 fulfills

S1[0] ∈ L1(0, T; H) ,(7)

S2[0] ∈ W1,1(0, T; V ′) ,(8)

S2[v](0) = s20 ∀v ∈ L1(0, T; V) ∩ W1,1(0, T; H)(9)

and there is a positive constantCS such that

‖S1[v̂] − S1[ṽ]‖2
L1(0,t;H)

+ ‖dt (S2[v̂] − S2[ṽ])‖2
L1(0,t;V′)

≤ CS

(

‖v̂ − ṽ‖2
L1(0,t;V)

+ ‖(v̂ − ṽ)t‖
2
L1(0,t;H)

)(10)

for anyt ∈]0, T ], v̂, ṽ ∈ L1(0, T; V) ∩ W1,1(0, T; H), wheredt := d/dt.

From (7-10) it results that the inequality

‖S1[v]‖2
L1(0,t;H)

+ ‖dt S2[v]‖2
L1(0,t;V′)

≤ C′
S

(

1 + ‖v‖2
L1(0,t;V)

+ ‖vt‖
2
L1(0,t;H)

)(11)

holds for anyt ∈]0, T ], v ∈ L1(0, T; V)∩ W1,1(0, T; H), with the constantC′
S depend-

ing only on‖S1[0]‖L1(0,T;H), ‖dt S2[0]‖L1(0,T;V ′), ‖s20‖V ′ , andCS.
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PROBLEM 1. Find u ∈ C0([0, T ]; V) ∩ C1([0, T ]; H) andw ∈ L∞(0, T; H) satisfying

ut t ∈ L1(0, T; V ′) ,(12)

〈ut t (t), v〉 + 〈w(t), v〉 + 〈Lu(t), v〉 = 〈S[u](t), v〉(13)

for a.a. t ∈]0, T [, ∀v ∈ V ,

w(t) ∈ B(ut (t)) for a.a. t ∈]0, T [ ,(14)

u(0) = u0, (du/dt)(0) = v0 .(15)

THEOREM 1 (EXISTENCE AND UNIQUENESS). Assume that Hypotheses a), b), c) hold
and let u0, v0, s20 be given such that

u0 ∈ V, v0 ∈ H, s20 ∈ V ′ .(16)

Then there exists one and one solution of Problem 1.

THEOREM 2 (CONTINUOUS DEPENDENCE). Assume that Hypotheses a), b), c) hold. Let
{û0, v̂0, ŝ20}, {ũ0, ṽ0, s̃20} be two sets of data satisfying (16), and let(û, ŵ), (ũ, w̃) be the cor-
responding solutions of Problem 1. Then there is a constant N, depending only oǹ, c, C, CS
and T , such that

‖û − ũ‖C0([0,T ];V)∩C1([0,T ];H) ≤ N(‖û0 − ũ0)‖ + |v̂0 − ṽ0| + ‖ŝ20 − s̃20‖∗) .(17)

The above theorems are shown in Section 5, after proving an auxiliary lemma in Section 3
and looking at the explicit problem in Section 4. The last section is devoted to the mentioned
application.

3. Auxiliary lemma

LEMMA 1. Let(V, H,V ′) be a Hilbert triplet and B denote a maximal monotone operator
from D(B) = H to H. If the condition

∃3 > 0 : ∀u ∈ H, ∀ω ∈ Bu, |ω| ≤ 3(1 + |u|) ,(18)

is fulfilled, then the restriction A of B to V is maximal monotone from V to V′.

Proof. Without loss of generality we may assume that 0∈ B0: this can be achieved by shifting
the range ofB. The monotonicity ofA is obvious. We check its maximal monotonicity. Given
f in V ′, we try to solve inV the equationf ∈

�
u + Au by approximating it with the equation

f ∈
�

uε + Bεuε (ε > 0), where
�

is the Riesz operator fromV to V ′, that is,

〈
�

u, v〉 = ((u, v)) ∀u, v ∈ V ,

andBε the Yosida approximation ofB in H . Being I the identity operator ofH , we recall that

Bε =
I − Jε

ε
, whereJε = (I + εB)−1 denotes the resolvent ofB ,

Bεu =
u − uε

ε
, whereuε is defined by(I + εB)uε = u .

