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Liliana López-Kleine, Ph.D.
Universidad Nacional de Colombia, Bogotá, Colombia
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Raydonal Ospina, Ph.D.
Universidade Federal de Pernambuco, Pernambuco, Brasil

La Revista Colombiana de Estad́ıstica es una publicación semestral del Departamento de
Estad́ıstica de la Universidad Nacional de Colombia, sede Bogotá, orientada a difundir conoci-
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Editorial

Leonardo Trujilloa

Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia

Welcome to the second issue of the 36th volume of Revista Colombiana de Estadis-
tica (Colombian Journal of Statistics). We are glad to announce the new Impact
Factor (IF) 2012 of our Journal (0.109) from the Journal Citations Report, which
almost doubled the previous one from 2011 (0.059). This IF was launched to the
community at the end of June this year just after the publication of the last is-
sue. The impact factor is calculated according to the average number of citations
received by its published papers in a time window generally one year. This im-
plies our published papers have now more visibility and hopefully have increased
quality in order to be cited by other alternative publications (more information at
http://wokinfo.com/essays/impact-factor/).

We have kept, as in recent issues, the characteristic of being a Journal entirely
published in English language as part of the requirements of being the winners (se-
cond year in a row) of an Internal Grant at the National University of Colombia
among other many Journals (see editorial of December 2011). We are also very
proud to announce that the Colombian Journal of Statistics have maintained its
categorization as an A1 Journal by Publindex (Colciencias) which ranges the jour-
nals in the country, being A1 the maximum category. Thanks to all the Editorial
and Scientific Committees and Patricia Chavez, our assistant in the Journal, as
this is a result of the continuous help obtained from all of them. More information
available at http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do

The Colombian Journal of Statistics invites researchers to submit scientific pa-
pers for the Special Issue in Current Topics in Statistical Graphics to be published
in December, 2014. This special issue has the purpose of bringing together current
advances and uses of well-known and novel graphical methods from different re-
search areas so that the reader finds potential applications to his/her own research
field. The special issue aims at adding an extra value to the special issues publis-
hed in the RCE by publishing in English language all manuscripts accepted. If
you are interested in submitting a paper, please contact the Guest Editor via e-
mail (fernando.marmolejoramos@adelaide.edu.au), and visit our website for more
information. We welcome applications to problems in engineering, manufacturing
process, chemical industry, physical sciences, social sciences, and agricultural in-
dustries.

The topics in this current issue range over diverse areas of statistics: two papers
in Mixture Distributions by Montoya, Figueroa and Puksic and Salinas, Martinez

aEditor in Chief
E-mail: ltrujilloo@unal.edu.co



and Moreno; two papers in Multivariate Analysis by Gupta, Johnson and Nagar
and Joarder, Omar and Gupta; one paper in Bayesian Analysis by Moala, Ramos
and Achcar; one paper in Fuzzy Data by Pak, Parham, Saraj; one paper in Mixed
Models by Ferreira, Ferreira, Nunes and Mexia; one paper in Regression Analy-
sis by Turkan and Toktamis; one paper in Survey Sampling by Hussain, Shah,
Shabbir and Riaz and one paper in Time Series Analysis by Garcia-Hiernaux. The
International Year of Statistics (Statistics2013) is coming to an end. This initiati-
ve was promoted around the globe by the International Statistical Institute (ISI,
http://www.statistics2013.org/) in order to celebrate the 300th anniversary of Ars
Conjectandi, the book on combinatorics and probability written by Jakob Bernou-
lli and published in 1713. This work developed essential ideas in statistics such as
the Law of Large Numbers and the Bernoulli distribution.

The XIII CLAPEM (Latin American Congress of Probability and Mathema-
tical Statistics) keeps growing in the number of participant institutions for its
organization. This event will be held for the first time in Colombia at the city
of Cartagena with the help of the Latin American Chapter of the Bernoulli So-
ciety. CLAPEM is the largest conference gathering scientists in the particular
areas of Probability and Mathematical Statistics in the region and takes place
every two/three years. The CLAPEM activities include lectures held by invited
researchers, satellite meetings, sessions of oral and poster contributions, short
courses, and thematic sessions. Three courses have been confirmed by Allison
Etheridge (University of Oxford, UK), Bin Yu (Berkeley University, USA) and
Paul Embrechts (ETH Zurich, Switzerland). The plenary talks are in charge of
Carenne Ludeña (IVIC, Venezuela), Gerard Biau (Universidad Pierre and Ma-
rie Curie, France), Roberto Imbuzeiro Oliveira (IMPA, Brazil), Sourav Chatterjee
(New York University, USA), Thomas Mikosch (University of Copenhagen, Den-
mark) and Victor Rivero (CIMAT, Mexico). If you are interested you can also
get more details at www.clapem.unal.edu.co, with Ricardo Fraiman (fraimanricar-
do@gmail.com) or with Leonardo Trujillo (ltrujilloo@unal.edu.co).

Luis Escobar, member of the Editorial Committee of our Journal, has received
the 2013 William G. Hunter Award. Professor Escobar works at the Department
of Experimental Statistics at Louisiana State University and he has been a con-
tinuous collaborator with the National University of Colombia and CIMAT in
Mexico. He is the author of many publications including the classic book of Mee-
ker and Escobar (1998), Statistical Methods for Reliability Data, John Wiley and
Sons. The Hunter Award was established in 1987 by the Statistics Division of the
American Society for Quality (ASQ) in order to promote, encourage and acknow-
ledge outstanding accomplishments during a career in the broad field of applied
statistics. Professor Escobar is Colombian and he has got a PhD from Iowa State
University. He was also the Associated Editor of Technometrics during fifteen (15)
active years, Vicepresident of the Interamerican Statistical Institute (IASI) from
2006 to 2010 and President from 2010 to 2012. We want to congratulate Professor
Escobar for this achievement in his career.



Editorial

Leonardo Trujilloa

Departamento de Estadística, Universidad Nacional de Colombia, Bogotá,
Colombia

Bienvenidos al segundo número del volumen 36 de la Revista Colombiana de Es-
tadistica. Estamos complacidos en anunciar el nuevo factor de impacto (FI) 2012
de nuestra revista (0.109) de acuerdo al Journal Citations Report, el cual casi ha
doblado el factor de impacto anterior en 2011 (0.059). Este FI fue dado a cono-
cer al público a finales de junio de este año justo después de la publicación del
primer número. El factor de impacto es calculado de acuerdo al número promedio
de citaciones recibidas por los artículos publicados en una ventana de tiempo de
generalmente un año. Esto implica que nuestros artículos tienen ahora una mayor
visibilidad y esperamos también una mayor calidad para que sean citados en otras
publicaciones alternas (más información en http://wokinfo.com/essays/impact-
factor/). Hemos mantenido, como en números recientes, la característica de ser
una revista publicada completamente en inglés como parte de los requisitos por
ser los ganadores (en dos años consecutivos) de una convocatoria interna en la
Universidad Nacional de Colombia entre otras muchas revistas (ver editorial de
diciembre 2011). También estamos orgullosos de anunciar que la Revista Colom-
biana de Estadística ha mantenido su categoría A1 de Publindex (Colciencias)
la cual reconoce la calidad de las revistas científicas del país, siendo A1 la má-
xima categoría. Gracias a todos los miembros de los Comités Científico y Edi-
torial y en particular a Patricia Chávez, nuestra asistente, puesto que este es
un resultado del trabajo en equipo. Más información se encuentra disponible en
http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do

La Revista Colombiana de Estadística invita a investigadores que deseen so-
meter artículos para el Número Especial titulado “Current Topics in Statistical
Graphics” a ser publicado en diciembre, 2014. Este número especial tiene como
propósito el dar a conocer avances recientes de métodos gráficos en diferentes
áreas de investigación. El número especial será publicado completamente en in-
glés. Si Ud. está interesado en someter un artículo, por favor contactar al Editor
Invitado vía e-mail (fernando.marmolejoramos@adelaide.edu.au) y visitar nuestra
página web con el fin de encontrar más información al respecto. Estaremos aten-
tos a recibir aplicaciones para problemas de ciencias sociales, ingeniería, física, la
agricultura, la industria, química, entre otros.

