Análisis bayesiano para la distribución lognormal generalizada aplicada a modelos de falla con censura

Bayesian Analysis for the Generalized Lognormal Distribution Applied to Failure Time Analysis

FREDDY HERNÁNDEZ1, OLGA CECILIA USUGA2

1Universidad de São Paulo, Instituto de Matemática y Estadística, Departamento de Estadística, São Paulo, Brasil. Estudiante de doctorado. Email: fhernanb@ime.usp.br
2Universidad de São Paulo, Instituto de Matemática y Estadística, Departamento de Estadística, São Paulo, Brasil. Universidad de Antioquia, Facultad de Ingenierías, Ingeniería Industrial, Medellín, Colombia. Profesora asistente. Email: ousuga@udea.edu.co


Resumen

Existen varias versiones de la distribución lognormal en la literatura estadística y una de ellas está basada en la transformación exponencial de la distribución normal generalizada (NG). En el presente artículo se presenta el análisis Bayesiano para la distribución lognormal generalizada (logNG) considerando distribuciones a priori de Jeffreys independientes para los parámetros; así como el procedimiento para implementar el muestreador de Gibbs que permite obtener las distribuciones a posteriori de los parámetros. Los resultados obtenidos son usados para analizar modelos de tiempo de falla con datos no censurados y censurados a derecha Tipo I. El procedimiento propuesto es ilustrado usando una base de datos real relacionada con tiempos de falla de computadores.

Palabras clave: análisis de tiempo de falla, censura a derecha, distribución lognormal generalizada, inferencia bayesiana, muestreador de Gibbs.


Abstract

There are several versions of the lognormal distribution in the statistical literature, one is based in the exponential transformation of generalized normal distribution (GN). This paper presents the Bayesian analysis for the generalized lognormal distribution (logGN) considering independent non-informative Jeffreys distributions for the parameters as well as the procedure for implementing the Gibbs sampler to obtain the posterior distributions of parameters. The results are used to analyze failure time models with right-censored and uncensored data. The proposed method is illustrated using actual failure time data of computers.

Key words: Bayesian inference, Failure time analysis, Gibbs sampling, Lognormal distribution, Right censoring.


Texto completo disponible en PDF


Referencias

1. Adam, J. (1962), `Failure time distribution estimation´, Semiconductor Reliability 2, 41-52.

2. Aitchison, J. & Brown, J. (1957), The Lognormal Distribution, Cambridge University Press, United Kingdom.

3. Barrera, C. & Correa, J. (2008), `Distribución predictiva bayesiana para modelos de pruebas de vida vía MCMC´, Revista Colombiana de Estadística 31(2), 145-155.

4. Berger, J. (1985), Statistical Decision Theory and Bayesian Analysis, Springer, New York.

5. Bernardo, J. (1979), `Expected information as expected utility´, Annals of Statistics 7(3), 686-690.

6. Chen, G. (1995), `Generalized log-normal distributions with reliability application´, Computational Statistics and Data Analysis 19(3), 309-319.

7. Chen, K. & Papadopoulos, A. (1997), `Shortest Bayes credibility intervals for the lognormal failure model´, Microelectron Reliability 37(12), 1859-1863.

8. Gamerman, D. & Lopes, H. (2006), Markov Chain Monte Carlo Stocastic Simulation for Bayesian Inference, Chapman and Hall/CRC, Boca Raton.

9. Gelman, A., Stern, J. & Rubin, H. (2004), Bayesian Data Analysis, Chapman & Hall-CRC.

10. Gupta, R. & Lvin, S. (2005), `Reliability functions of generalized log-normal model´, Mathematical and Computer Modelling 42, 939-946.

11. Hoff, P. (2009), A First Course in Bayesian Statistical Methods, Springer, New York.

12. Howard, B. & Dodson, G. (1961), `High stress aging to failure of semiconductor devices´, Proc. Seventh National Symposium on Reliability and Quality Control, 201-207.

13. Klein, J. & Moeschberger, M. (2003), Survival Analysis: Techniques for Censored and Truncated Data, Springer-Verlag, New York.

14. Lawless, J. F. (1982), Statistical Models and Methods for Lifetime Data, Wiley, New York.

15. Martín, J. & Pérez, C. (2009), `Bayesian analysis of a generalized lognormal distribution´, Computational Statistics and Data Analysis 53, 1377-1387.

16. Nadarajah, S. (2005), `A generalized normal distribution´, Journal of Applied Statistics 37(7), 685-694.

17. Padgett, W. & Johnson, M. (1983), `Lower bounds on reliability in the lognormal distribution´, The Canadian Journal of Statistics - La Reveu Canadienne de Statistique 11(2), 137-147.

18. Portela, J. & Gómez-Villegas, M. (2004), `Implementation of a robust Bayesian method´, Journal of Statistical Computation and Simulation 74(4), 235-248.

19. R Development Core Team, (2010), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org

20. Robert, C. (2001), The Bayesian Choice, second edn, Springer, New York.

21. Spiegelhalter, D., Best, N., Carlin, B. & van der Linde, A. (2002), `Bayesian measures of model complexity and fit´, Journal of The Royal Statistical Society 64, 583-639.

22. Upadhyay, S. & Peshwani, M. (2001), `Full posterior analysis of three parameter Lognormal distribution using Gibbs sampler´, Journal of Statistical Computation and Simulation 71(3), 215-230.

23. Upadhyay, S. & Peshwani, M. (2003), `Choice between Weibull and lognormal models: a simulation based Bayesian study´, Communications in Statistics - Theory and Methods 32(2), 381-405.

24. Upadhyay, S. & Peshwani, M. (2008), `Posterior analysis of lognormal regressions models using the Gibbs sampler´, Statistical Papers 49, 59-85.


[Recibido en agosto de 2010. Aceptado en febrero de 2011]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv34n1a05,
    AUTHOR  = {Hernández, Freddy and Usuga, Olga Cecilia},
    TITLE   = {{Análisis bayesiano para la distribución lognormal generalizada aplicada a modelos de falla con censura}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2011},
    volume  = {34},
    number  = {1},
    pages   = {95-109}
}