It is important to distinguish between the single-valued operatorBε of H and the multivalued
operatorB Jε. We haveBεu ∈ B Jεu for all u ∈ H . In fact, Bεu ∈ B(Jεu)means(I − Jε)u ∈
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εB(Jεu), that is,u ∈ (Jεu) + εB(Jεu), and this is true owing to the definition ofJε. As Bε

is maximal monotone and Lipschitz continuous of constant 1/ε, Bε
∣

∣

V is also monotone and
Lipschitz continuous fromV to V ′. As

�
: V → V ′ is obviously coercive, [1, Corollary 1.3, p.

48] ensures the existence ofuε ∈ V satisfying
�

uε + Bεuε = f . Multiply this equation byuε.
Note that〈

�
uε,uε〉 = ‖uε‖2, (Bεuε,uε) ≥ 0 (becauseBε0 = 0), 〈 f, uε〉 ≤ ‖ f ‖∗‖uε‖. Then

we easily get

‖uε‖2 ≤ ‖ f ‖∗‖uε‖ ,

whence{uε}ε>0 is bounded inV . Settingwε := Bεuε, from [1, Proposition 1.1. (iii), p. 42],
(4), and (18) we recover the estimate

|wε | = |Bεuε| ≤ inf
w∈Buε

|w| ≤ 3(1 + |uε |) ≤ 3(1 + C‖uε‖) ≤ c ,

for some constantc independent ofε. Therefore, there are a subsequence{uεn} weakly converg-
ing to u in V and a subsequence{wεn} weakly converging tow in H . As n goes to∞, εn ↓ 0
and the equality

〈
�

uεn, v〉 + (Bεnuεn, v) = 〈 f, v〉, v ∈ V ,

tends to

〈
�

u, v〉 + (w, v) = 〈 f, v〉, v ∈ V ,

thanks to the continuity of
�

. Now we show that

lim sup
n↑∞

(wεn, uεn) ≤ (w,u) .(19)

In order to simplify the notation, we replaceεn with n. On account of the relation

〈
�

un,un〉 + (wn,un) = 〈 f, un〉 ,

we deduce that

‖u‖2 ≤ lim inf ‖un‖2

= − lim sup(−〈
�

un, un〉)

= − lim sup((wn,un)− 〈 f, un〉)

= 〈 f, u〉 − lim sup(wn,un)

and consequently

lim sup(wn,un) ≤ 〈 f, u〉 − ‖u‖2 = 〈 f, u〉 − 〈
�

u,u〉 = (w,u) .

Hence, (19) is true and [1, Proposition 1.1 (iv), p. 42] allows us to conclude thatw ∈ Bu. Thus
u ∈ V solves

�
u + Bu 3 f and the lemma is completely proved.

REMARK 1. In fact, the assumption (18) has been used only to deduce the boundedness of
{wε} from that of{uε}. Therefore the same proof hold if (18) is replaced by the moregeneral
condition

B is bounded on bounded sets.
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4. The explicit problem

Forv ∈ C0([0, T ]; V) ∩ C1([0, T ]; H) andt ∈]0, T ], we introduce the auxiliary norm

‖v‖2
t := ‖v‖2

C0([0,t ];V)
+ ‖vt‖

2
C0([0,t ];H)

.(20)

and let

s = s1 + s2 ∈ L1(0, T; H)+ W1,1(0, T; V ′) ,(21)

with

s2(0) = s20 .(22)

We recover useful properties for the following reduction ofProblem 1, which is expressed in
terms of the single variable functionu, for the sake of convenience.

PROBLEM 2. Find u ∈ C0([0, T ]; V) ∩ C1([0, T ]; H) fulfilling (12), (14-15), and

〈ut t (t), v〉 + 〈w(t), v〉 + 〈Lu(t), v〉 = 〈s1(t)+ s2(t), v〉(23)

for a.a. t ∈]0, T [ and anyv ∈ V , for somew ∈ L∞(0, T; H).

Indeed, we can state

THEOREM 3. Assume that Hypotheses a) and b), (21-22) and (16) are satisfied. Then
Problem 2 has a unique solution. Moreover, letting{û0, v̂0, ŝ20, ŝ1, ŝ2}, {ũ0, ṽ0, s̃20, s̃1, s̃2} be
two sets of data and lettinĝu, ũ represent the related solutions, the estimate

‖û − ũ‖2
t ≤C1

(

‖û0 − ũ0‖2 + |v̂0 − ṽ0|2 + ‖ŝ20 − s̃20‖
2
∗

+ ‖ŝ1 − s̃1‖2
L1(0,t;H)

+ ‖(ŝ2 − s̃2)t‖
2
L1(0,t;V′)

)(24)

holds for any t∈]0, T ], where the constant C1 depends just oǹ, c, C, and T .