Los temas de este segundo número varían sobre áreas muy diversas de la estadís-
tica: dos artículos en Análisis Multivariado de Gupta, Johnson, Nagar y de Joarder,

aEditor General
E-mail: ltrujilloo@unal.edu.co



Omar, Gupta; dos artículos en Mezcla de Distribuciones de Montoya, Figueroa,
Puksic y de Salinas, Martínez and Moreno; un artículo en Análisis Bayesiano de
Moala, Ramos and Achcar; un artículo en Análisis de Regresión de Turkan y Tok-
tamis; un artículo en Datos Difusos de Pak, Parham, Saraj; un artículo en Modelos
Mixtos de Ferreira, Ferreira, Nunes, Mexia; un artículo en Muestreo de Hussain,
Shah, Shabbir y Riaz y un artículo en Series de Tiempo de García - Hiernaux. El
Año Internacional de la Estadística (Statistics2013) está llegando a su fin. Esta
iniciativa fue promovida en todo el mundo por el International Statistical Insti-
tute (ISI, http://www.statistics2013.org/) con el fin de celebrar el aniversario 300
de la obra Ars Conjectandi, un libro en combinatoria y probabilidad escrito por
Jakob Bernoulli y publicado en 1713. Este trabajo fue la base de ideas esenciales
en estadística como la Ley de los Grandes Números y la Distribución Bernoulli.

El XIII CLAPEM (Congreso Latinoamericano de Probabilidad y Estadística
Matemática) se mantiene en crecimiento en cuanto al número de instituciones par-
ticipantes en su organización. Este congreso será organizado por primera vez en
Colombia en la ciudad de Cartagena con el apoyo de la Sociedad Bernoulli. El
CLAPEM es la conferencia más importante de la región que reúne cada dos años
a científicos interesados en las áreas de la Probabilidad y la Estadística Matemáti-
ca. Las actividades del CLAPEM incluyen conferencias invitadas, contribuciones
orales, cursos cortos, posters, reuniones satélite y sesiones temáticas. Tres cursos
han sido confirmados a cargo de Allison Etheridge (University of Oxford, UK),
Bin Yu (Berkeley University, USA) y Paul Embrechts (ETH Zurich, Switzerland).
Las conferencias plenarias estarán a cargo de Carenne Ludeña (IVIC, Venezuela),
Gerard Biau (Universidad Pierre and Marie Curie, Francia), Roberto Imbuzeiro
Oliveira (IMPA, Brasil), Sourav Chatterjee (New York University, USA), Tho-
mas Mikosch (Universidad de Copenhage, Dinamarca) y Victor Rivero (CIMAT,
Mexico). Si Ud. está interesado puede obtener más información de este Congreso
en www.clapem.unal.edu.co, con Ricardo Fraiman (fraimanricardo@gmail.com) o
Leonardo Trujillo (ltrujilloo@unal.edu.co).

Luis Escobar, miembro de nuestro Comité Editorial, ha recibido el Premio Wi-
lliam G. Hunter 2013. El Profesor Escobar trabaja en el Departamento de Estadís-
tica Experimental en Louisiana State University y ha sido un continuo colaborador
con la Universidad Nacional de Colombia y el CIMAT en México. El es el autor
de muchas publicaciones incluido el libro clásico de Meeker and Escobar (1998),
Statistical Methods for Reliability Data, John Wiley and Sons. El Premio Hunter
fue establecido en 1987 por la División de Estadísticas de la American Society
for Quality (ASQ) con el fin de promover, motivar y reconocer resultados de gran
relevancia en la carrera de un investigador en el área de la estadística aplicada. El
Profesor Escobar es de nacionalidad colombiana y terminó sus estudios de Doc-
torado en Iowa State University. Tambien, fue Editor Asociado de Technometrics
durante quince (15) años activos, Vicepresidente del Interamerican Statistical Ins-
titute (IASI) de 2006 a 2010 y Presidente de 2010 a 2012. Felicitaciones al profesor
Escobar por este logro en su carrera.
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Profile Likelihood Estimation of the Vulnerability
P (X > v) and the Mixing Proportion p Parameters

in the Gumbel Mixture Model

Estimación de verosimilitud perfil de los parámetros de vulnerabilidad
P (X > v) y proporción de mezcla p en el modelo Gumbel de mezclas

José A. Montoya1,a, Gudelia Figueroa1,b, Nuša Pukšič2,c

1Departamento de Matemáticas, División de Ciencias Exactas y Naturales,
Universidad de Sonora, Hermosillo, México

2Institute of Metals and Technology, Ljubljana, Slovenia

Abstract

This paper concerns to the problem of making inferences about the vul-
nerability θ = P (X > v) and the mixing proportion p parameters, when the
random variable X is distributed as a mixture of two Gumbel distributions
and v is a known fixed value. A profile likelihood approach is proposed for
the estimation of these parameters. This approach is a powerful though sim-
ple method for separately estimating a parameter of interest in the presence
of unknown nuisance parameters. Inferences about θ, p or (θ, p) are given in
terms of profile likelihood regions and can be easily obtained on a computer.
This methodology is illustrated through a real problem where the main pur-
pose is to model the size of non-metallic inclusions in steel.

Key words: Invariance principle, Likelihood approach, Likelihood region,
Mixture of distributions.

Resumen

En este artículo consideramos el problema de hacer inferencias sobre el
parámetro de vulnerabilidad θ = P (X > v) y la proporción de mezcla p
cuando X es una variable aleatoria cuya distribución es una mezcla de dos
distribuciones Gumbel y v es un valor fijo y conocido. Se propone el enfoque
de verosimilitud perfil para estimar estos parámetros, el cual es un método
simple, pero poderoso, para estimar por separado un parámetro de interés
en presencia de parámetros de estorbo desconocidos. Las inferencias sobre
θ, p o (θ, p) se presentan por medio de regiones de verosimilitud perfil y se

aProfessor. E-mail: montoya@mat.uson.mx
bProfessor. E-mail: gfiguero@gauss.mat.uson.mx
cResearch assistant. E-mail: nusa.puksic@imt.si
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194 José A. Montoya, Gudelia Figueroa & Nuša Pukšič

pueden obtener fácilmente en una computadora. Esta metodología se ilustra
mediante un problema real donde se modela el tamaño de inclusiones no
metálicas en el acero.

Palabras clave: enfoque de verosimilitud, mezcla de distribuciones, princi-
pio de invarianza, región de verosimilitud.