Proof. We start from the existence result given in [4], where stronger assumptions are required
on data. Therefore we regularizes, u0, v0 and choose three families{sε}, {uε

0}, {vε0} such that

sε ∈ W1,1(0, T; H), sε → s in L1(0, T; H) ∩ W1,1(0, T; V ′) ,

uε
0 ∈ V, Luε

0 ∈ H, uε
0 → u0 in V ,

vε0 ∈ V, vε0 → v0 in H

asε ↓ 0. For instance,uε
0 could be taken as the solution of the elliptic problem (see [3, Ap-

pendix])
uε

0 + εLuε
0 = u0 .

for ε sufficiently small (cf. (3)). Thanks to Lemma 1 and [4, Lemma 3.3, p. 88], Problem 2 with
s, u0, v0 replaced bysε , vε0, uε

0 has a unique solution(uε, wε) satisfyinguε ∈ W1,∞(0, T; V)∩

W2,∞(0, T; H), wε ∈ L∞(0, T; V ′). Actually, in our casewε belongs toL∞(0, T; H) owing
to (6). Now, we can use [4, estimate (3.5), p. 87] as contracting estimate. Indeed, since (14) and
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(5) yield (w, ut ) ≥ 0 a.e. in ]0, T [, the procedure followed in [4, Lemma 3.2, p. 87] enables us
to infer

‖ûε − ũε‖2
t ≤C1

(

‖ûε
0 − ũε

0‖2 + |v̂ε0 − ṽε0|2 + ‖ŝε
20 − s̃ε

20‖
2
∗

+ ‖ŝε
1 − s̃ε

1‖2
L1(0,t;H)

+ ‖(ŝε
2 − s̃ε

2)t‖
2
L1(0,t;V′)

)(25)

with obvious notation, and (note that 0 solves Problem 2 withnull data)

‖uε‖2
t ≤ C1

(

‖uε
0‖2 + |vε0|2 + ‖sε

20‖
2
∗ + ‖sε

1‖2
L1(0,t;H)

+ ‖(sε
2)t‖

2
L1(0,t;V′)

)

(26)

for all t ∈]0, T ] and for some constantC1 independent ofε. Consequently, also‖wε‖L∞(0,T;H)

is uniformly bounded.

Due to well-known compactness results, we can find subsequences converging weakly star
(

∗
⇀

)

. Let u, w, andεn ↓ 0 fulfill

un ∗
⇀ u in L∞(0, T; V) ∩ W1,∞(0, T; H) ,

wn ∗
⇀ w in L∞(0, T; H) ,

whereun andwn stand foruεn andwεn , respectively. Now, one can show that the pair(u, w)
solves the equations of Problem 2. In fact, it turns out that

un → u strongly inC0([0, T ]; V) ∩ C1([0, T ]; H) ,(27)

w ∈ B(ut ) a.e. in ]0, T [ .(28)

The proof of (27) consists in a direct check of the Cauchy condition in C0([0, T ]; V)∩C1([0, T ];
H) for un, by applying again [4, estimate (3.5), p. 87]. Further, accounting for the strong
convergence of{un

t } in L2(0, T; H) and arguing as in the proof of (19), thanks to [1, Lemma
1.3, p. 42] one verifies the second condition (28).

At this point, we can first take the limit in (25) on some subsequenceεn ↓ 0 and recover
(24). Then, the uniqueness ofu (andw) follows from (24) (and a comparison in (23)).

5. Existence, uniqueness and continuous dependence

. The next step for proving Theorem 1 consists in showing that Problem 1 has one and only
one solution in some time interval [0, τ ], τ ∈]0, T ]. The main tool is the classical Contraction
Mapping Principle.

Introduce the metric spaces

X := C0([0, τ ]; V) ∩ C1([0, τ ]; H) ,

X0 := {ξ ∈ X : ξ(0) = u0, ξt (0) = v0, ‖ξ‖2
τ ≤ C2} ,

where the constantsC2 andτ are specified later. Fix an elementz of X0 and letu ∈ X and
w ∈ L∞(0, τ ; V ′) satisfy (14-15) and

〈(d2u/dt2)(t), v〉 + 〈Lu(t), v〉 + 〈w(t), v〉 = 〈S[z](t), v〉(29)

for a.a. t ∈]0, τ [ and anyv ∈ V . Due to the assumptions onS and to Theorem 3, the operator
D mappingz into the unique solutionu of the above explicit problem is well defined. Since
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u(0) = u0 andut (0) = v0, the claim is thatD(X0) ⊆ X0 providedC2 is suitably chosen andτ
is small enough. Indeed, (24) and (11) enable us to deduce that