1. Introduction

Facilities such a electric power, water supplies, communications and trans-
portation are a part of what is named society infrastructure, although in a broad
definition this also includes some basic societal functions like education, national
defense and financial and health systems. On the other hand, the term critical
infrastructure is often used to denote the collection of all large technical systems
characterized as public, like electric power, water supply systems, transportation,
communications and health systems. All these services are considered a part of
a nation critical infrastructure and they are essential for the quality of everyday
life. Natural disasters, adverse weather conditions, technical failures, human er-
rors, labor conflicts, sabotage, terrorism and many other situations can disturb
the appropriate flow of these services and a severe strain on the society could
occur. Hence, national security is directly linked to the vulnerability of critical
infrastructure, and problems related with human error or technical failures should
be prevented. In particular, it is known that steel inclusions formed during the
steel production process degrade the mechanical properties of the steel. Special
interest is focused on the control of non-metallic inclusions due to their harmful
effect, because their size, amount and chemical composition have a great influence
on steel properties and are linked to its vulnerability. Actually, big inclusions
can turn out to be dangerous, leading to the failure of the finished steel product.
The steel industry fixes some critical limits for these inclusions and those limits
depend on the purpose of the steel products. The increasing demand for cleaner
steels has led to the continuous improvement of steelmaking practices and model-
ing the type and distribution of these inclusions has become significant concern in
the steel industry.

Murray & Grubesic (2007) define vulnerability of an infrastructure system as
the probability that at least one disturbance with negative societal consequence
X, could be larger than some (critical) value v, during a given period of time T .
Hence, they argued that a simple measure for the vulnerability of an infrastructure
system can be formulated as

P (X > v) = 1− F (v)

where F (x) denotes the probability distribution function of the random variableX.
Skewed distributions such as the exponential, lognormal, log-logistic, and power
law distributions have been considered by many authors in a number of different
real life situations, like Rosas-Casals, Valverde & Solé (2007) and also by Murray &
Grubesic (2007). However, mixture models would be preferable when the random
variable X is generated from k distinct random processes. To our knowledge, only

Revista Colombiana de Estadística 36 (2013) 193–208



Profile Likelihood Inference for Gumbel Mixture Model 195

few authors like Zheng (2007) and Barrera-Núñez, Meléndez-Frigola & Herraiz-
Jaramillo (2008) have used mixture models to explain vulnerability analysis.

In statistics, a mixture model is a probabilistic model adequate for representing
the presence of subpopulations within an overall population, and it is not required
for the observed data-set to identify the sub-population to which an individual
observation belongs. Formally, given a finite set of probability density functions
f1(x), . . . , fk(x) and weights p1, . . . , pk where pi ≥ 0 and

∑
pi = 1, the density

associated with a mixture distribution can be written as f(x) =
∑
pifi(x). Mix-

ture distributions arise in a natural way in many areas such as engineering science,
medicine, biology, hidrology, geology, as shown in Titterington, Smith & Makov
(1985) as well as in Lindsay (1995).

The Gumbel distribution occurs as the limit of maxima of most standard dis-
tributions, particularly for the normal distribution. Kotz & Nadarajah (2000)
describe in detail this distribution. Actually, the Gumbel distribution has been
one of the models used for quantifying the risk associated with extreme rainfalls;
it has been also used to model flood levels, the magnitude of earthquakes and even
sport records. Some recent applications belong to the engineering area, such as
in risk-based engineering, software reliability and structural engineering. Mixture
models for Gumbel distributions are of special importance. For example, Chen,
Huang & Zhong-Xian (1995) have used a Gumbel mixture model to estimate the
seismic risk of the Chinese mainland. Beretta & Murakami (2001) found that a
Gumbel mixture model is useful for modeling two types of steel inclusions.

Maximum likelihood estimation for the shape and scale parameters can be
found in Evans, Hastings & Peacock (1993) and Johnson, Kotz & Balakrishnan
(1994), and parameter estimation for the mixture of two Gumbel distributions
is included by Raynal & Guevara (1997), Tartaglia, Caporali, Cavigli & Moro
(2005) and Ahmad, Jaheen & Modhesh (2010). However, inferences about the
vulnerability parameter θ = P (X > v) for the Gumbel mixture case has not been
carefully studied, despite the actual importance of this kind of analysis. In many
applications, inferences about the parameters θ and p, where p is the mixture
proportion, can be more relevant than inferences concerning some other model
parameters. This will be illustrated with a real data set related to the size of non-
metallic inclusions in steel. This data set has two kinds of inclusions, classified as
Type 1 and Type 2 inclusions, where p denotes the proportion for the first type of
inclusion.

Let the distribution of X be a mixture of two independent Gumbels:

f(x;µ1, σ1, µ2, σ2, p) = pf1(x;µ1, σ1) + (1− p)f2(x;µ2, σ2) (1)

where

fi(x;µi, σi) =
1

σi
exp

[
−
(
x− µi
σi

)]
exp

{
− exp

[
−
(
x− µi
σi

)]}
−∞ < µi < ∞, σi > 0, i = 1, 2, −∞ < x < ∞, and 0 < p < 1. A fundamen-
tal statistical problem is concerned with making inferences on the vulnerability
parameter

Revista Colombiana de Estadística 36 (2013) 193–208



196 José A. Montoya, Gudelia Figueroa & Nuša Pukšič

θ = P (X > v;µ1, σ1, µ2, σ2, p) = 1−
∫ v

−∞
f(x;µ1, σ1, µ2, σ2, p) dx (2)

and the mixing proportion p, based on a sample x1, . . . , xn from X. In this paper,
we analyze this problem considering σ1 > 0, σ2 > 0, 0 < p < 1, −∞ < µ1 < µ2 <
v, and v a known fixed value. Our purpose is to estimate these parameters using the
profile likelihood function. The profile likelihood approach can be useful in many
situations and it is a powerful though simple method for separately estimating a
parameter of interest in the presence of unknown nuisance parameters. Inferences
about θ, p or (θ, p) can be given in terms of profile likelihood regions which are
easily obtained with a computer. This methodology will be illustrated with a real
data set concerning the size distribution of non-metallic inclusions in steel.

2. Profile Likelihood Approach

In this section we describe the estimation procedure that will be used to make
inferences about the parameters of interest. This approach is based in Sprott
(1980), Kalbfleisch (1985), and Sprott (2000). Let xo = (x1, . . . , xn) be an ob-
served sample from a distribution with likelihood function L(ψ,λ;xo), where
ψ = (ψ1, . . . , ψdψ ) represents the parameter of interest and λ = (λ1, . . . , λdλ)
is a nuisance parameter. The profile likelihood function of ψ is

LP (ψ;xo) = L
[
ψ, λ̂(ψ);xo

]
(3)

The quantity λ̂(ψ) that maximizes L(ψ,λ;xo) for a specified value of ψ, is called
the restricted maximum likelihood estimate of the nuisance parameter λ.

Usually λ̂(ψ) exists and is unique for each value of ψ, so the definition (3)
applies. Formally, LP (ψ;xo) can be defined as

LP (ψ;xo) = sup
λ

L (ψ,λ;xo) (4)

Since L (ψ,λ;xo) is proportional to the probability of the observed sample as a
function of the parameters of the model, then the supremum exists and it is finite.
The profile likelihood function can be used to rank parameter values according
to their plausibilities. Now, the relative profile likelihood function of ψ is a stan-
dardized version of (4), and takes a value of one at the maximum of the profile
likelihood function of ψ,

RP (ψ;xo) =
LP (ψ;xo)

sup
ψ

LP (ψ;xo)

Hence, the relative profile likelihood varies between 0 and 1. Values of ψ that are
supported by the observed sample xo will result in values of RP (ψ;xo) close to
one. In contrast, values of ψ with RP (ψ;xo) close to zero become implausible,
given the sample xo. Morever, if the the maximum likelihood estimate (mle) of
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(ψ,λ) exists and is unique, then the relative profile likelihood function of ψ can
be defined as

RP (ψ;xo) =
LP (ψ;xo)

L(ψ̂, λ̂;xo)
=
L
[
ψ, λ̂(ψ);xo

]
L(ψ̂, λ̂;xo)

where ψ̂ is the mle of ψ. Note that λ̂ = λ̂
(
ψ̂
)
is the ordinary mle of λ. The

relative profile likelihood function is the maximum relative likelihood that ψ can
attain when λ is unknown and free to vary arbitrarily. Thus, RP (ψ;xo) ranks all
possible values of ψ according to their maximum plausibilities and supported by
the observed data.

A level c profile likelihood region for ψ is given by

RP (c) = {ψ : RP (ψ;xo) ≥ c} (5)

where 0 ≤ c ≤ 1. When ψ is a scalar this region will be an interval if RP is
unimodal and the union of disjoint intervals when RP is multimodal. Each spe-
cific value of ψ within this region has an associated relative profile likelihood
RP (ψ;xo) ≥ c, and values outside this region will have a relative profile likelihood
RP (ψ;xo) < c. At level c, this region separates plausible values of ψ from the
implausible ones. When varying c from 0 to 1, a complete set of nested likelihood
regions is obtained and these converges to the mle ψ̂ as c → 1. Computer algo-
rithms are usually used to find the mle or the borders of a profile likelihood regions
given in (5).

In most of the cases, a profile likelihood region RP (c) is an approximate con-
fidence region for ψ, so it is called a likelihood-confidence region, or a likelihood-
confidence interval when ψ is a scalar. Under the null hypothesis H0 : ψ = ψ0

the likelihood ratio statistic −2 ln [RP (ψ0;x)] usually converge, in distribution,
to a chi-squared distribution with dψ degrees of freedom (Serfling 1980). When
this is true, the set RP (c) becomes a 100 (1− α) % confidence region for ψ, where
c = exp(−χ2

dψ,1−α/2) and χ2
dψ,1−α represents the quantile of probability 1− α of

a chi-squared distribution with dψ degrees of freedom. For example, if dψ = 1, ψ
is a scalar parameter, then the profile likelihood region at level c = 0.15 becomes
a confidence region for ψ, with an approximate 95% confidence level. In a similar
way, if dψ = 2, the level c = 0.05 profile likelihood region for ψ will be a confidence
region with an approximate 95% confidence level.

Some authors like Montoya, Díaz-Francés & Sprott (2009) and Figueroa (2012)
suggest to include the precision of the measuring instrument to avoid unbounded
likelihoods, which usually occurs when the continuous approximation to the likeli-
hood function is used and regularity conditions are not satisfied. The unbounded-
ness and also the flatness of a profile likelihood function have been used to propose
alternative approaches to estimate nuisance parameters, like in Smith & Naylor
(1987) and Green, Roesch, Smith & Strawderman (1994), who criticized the pro-
file likelihood function for being flat and uninformative, overlooking that it can be
indicative that a simpler (limiting) model might be a good alternative to explain
the data (Cheng & Iles 1990). Although here there is no problem of unbounded
likelihoods and to our knowledge, a flat profile likelihood can also be obtained even
when including the precision of the measuring instrument, there are some others
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circumstances where incorporating this information is reasonable; for example,
when the instrument measures with different precision or when it produces many
repeated observations, like in the example included in Section 4.

3. Inferences about θ and p Using the Profile
Likelihood in the Gumbel Mixture Model

Let X be a random variable from a two-component Gumbel mixture model
with density function f(x;µ1, σ1, µ2, σ2, p) given in (1), where σ1 > 0, σ2 > 0,
0 < p < 1, −∞ < µ1 < µ2 < v and v is a known fixed value. In this case, the
parameters of interest are the vulnerability parameter θ = P (X > v) and the
mixing proportion p. Although the parametrization of the Gumbel mixture model
involves the five unknown parameters µ1, σ1, µ2, σ2, and p, the parameter θ has
been left out. In order to make profile likelihood inferences about θ and p, it is
convenient to use a one to one reparametrization in such a way that θ becomes
one of the new parameters and p is included as well. Hence, the vulnerability
parameter θ can be written, explicitly, as a function of µ1, σ1, µ2, σ2 and p,

θ = P (X > v;µ1, σ1, µ2, σ2, p)

= 1− P (X ≤ v;µ1, σ1, µ2, σ2, p)

= 1− [pΦG (δ1) + (1− p) ΦG (δ2)]

where ΦG (·) is the standard Gumbel distribution and δi = (v − µi) /σi, i = 1, 2.
Here, δi is introduced for algebraic and computational simplicity. Note that δi > 0
when σi > 0 and −∞ < µ1 < µ2 < v.

3.1. Reparametrizations

Let σi = (v − µi) /δi, i = 1, 2. This produces the one to one parametrization
(µ1, σ1, µ2, σ2, p)↔ (µ1, δ1, µ2, δ2, p) with a Jacobian

J1 =
(v − µ1) (v − µ2)

σ2
1σ

2
2

> 0

The Gumbel mixture model can be reparametrized in terms of (µ1, δ1, µ2, δ2, p)
when substituting σi = (v − µi) /δi, i = 1, 2,

f∗(x;µ1, δ1, µ2, δ2, p) = pf∗1 (x;µ1, δ1) + (1− p)f∗2 (x;µ2, δ2) (6)

where

f∗i (x;µi, δi) =
δi

v − µi
exp

[
−δi

(
x− µi
v − µi

)]
exp

{
− exp

[
−δi

(
x− µi
v − µi

)]}
with −∞ < µ1 < µ2 < v, 0 < p < 1 and δi > 0, i = 1, 2.
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The parameter δ1 can now be written as

δ1 = δ1 (θ, p, δ2) = Φ−1G

[(
1− θ
p

)
−
(

1− p
p

)
ΦG (δ2)

]
(7)

where Φ−1G (·) denotes the inverse of the standard Gumbel distribution. Again,
this produces the one to one parametrization (µ1, δ1, µ2, δ2, p) ↔ (µ1, θ, µ2, δ2, p)
with a Jacobian given by

J2 = p exp (−δ1) ΦG (δ1) > 0

Thus, the Gumbel mixture model (6) can be reparametrized in terms of (θ, p, µ1, µ2,
δ2) by substituting in (6) the expression δ1 (θ, p, δ2) given in (7). Here, θ and p
are the parameters of interest and the remaining ones are nuisance parameters.

3.2. Likelihood

In this section a likelihood function for the parameters of the reparametrized
mixture model in terms of the parameters of interest θ and p, and the vector of
nuisance parameters λ = (µ1, µ2, δ2) is presented. This likelihood includes the pre-
cision of the measuring instrument because it could provide valuable information
that should be included into the analysis. As Lindsey (1999) explains to include
the precision of the measuring instrument into the analysis requires no additional
computational effort nowadays.