‖u‖2
τ ≤ C1

(

‖u0‖2 + |v0|2 + ‖s20‖
2
∗

)

+ C1C′
S

(

1 + ‖z‖2
L1(0,τ ;V)

+ ‖zt‖
2
L1(0,τ ;H)

)

,

whence, takingC2 = 2C1(C
′
S + ‖u0‖2 + |v0|2 + ‖s20‖

2
∗) andC3 = C1C′

S, it results that

‖u‖2
τ ≤

C2

2
+ C3τ

2‖z‖2
τ ,(30)

on account of (20). Therefore, ifτ2 ≤ 1
2C3

it is ensured thatD : X0 → X0. On the other hand,

X0 is a complete metric space with respect to the distanced(ẑ, z̃) := ‖ẑ− z̃‖τ , ẑ, z̃ ∈ X0. Thus,
it becomes important to find conditions onτ in order thatD yields a contraction mapping. Let
ẑ, z̃ ∈ X0 andû = D(ẑ), ũ = D(z̃). Owing to (24) and (10), one can infer that

‖û − ũ‖2
τ ≤ C4τ

2‖ẑ − z̃‖2
τ ,(31)

with C4 = C1CS. Then, choosingτ = min

{

T,
(

1
2C4

)
1
2
}

, we can conclude that the operatorD

has a unique fixed pointu ∈ X0. Clearly, suchu provides, along with the relatedw, the solution
to Problem 1 in the preliminary time interval [0, τ ].

To complete the proof of Theorem 1 it remains to verify the possibility of extending the
solution to the whole interval [0, T ]. Here we perform that by deriving a global estimate.

Owing to the assumptions (10-d2.9), we can argue as in the deduction of (30) (recalling (13)
in place of (29)) and, in view of Theorem 3 and the Hölder inequality, conclude that

‖u‖2
τ ≤ C2 + C3T

∫ τ

0
‖u‖2

sds,(32)

whereτ is now an arbitrary value in [0, T ]. As the functiont 7→ ‖u‖t is continuous, the
Gronwall lemma implies that‖u‖2

τ ≤ C2 eC3Tτ . Then, integrating from 0 tot ∈ [0, T ], by (4)
we find a constantC5, independent oft , such that

‖u‖C0([0,t ];V)∩C1([0,t ];H) ≤ C5(33)

for any t ∈]0, T ]. Moreover, (14) and (6) provide us a bound for‖w‖L∞(0,T;H).

To prove Theorem 2, consider two sets of initial data (û0, v̂0, ŝ20), (ũ0, ṽ0, s̃20) and denote
by (û, ŵ), (ũ, w̃) the corresponding solutions of Problem 1. Thanks to (24) and (10), we have
that

‖û − ũ‖2
t ≤ C1

(

‖û0 − ũ0‖2 + |v̂0 − ṽ0|2 + ‖ŝ20 − s̃20‖
2
∗

+CS‖û − ũ‖2
L1(0,t;V)

+ CS‖ût − ũt‖
2
L1(0,t;H)

)

,

whence, estimating the norms inL1 by the norms inL2, we infer

‖û − ũ‖2
t ≤ C1

(

‖û0 − ũ0‖2 + |v̂0 − ṽ0|2 + ‖ŝ20 − s̃20‖
2
∗

)

+ C4T
∫ t

0
‖û − ũ‖2

sds(34)

for any t ∈]0, T ]. Finally, (17) comes out from applying the Gronwall lemma to (34).
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6. The Stefan problem

Consider a two-phase material which occupies a bounded and smooth domain� ⊂ �N , at any
time t ∈ [0, T ], T > 0 being given. In addition, suppose that the material is homogeneous
with unit density. Denote byθ : Q → � its relative temperature and byχ : Q → [0, 1] the
proportion of one of the two phases, whereQ := �×]0, T [.