Let X1, . . . , Xn be independent and identically distributed random variables
with density function given in (6) and xo = (x1, . . . , xn) its observed sample.
Since all measuring instruments have finite precision, that is, data can only be
recorded to a finite number of decimals, then xo must always be discrete. Thus
the observation Xi = xi can be interpreted as xi − h/2 ≤ Xi ≤ xi + h/2, where
h is the precision of the measuring instrument, and so is a fixed positive number,
as is described in Sprott (2000, p. 10), Montoya, Díaz-Francés, & Sprott (2009)
and Figueroa (2012). Therefore, for xo = (x1, . . . , xn), the resulting likelihood
function of (θ, p,λ) is proportional to the probability of the observed sample,

L(θ, p,λ;xo) ∝
n∏
i=1

∫ xi+h/2

xi−h/2
f∗ [xi;µ1, δ1 (θ, p, δ2) , µ2, δ2, p]

=

n∏
i=1

{
p

[
F1

(
xi +

h

2
; θ, p, µ1, δ2

)
− F1

(
xi −

h

2
; θ, p, µ1, δ2

)]
+

(1− p)
[
F2

(
xi +

h

2
;µ2, δ2

)
− F2

(
xi −

h

2
;µ2, δ2

)]}
where

F1(z; θ, p, µ1, δ2) = exp

{
− exp

[
−δ1 (θ, p, δ2)

(
z − µ1

v − µ1

)]}
= ΦG

{
Φ−1G

[(
1− θ
p

)
−
(

1− p
p

)
ΦG (δ2)

](
z − µ1

v − µ1

)}
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and

F2(z;µ2, δ2) = exp

{
− exp

[
−δ2

(
z − µ2

v − µ2

)]}
= ΦG

[
δ2

(
z − µ2

v − µ2

)]
with 0 < θ < 1, 0 < p < 1, δ2 > 0, 0 ≤ [(1− θ) /p] − [(1− p) /p] ΦG (δ2) ≤ 1,
−∞ < µ1 < µ2 < v and v is a known fixed value.

Since the mle (θ̂, p̂, λ̂) cannot be obtained analytically, it must be calculated
numerically. For computational convenience, maximization of the log-likelihood
function of the original parametrization can be used to obtain (µ̂1, σ̂1, µ̂2, σ̂2, p̂)
the maximum likelihood estimators of (µ1, σ1, µ2, σ2, p), and by the invariance
property of the likelihood function, the mle of θ is

θ̂ = 1−
[
p̂ΦG(δ̂1) + (1− p̂)ΦG(δ̂2)

]
where δ̂i = (v − µ̂i)/σ̂i.

3.3. Profile likelihood

Profile likelihood inference about the vector (θ, p) in the presence of the vector
of nuisance parameters λ = (µ1, µ2, δ2) is based on the relative profile likelihood
function of (θ, p). The profile likelihood function of (θ, p) is

LP (θ, p;xo) = sup
λ

L (θ, p,λ;xo)

and its associated relative profile likelihood function is

RP (θ, p;xo) =
LP (θ, p;xo)

sup
θ,p

LP (θ, p;xo)
=

LP (θ, p;xo)

L(θ̂, p̂, λ̂;xo)
(8)

where (θ̂, p̂, λ̂) is the mle of (θ, p, λ). Note that RP (θ, p;xo) will be a surface
sitting above the parameter space (0, 1) × (0, 1) and its maximum value 1 occurs
at (θ, p) = (θ̂, p̂). A convenient way to visualize RP (θ, p;xo) in two dimensions is
by plotting contours of level c, obtained by solving RP (θ, p;xo) = c. The regions
obtained from this contour plot are likelihood-based confidence regions for (θ, p).
For instance, if c = 0.05 the region delimited by the contour plot is a likelihood-
based confidence region for (θ, p), with an approximate 95% confidence level.

On the other hand, profile likelihood inferences about the scalar parameter θ
are based on the relative profile likelihood function of θ. In this case the profile
likelihood and relative profile likelihood functions are

LP (θ;xo) = sup
p,λ

L (θ, p,λ;xo) = sup
p
LP (θ, p;xo)

RP (θ;xo) =
LP (θ;xo)

sup
θ
LP (θ;xo)

=

sup
p
LP (θ, p;xo)

sup
θ,p

LP (θ, p;xo)
(9)

Revista Colombiana de Estadística 36 (2013) 193–208



Profile Likelihood Inference for Gumbel Mixture Model 201

Similarly, the profile likelihood and the relative profile likelihood for parameter p
are given by

LP (p;xo) = sup
θ,λ

L (θ, p, λ;xo) = sup
θ
L (θ, p;xo)

RP (p;xo) =
LP (p;xo)

sup
p
LP (p;xo)

=

sup
θ
L (θ, p;xo)

sup
θ,p

LP (θ, p;xo)
(10)

3.4. Computational implementation

Relative profile likelihoods given in (8), (9) and (10) can be obtained through
the computation of LP (θ, p;xo), which can be easily implemented using the R
‘stats’ package function constrOptim, for each specified value of (θ, p). A feasible
region is defined for AB − C ≥ 0, where

A =


1 0 0

1 −1 0

−1 1 0

0 0 1

0 0 −1

 , B =

 µ1

µ2

δ2

 , and C =



0

−v
0

Φ−1G

(
1− θ − p

1− p

)
−K


K is an upper bound for user-defined δ2, serving as a tuning value. Based on that,
the following algorithm is used to display contour lines and profiles of LP (θ, p;xo).

1. Create a full grid from two monotonically increasing grid vectors: θ ∈ S1 ⊂
(0, 1) and p ∈ S2 ⊂ (0, 1).

2. Map these points to the function LP (θ, p;xo) and store the values in a matrix
M [θ, p].

3. Calculate the matrixR [θ, p] = M [θ, p] /L∗, the vectorR [θ] = max
p

M [θ, p] /L∗

and the vector R [p] = max
θ

M [θ, p] /L∗, where L∗ = max
θ,p

M [θ, p].

4. Contour plots can be created from θ, p, R [θ, p] coordinates using the con-
tour function included in the R ‘graphics’ package. The profile plot can be
obtained by plotting θ versus R [θ] (or p versus R [p]).

Note that R [θ] and R [p] can be used to obtain profile likelihood intervals for θ
and p, respectively.

4. Illustrative Example

Quality of steel is strongly influenced by the presence of non-metallic inclu-
sions. Although inferences about the size of large inclusions have largely been
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based on the assumption that inclusions are all of a single type and methods of
classic extreme value statistics are appropriate, as shown in Murakami (1994), the
need to analyze for the presence of multiple inclusions has been noticed by Lund,
Johansson & Olund (1998) through experiments in the bearing industry. In par-
ticular, Beretta & Murakami (2001) have found that a Gumbel mixture model can
be appropriate when studying only two types of inclusions.

The methodology proposed in this paper is implemented in a set of data ob-
tained from an experiment conducted at the Institute of Metals and Technology,
Ljubljana, Slovenia and concerns modeling the size distribution of non-metallic
inclusions in steel, where mainly two types of inclusions are investigated: (a) Type
1, these are soft elongated inclusions composed mainly of manganese sulfide and
(b) Type 2, hard round inclusions comprising mainly aluminum oxides. These
two types of inclusions can be distinguished by their shape when seen under a
microscope, and their composition has been confirmed by spectroscopic analyses.
Round inclusions are much more harmful and sometimes can lead to premature
failure of the steel piece.

As a part of this experiment, a standard inspection area S0 of 0.27 mm2 is
defined. The area of the maximum inclusion in S0, defined as Amax, is measured
in n = 544 sample areas, from a single steel slab. All the inclusions were measured
using automatic image analysis and only those with a cross-section area larger than
3 µm2 were considered real inclusions in this analysis. Cross-section areas smaller
than 3 µm2 are not clearly visible by light microscopy at 100x magnification; it is
not only the matter of sufficient resolution, but it is difficult to verify what may
be inclusions and what could be artifacts from image contrast adjustments. It is
worthwhile to mention that none of the Amax measurements was smaller than 3
µm2.

The square root of the measured area x =
√
Amax is taken; this is called the

inclusion size and these are the measurements used in the statistical analysis. The
minimum observation is x(1) = 1.9339, the maximum x(544) = 20.8835, the sample
mean x̄ = 7.3184, the sample standard deviation sx = 2.2158, and quantiles
25, 50 and 75 are Q25 = 5.8583, Q50 = 7.1091, Q0.75 = 8.5621, respectively.
The data set formed with these 544 inclusion sizes has many repeated values.
This suggests that the precision of the measuring instrument should be included
into the analysis. Actually, this set has only 185 different values, some of them
repeated even eight times. Now, since the size of each inclusion is not directly
measured by the instrument, the precision associated with each of these values
must be computed through error propagation techniques. This implies that each
measurement has an associated precision hi, that should be considered in the
analysis.

A Gumbel mixture model is proposed to study the size of non-metallic inclu-
sions in steel and the adequacy of this model can be seen in Figures 1 and 2.
Although an observation in Figure 2 is apparently an outlier, it turns out to be
a possible observation, when the cloud formed by the Q-Q plots of many simu-
lated samples with the estimated model includes the points of the Q-Q plot of the
observed sample; this cloud can be seen in Figure 3. The parameter estimates
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for the Gumbel mixture model given in (1) were obtained by maximum likelihood
estimation and are shown in Table 1.
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Figure 1: Histogram and estimated density for non-metallic inclusion sizes.

µ̂1 = 3.1943 σ̂1 = 0.7195 µ̂2 = 6.6251 σ̂2 = 1.6229 p̂ = 0.0597

Table 1: Parameter estimates
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Figure 2: Q-Q plot: Theoretical versus Empirical quantiles.

The likelihood approach described in Section 3.2 was used to estimate the
probability that the maximum size of a non-metallic inclusion could be greater
than a maximum allowed inclusion size v. The problem about fixing a critical
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Figure 3: Q-Q plot simulation.

size v is that it may differ for different kind of steels, depending on their use or
purpose. Here, we fixed v = 15 µm, just to show how to model vulnerability.
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Figure 4: Relative profile likelihood of parameter θ.

The profile likelihood function of parameter θ = P (X > 15 µm) is plotted in
Figure 4, and is almost symmetric around its mle θ̂ = 0.005380 which is marked
with a dark circle; the 15% profile likelihood interval for θ is (0.003364, 0.008182).
It is worthwhile to mention that this information can be used for quality control,
because better steel grades can be obtained by reducing its inclusion content.
For example, for a plausible value of θ, like θ̂ = 0.005380, a non-metallic inclusion
larger than 15, a value merely illustrative, could be associated with a return period
of approximately 200 sample areas. This could be low or high depending of the steel
and its use. Actually, the information contained in the profile likelihood function
of parameter θ is very useful when comparing candidates for the improved steel
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grade, since the amount and size of non-metallic inclusions in steel are directly
linked with many of its properties.

Besides the importance of having information about parameter θ, it is very
informative to characterize parameter p. We are considering two types of non-
metallic inclusions and knowledge about the proportion of each of these types is
crucial. Here, p denotes the proportion of Type 1 inclusions within the mixture
model. Figure 5(a) shows the relative profile likelihood of parameter p, where
p̂ = 0.0597 is marked with a dark circle and the 15% profile likelihood interval for
p results (0.0294, 0.3422). This interval is wide with respect to 1, the length of
its parameter space and it does not contain the value p = 0. The proportion of
Type 1 inclusions can be considered small or large depending on the application of
the steel. By the invariance property of the likelihood function, point and interval
estimates for Type 2 inclusions can be easily obtained and these are 1− p̂ = 0.9403
and (0.6578, 0.9706), respectively. The relative profile likelihood for parameter
1 − p is shown in Figure 5(b). Plots in Figure 5 show that these likelihoods are
strongly asymmetric around their maximum. It is important to mention that
Type 2 inclusions are much more harmful since they do not work when the steel
is deformed, so they serve as a crack nucleation sites and can lead to premature
failure of the steel piece.
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Figure 5: Relative profile likelihood of parameter (a) p and (b) 1− p.

Inferences about parameters θ and p can be obtained by constructing a like-
lihood contour plot for these parameters. Figure 6(a) shows the likelihood confi-
dence regions for parameters θ and p at different levels of c. Using the invariance
property of the likelihood function, a contour plot for θ and 1−p is easily obtained;
this is shown in Figure 6(b). This kind of plot allows us to make simultaneous
inferences about the proportion of Type 1 or Type 2 inclusions and the probabil-
ity of exceeding the maximum allowed inclusion size v. These plots can play an
important role in the improvement of the steelmaking practices, for example, they
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can be used to compare candidates for the improved steel grade through the anal-
ysis of parameters θ and p. We consider that the approach used in this statistical
analysis adds another dimension to the overall characterization of the steel grade.

(a)

θ

p

 0.25  0.05 

0.002 0.006 0.010

0.
0

0.
1

0.
2

0.
3

0.
4

(b)

θ

1
−

p

 0
.7

5 

 0.25 

 0.05 

0.002 0.006 0.010

0.
6

0.
7

0.
8

0.
9

1.
0

Figure 6: Contour plot for parameters (a) θ and p, (b) θ and 1− p.

All the parameter inferences were obtained through computational techniques
using the R software and the R source code for this example is available upon
request.

5. Conclusions

The precision of a measuring instrument turns out to be an important aspect
in some applications, like the one included here, where the lack of precision of
the measuring instrument caused many repeated observations. The likelihood
function allows to include, in a natural way, the precision associated with each
of the observations. The profile likelihood function is a simple method devised to
handle the estimation of parameters of interest in the presence of unknown nuisance
parameters, and it inherits all the information contained in the likelihood function.
Estimation statements about parameters θ = P (X > v), p or (θ, p) in the Gumbel
mixture case can be given in terms of profile likelihood confidence regions that were
easily obtained through computational techniques. This approach was particularly
useful when analyzing the vulnerability of steel.

[
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]
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The distribution of the linear combination of two chi-square variables is

known if the variables are independent. In this paper, we derive the distribu-
tion of positive linear combination of two chi-square variables when they are
correlated through a bivariate chi-square distribution. Some properties of
the distribution, namely, the characteristic function, cumulative distribution
function, raw moments, mean centered moments, coefficients of skewness
and kurtosis are derived. Results match with the independent case when the
variables are uncorrelated. The graph of the density function is presented.
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Resumen
La distribución de una combinación lineal de dos variables chi cuadrado

es conocida si las variables son independientes. En este artículo, se deriva la
distribución de una combinación lineal positiva de dos variables chi cuadrado
cuando éstas están correlacionadas a través de una distribución chi cuadrado
bivariada. Algunas propiedades de esta distribución como la función carac-
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1. Introduction

Let X1,X2, . . .Xn be (N > 2) two-dimensional independent normal random
vectors from N2(µ,Σ) with mean vectorX = (X1, X2)′, where NXi =

∑N
j=1Xij ,

(i = 1, 2) so that sums of squares and cross product matrix is given by
∑N
j=1(Xj−

X)(Xj −X)′ = A. Let the matrix A be denoted by A = (aik), i = 1, 2; k = 1, 2
where aii = mS2

i , (i = 1, 2),m = N − 1 and a12 = mRS1S2. That is, S1 and
S2 are the sample standard deviations based on the bivariate sample, and R is
the related product moment correlation coefficient. Also let Σ = (σik), i = 1, 2;
k = 1, 2 where σ11 = σ2

1 , σ22 = σ2
2 , σ12 = ρσ1σ2 with σ1 > 0, σ2 > 0. The quantity

ρ(−1 < ρ < 1) is the product moment correlation coefficient between X1j and
X2j(j = 1, 2, . . . , N).

The joint density function U = mS2
1/σ

2
1 and V = mS2

2/σ
2
2 , called the bivariate

chi-square distribution, was derived by Joarder (2009) in the spirit of Krishnaiah,
Hagis & Steinberg (1963) who studied the bivariate chi-distribution.