Assume that the evolution of(θ, χ) is governed by the system

∂t (θ + φ ∗ θ + ψ ∗ χ)−1(k ∗ θ) = f + g(x, t, θ(x, t), (α ∗ θ)(x, t), (γ ∗ ∇θ)(x, t)) ,(35)

χ ∈ � (θ) ,(36)

where these conditions must hold in the cylinderQ. Here the symbol∂t denotes the partial
derivative∂/∂t , 1 is the standard Laplace operator in space variables and� is the Heaviside
graph, i.e.� (η) = 0 if η < 0, � (0) = [0, 1], � (η) = 1 if η > 0. Moreover, the functions
φ,ψ, k, α, γ : [0,∞[→ � are memory kernels, and the symbol∗ stands for the convolution
product over(0, t), that is,

(a ∗ b)(t) :=
∫ t

0
a(s)b(t − s)ds, t ∈ [0, T ] ,

wherea andb may depend also on the space variables. The source termf : Q → � is a known
function related to both the heat supply and the prescribed past histories ofθ andχ up tot = 0,
g is a Lipschitz continuous function with respect to the last three variables.

We recall that equation (35) is obtained, via energy balance, from a set of constitutive laws
for the internal energy and the heat flux in the framework of the theory of materials with memory
(cf. [4, 5] and references therein). On the other hand, relationship (36) represents the usual Stefan
equilibrium condition when the phase change temperature issupposed to be zero.

Let us associate with equations (35) and (36) the initial condition

θ(·, 0) = θ0 in �(37)

and, for instance, the homogeneous Dirichlet boundary condition

θ = 0 on∂�×]0, T [ .(38)

The Stefan problem (35-38) may be termedhyperbolicas thefreezing index

u(x, t) := (1 ∗ θ)(x, t) =

∫ t

0
θ(x, s)ds, (x, t) ∈ Q(39)

obeys a nonlinear Volterra integrodifferential equation of hyperbolic type, provided thatk(0) is
positive andk is sufficiently smooth (see, e.g., [2]).

In order to state a variational formulation of the problem (35-38), we takeH = L2(�) and
introduce a closed subspaceV of H1(�) containingH1

0 (�), whose choice depends on the type
of boundary conditions one wants to deal with (see the later Remark 3). If we identifyH with
its dual spaceH ′ by the Riesz theorem,H turns out to be a subset ofV ′ and

〈v′, v〉 = (v′, v) ∀v′ ∈ H, ∀v ∈ V ,

where〈·, ·〉 is the duality pairing betweenV ′ andV and(·, ·) is the scalar product inH . The
injectionsV ↪→ H ↪→ V ′ are both dense and, thanks to the assumptions on�, compact. Owing
to (35), and recalling (39) and the formula

σ ∗ νt = (σ ∗ ν)t − ν(0)σ = σ(0)ν + σt ∗ ν − ν(0)σ ,
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which holds whenever it makes sense, we derive immediately an equality inu,

〈∂t (ut + φ ∗ ut +ψ ∗ χ)(t), v〉 +

∫

�
∇(k(0)u + k′ ∗ u)(t) · ∇v

= 〈 f (t), v〉 + 〈g(·, t,ut (t), (α ∗ ut )(t), (γ (0)∇u + γ ′ ∗ ∇u)(t)), v〉

for all v ∈ V , for a.a.t ∈]0, T [. Suppose that

φ ∈ W1,1(0, T)(40)

ψ, k ∈ W2,1(0, T), ψ(0), k(0) > 0(41)

f ∈ L1(0, T; H)+ W1,1(0, T; V ′)(42)

θ0 ∈ H .(43)

Regarding the term

�
[u](x, t) := g(x, t,ut (x, t), (α ∗ ut )(x, t), (γ (0)∇u + γ ′ ∗ ∇u)(x, t))

with
g : �×]0, T [×� × � × �N → � ,

we require that

α ∈ L1(0, T), γ ∈ W1,1(0, T) ,(44)

∀(z, w, Ep) ∈ � × � × �N the function(x, t) → g(x, t, z, w, Ep) is measurable,(45)

|g(x, t, z1, w1, Ep1)− g(x, t, z2, w2, Ep2)|

≤ M(|z1 − z2| + |w1 − w2| + | Ep1 − Ep2|) for a.a.(x, t) ∈ Q ,(46)

whereM denotes a positive constant. Since we have a fixed datumf , possibly translatingg, we
can assume

g(x, t,0, 0, E0) = 0 for a.a.(x, t) ∈ �×]0, T [ .(47)

Let us couple the variational problem (6) with

χ ∈ � (ut ) a.e. inQ ,(48)

u(0) = 0 and ut (0) = θ0 .(49)

Of course, we aim to set the problem (6), (48-49) in some equivalent form which fits into
the frame of Problem 1. The maximal monotone graph� is easily extended to an operatorB
fulfilling (6) with 3 = 1. Henceχ ∈ L∞(0, T; H) plays (not exactly, cf. (51)) the role ofw
and we look for solutionsu ∈ C0([0, T ]; H1(�)) ∩ C1([0, T ]); L2(�)).