The distribution of linear function of random variables is useful in the theory
of process capability indices and the study of two or more control variables. See,
for example, Glynn & Inglehart (1989) and Chen & Hsu (1995). It also occurs in
statistical hypothesis testing and high energy physics (See Bausch 2012).

The density function of positive linear combination of independent chi-square
random variables was derived by Gunst & Webster (1973). Algorithms were writ-
ten by Davies (1980) and Farebrother (1984) for the distribution of the linear
combination of independent chi-square variables. The exact density function of a
general linear combination of independent chi-square variables is a special case of
a paper by Provost (1988) for a more general case of Gamma random variables.
Interested readers may go through Johnson, Kotz & Balakrishnan (1994) for a
detailed historical account.

By application of the inversion formula to the characteristic function of the
sum of correlated chi-squares, Gordon & Ramig (1983) derived an integral form of
the cumulative distribution function (CDF) of the sum and the used trapezoidal
rule to evaluate it. Since this integral form of the CDF involves integration of
complex variables, the percentage points depends on the type of numerical tech-
nique you employ. Recently Bausch (2012) has developed an efficient algorithm for
numerically computing the linear combination of independent chi-square random
variables. He has shown its application in string theory.

In Section 2, some mathematical preliminaries are provided. In Section 3,
we derive the density function and the Cumulative Distribution Function of the
positive linear combination of two correlated chi-square variables when they are
governed through a bivariate chi-square density function given by (6). In Section
4, we derive the characteristic function of the distribution. In Section 5, we also
derive some properties of the distribution, namely, raw moments, mean centered
moments, coefficient of skewness and kurtosis. The results match with the inde-
pendent case when the variables are uncorrelated. The results also match with
the special case of the sum of two correlated chi-square variables considered by
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Joarder & Omar (2013). The graph of the density function of the sum is presented
at the end of the paper.

2. Mathematical Preliminaries

Let fX,Y (x, y) be the joint density function of X and Y . Then the following
lemma is well known.

Lemma 1. Let X and Y be two random variables with common probability density
function fX,Y (x, y). Further let Z = X + Y . Then the density function of Z at z
is given by

hZ(z) =

∫ ∞
0

fX,Y (z − y, y)dy (1)

The duplication of the Gamma function is given below:

Γ(2z)
√
π = 22z−1Γ(z)Γ

(
z +

1

2

)
(2)

The incomplete Gamma is defined by

γ(α, x) =

∫ x

0

tα−1e−tdt (3)

where Re(α) > 0 (Gradshteyn & Ryzhik 1994, Equation 8.350, p. 949).

The hypergeometric function pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) is defined by

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =

∞∑
k=0

(a1){k}(a2){k} . . . (ap){k}

(b1){k}(b2){k} . . . (bq){k}

zk

k!
(4)

where a{k} = a(a+ 1) . . . (a+ k − 1)

The following integral will be used:∫ ∞
0

xa−1e−bxγ(c, dx)dx =
dcΓ(a+ c)

c(b+ d)a+c
2F1

(
1, a+ c; c+ 1;

d

b+ d

)
(5)

with Re(a+ b) > 0, b > 0, (a+ c) > 0, (Gradshteyn & Ryzhik 1994).
The following theorem is due to Joarder (2009), although it can be followed

from Krishnaiah et al. (1963).

Theorem 1. The random variables U and V are said to have a correlated bivariate
chi-square distribution each with m(> 2) degrees of freedom, if its density function
is given by

fU,V (u, v) =
(uv)(m/2)−1

2mΓ2(m/2)(1− ρ2)m/2
exp

(
− u+ v

2− 2ρ2

)
0F1

(
m

2
;

ρ2uv

(2− 2ρ2)2

)
(6)

where 0F1(; b; z) is defined in 4 and −1 < ρ < 1.
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In case ρ = 0, the density function of the joint probability distribution in
Theorem 1, would be fU,V (u, v) = fU (u)fv(v) where U ∼ X2

m and V ∼ X2
m. The

product moment correlation coefficient between U and V can be calculated to be
ρ2. For the estimation of correlation coefficient ρ by modern techniques, we refer
to Ahmed (1992).

3. The Density Function and the Cumulative
Distribution Function

Let c1 and c2 be positive numbers so that T1 = c1U + c2V. Equivalently, let
T1 = c1T where T = U + cV, c = c2/c1 defines a general linear combination of the
variables U and V .

Theorem 2. Let U and V be two chi-square variables each having m degrees of
freedom with density function given in Theorem 1. Then for any positive constant
c, the density function of T = U + cV is given by

fT (t) =
Γ((m+ 1)/2)tm−1

2mΓ(m)[c(1− ρ2)]m/2
exp

(
− t

2− 2ρ2

)
×
∞∑
k=0

1

Γ(k + (m+ 1)/2)

(tρ)2k

(4− 4ρ2)2kckk!
1F1

(
k +

m

2
; 2k +m;

(c− 1)t

(2− 2ρ2)c

)
(7)

where m > 2,−1 < ρ < 1 and 0 ≤ t <∞.

Proof . It follows from (6) that the joint density function of X = U and Y = cV
is given by

fX,Y (x, y) =
(1− ρ2)−m/2

2mΓ2(m/2)

(xy
c

)(m/2)−1
exp

(
− 1

2− 2ρ2

(
x+

y

c

))
0F1

(
m

2
;

ρ2

(2− 2ρ2)2
xy

c

)
1

c

so that, by Lemma 1, the density function of T = X + Y is given by

fT (t) =
(c(1− ρ2))−m/2

2mΓ2(m/2)
exp

(
− t

2− 2ρ2

)
I(t;m, ρ, c) (8)

where

I(t;m, ρ, c) = Γ(m/2)

∞∑
k=0

1

Γ[k + (m/2)]

ρ2k

(2− 2ρ2)2kckk!
J(t;m, ρ, c) (9)

with J(t;m, ρ, c) =
∫ t
0
(t− y)k−1+(m/2)yk−1+(m/2) exp

(
(c−1)y
c(2−2ρ2)

)
dy
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Substituting y = st we have

J(t;m, ρ, c) = Γ(k + (m/2))t2k+m−1
∞∑
j=0

Γ[(k + j + (m/2))]

Γ(2k + j +m)

(c− 1)jtj

(2− 2ρ2)jcjj!
(10)

which, by (4), can be expressed as

J(t;m, ρ, c) = t2k+m−1
Γ2(k + (m/2))

Γ(2k +m)
1F1

(
k +

m

2
; 2k +m;

(c− 1)t

(2− 2ρ2)c

)
Plugging this in (9) and simplifying, we have

I(t;m, ρ, c) =
Γ(m/2)

√
π

2m−1
tm−1

∞∑
k=0

1

Γ(k + (m+ 1)/2)

(tρ)2k

(4− 4ρ2)2kckk!

× 1F1

(
k +

m

2
; 2k +m;

(c− 1)t

(2− 2ρ2)c

)
Substituting this in (8) and simplifying, we have (7).
Figure 1 provides a graphical display of this density function for m = 5 and

various values of c and ρ.

Figure 1: Linear combination of chi-square variables for m = 5 and various values of ρ.

Theorem 3. Let T have a density function given by (7). Then the Cumulative
Distribution Function of T is given by

FT (t) =
Γ((m+ 1)/2)

2mΓ(m)(c(1− ρ2))m/2

×
∞∑
k=0

1

Γ(k + (m+ 1)/2)

ρ2k

(4− 4ρ2)2kckk!
I(k;m, ρ)

(11)
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where I(k;m, ρ) =
∫ t
y=0

ym+2k−1 exp
(
− y

(2−2ρ2)

)
1F1

(
k + m

2 ; 2k +m; (c−1)y
(2−2ρ2)c

)
dy,

0 ≤ t <∞,−1 < ρ < 1,m > 2 and c is any positive constant.