REMARK 2. Thanks to our positions forg,α,γ and to the regularizing properties of the con-
volution product (referring to [6], we just remind that‖σ ∗ ν‖L p(0,T) ≤ ‖σ‖L1(0,T)‖ν‖L p(0,T)

wheneverσ ∈ L1(0, T), ν ∈ L p(0, T), p ∈ [1,∞]), it turns out that
�

[u] ∈ L∞(0, T; H).
Thus equation (6) makes sense.

REMARK 3. The homogeneous Dirichlet boundary condition (38) corresponds just to the
choiceV = H1

0 (�), whereas the optionV = H1(�) imply a Neumann boundary condition.

For mixed boundary conditions one should chooseV as the subspace ofH1(�) whose elements
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vanish at points of the boundary of�where the (homogeneous) Dirichlet condition is prescribed.
Note moreover that the assumption onf allows to consider non homogeneous Neumann data,
for instance in the case of the Neumann problem; indeed the formula

〈 f (t), v〉 =

∫

∂�

h(·, t)v , v ∈ V ,

defines f ∈ L2(0, T; V ′) if, e.g.,h ∈ L2(∂�×]0, T [).

Now, we rewrite (6) in a suitable form. By a time differentiation ofψ ∗ χ we deduce that

ψ(0)χ + ψ ′ ∗ χ = R in V ′ ,(50)

where

〈R, v〉 := 〈 f +
�

[u] − ∂t (ut + φ ∗ ut ), v〉 −

∫

�
∇(k(0)u + k′ ∗ u) · ∇v ∀v ∈ V

in ]0, T [. Equation (50) can be solved with respect toχ (see, e.g., [6, Ch. 2]) making use of
the resolvent of(ψ(0))−1ψ ′. In fact, there is a unique function9 ∈ W1,1(0, T) such that
ψ(0)9 + ψ ′ ∗ 9 = ψ ′. This enables us to transform (50) intoψ(0)χ = R − 9 ∗ R (holding
in L1(0, T; V ′)). Now, since the convolution product is associative and commutative, with the
help of integrations by parts and of (49), we conclude that

〈ut t , v〉 + ψ(0)〈χ, v〉 + k(0)
∫

�
∇u · ∇v = 〈� [u], v〉 ,(51)

where

〈� [u], v〉 := 〈 f +
�

[u] −9 ∗ ( f +
�

[u])−9θ0 + (9(0)− φ(0))ut , v〉

+〈(9′ − φ′ + φ(0)9 +9 ∗ φ′) ∗ ut , v〉

+

∫

�
∇((k(0)9 +9 ∗ k′ − k′) ∗ u) · ∇v

for anyv ∈ V , a.e. in ]0, T [. Note that� [u] depends onu andut in a non local way and that the
kernels(9′ −φ′ +φ(0)9+9 ∗φ′) and(k(0)9+9 ∗k′ −k′) stay inL1(0, T) andW1,1(0, T),
respectively. Moreover, it is not difficult to check (see [5]for details) that, due to (40-47), the
mapping� satisfies (7-10).

Then the system (51), (48-49) fits into our abstract framework, and we can state

THEOREM 4. Assume (40-47). Then there exists a unique pair

u ∈ C0([0, T ]; V) ∩ C1([0, T ]; H) ,(52)

χ ∈ L∞(Q)(53)

solving Problem (6), (48-49).

Note that Theorem 1 actually yieldsχ ∈ L∞(0, T; H); the additional regularity (53) plainly
results from the boundedness of� . At this point, let us stress that, due to the special dependence
on∇u of the nonlinearityg, the results of [4] do not apply to this case.
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THEOREM 5. Consider two sets of data{ f̂ , θ̂0}, { f̃ , θ̃0} satisfying (42-43) and denote by
(û, χ̂), (ũ, χ̃ ) the corresponding solutions of Problem (6), (48-49). Then the following estimate
holds

‖û − ũ‖C0([0,T ];V)∩C1([0,T ];H) ≤ N
(

‖ f̂ − f̃ ‖L1(0,T;H)+W1,1(0,T;V ′) + |θ̂0 − θ̃0|
)

,

where the constantN is independent of(û, χ̂) and(ũ, χ̃).

We refer the reader to the dissertation [5] for further possible applications.
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