Proof . It is immediate from Theorem 2

The CDF in (11) is not in closed form. However, if ρ = 0, a closed form
expression is presented in Theorem 5.

Theorem 4. Let U and V be two independent chi-square variables each having
m(> 2) degrees of freedom. Then for any positive constant c, the density function
of T = U + cV is given by

fT (t) =
tm−1e−t/2

2mcm/2Γ(m)
1F1

(
m

2
;m;

(c− 1)t

2c

)
, 0 ≤ t <∞ (12)

Proof . Putting ρ = 0 in Theorem 2, we have (12).

If c = 1, then (12) simplifies to the density function of X2
2m as expected. The

equation (10) is a special case of Provost (1988)

Theorem 5. Let U and V be two independent chi-square variables each having
m(> 2) degrees of freedom. Then the Cumulative Density Function of T = U + cV
is given by

F (t) =
1

cm/2

∞∑
k=0

(m/2){k}

Γ(k +m)

(c− 1)k

ckk!
γ(k +m, t/2) (13)

where m > 2 and γ(α, x) is defined in (3).

Proof . By substituting ρ = 0 in (12), we have

F (t) =
1

2mΓ(m)cm/2

∫ t

0

ym−1 exp (−y/2) 1F1

(
m

2
;

(c− 1)y

2c

)
dy

which simplifies to (13).

By substituting c = 1 in (13), we have F (t) = γ(m, t/2)/Γ(m) which is the
Cumulative Distribution Function X2

2m. Bausch (2012) developed and efficient
algorithm for computing linear combination of independent chi-square variables.

4. The Characteristic Function

The quantity i in this section is defined by the imaginary number i =
√
−1.

Theorem 6. Let U and V be two chi-square variables each having m(> 2) degrees
of freedom −1 < ρ < 1 with density function given in Theorem 1. Then the
characteristic function φU,V (w1, w2) = E(eiw1U+iw2V ) of U and V at w1 and w2

is given by

φU,V (w1, w2) = [(1− 2iw1)(1− 2iw2) + 4w1w2ρ
2]−m/2 (14)

where m > 2 and −1 < ρ < 1.
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Proof . See Omar & Joarder (2010).

The characteristic function of the linear combination of two correlated chi-
square variables is derived below.

Theorem 7. Let U and V be two chi-square variables each having m degrees of
freedom. Then for any known constant c, the characteristic function of T = U+cV
at w is given by the following:

φT (w) = [(1− 2iw)(1− 2icw) + 4w2cρ2]−m/2 (15)

where m > 2 and −1 < ρ < 1.

Proof . By definition,the characteristic function of T = U + cV is given by
φT (w) = E(eiwT ) = E[eiw(U+cV )] = E[ei(wU+cwV ].

By (14), E[ei(wU+cwV )] = φU,V (w, cw) and can be written as φU,V (w, cw) =
[(1− 2iw)(1− 2iw) + 4wcwρ2]−m/2, which is (15).

The corollary below follows from Theorem 7.

Corollary 1. Let U and V be two independent chi-square variables each having
the same degrees of freedom m. Then for any positive constant c, the characteristic
function of T = U + cV at w is given by the following:

φT (w) = [(1− 2iw)(1− 2iwc)]−m/2, m > 2 (16)

Since the above can be expressed as φT (w) = φU (w)φcV (w), clearly the random
variable T is the linear combination of two independent random variables U and
V . In case c = 1, the equation (16) will be specialized to the characteristic function
of a chi-square variable with 2m degrees of freedom.

The following results are for any general bivariate distribution.

Theorem 8. Let X and Y have a bivariate distribution with density function
fX,Y (x, y) and characteristic function ϕX,Y (w1, w2) = E(eiw1X+iw2Y ). Then for
any constant c, the characteristic function of T = X + cY at w is given by the
following:

φT (w) = φX,Y (w, cw) (17)

Proof . By definition, the characteristic function of T = X + cY is given by
φT (w) = E(eiwT ) = E[eiw(X+cY )] = E[ei(wX+cwY )] = φX,Y (w, cw).

Corollary 2. Let X and Y have a bivariate distribution with density function
fX,Y (x, y) and characteristic function ϕX,Y (w1, w2) = E(eiw1X+iw2Y ). Then, the
characteristic function of T = X + Y at w is given by the following:

φT (w) = φX,Y (w,w) (18)
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5. Moments, Coefficient of Skewness and Kurtosis

The following theorem is due to Joarder, Laradji, & Omar (2012).

Theorem 9. Let U and V have the bivariate chi-square distribution with density
function with common degrees of freedom m and density function in Theorem 1.
Then for a > −m/2, b > −m/2 and −1 < ρ < 1, the (a, b)-th product moment of
U and V , denoted by µ

′

a,b;ρ(U, V ) = E(UaV b), is given by

µ′a,b;ρ(U, V ) = 2a+b(1− ρ2)a+b+(m/2) Γ(a+ (m/2))Γ(b+ (m/2))

Γ2(m/2)

×2 F1

(
a+

m

2
, b+

m

2
;
m

2
; ρ2
)

(19)

where m > 2,−1 < ρ < 1 and 2F1(a1, a2; b; z) is defined in (4).

Theorem 10. Let T have a density function given by (7). Then the first four
moments of T are respectively given by

E(T ) = (c+ 1)m (20)

E(T 2) = (c2 + 1)m(m+ 2) + 2cm(m+ 2ρ2) (21)

E(T 3) = (c3 + 1)m(m+ 2)(m+ 4) + 3c(c+ 1)(m(m+ 2)(m+ 4ρ2)) (22)

E(T 4) = (c4 + 1)[m(m+ 2)(m+ 4)(m+ 6)]

+ 4c(c2 + 1)[m(m+ 2)(m+ 4)(m+ 6ρ2)]

+ 6c2m(m+ 2)[m(m+ 2) + 8(m+ 2)ρ2 + 8ρ4]

(23)

where c > 0,m > 2 and −1 < ρ < 1.

Proof . The moment expressions between (20) and (23) inclusively follow from
Theorem 9 by tedious algebraic simplification.

Let T have a density function given by (7). Then the a-th moment of T denoted
by E(T a) = E(U + cV )a, where c is any non-negative constant, is given by

µ′a(T ) =

a∑
j=0

(
a

j

)
ca−jµ′j,a−j;ρ(U, V ) (24)

where µ′j,a−j;ρ(U, V ) = E(U jV a−j) is given by Theorem 9.
The centered moments of T of order a is given by µa = E(T − E(T ))a, a =

1, 2, . . . That is the second, third and fourth order mean corrected moments are
respectively given by

µ2 = E(T 2)− µ2 (25)

µ3 = E(T 3)− 3E(T 2)µ+ 2µ3 (26)

µ4 = E(T 4)− 4E(T 3)µ+ 6E(T 2)µ2 − 3µ4 (27)
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Where µ = E(T ). The explicit forms for the centered moments of the linear
combination of bivariate chi-square random variables are given in the following
theorem.

Theorem 11. Let T have a density function given by (7). The second to fourth
centered moments of T are given by the following:

µ2 = 2m(1 + c2 + 2cρ2) (28)

µ3 = 8(c+ 1)m(c2 − c+ 1 + 3cρ2) (29)

µ4 = 12m
[
2c2m+ (c4 + 1)(m+ 4)

+ 4c(4c2 + 4c+ 4 + c2m+m)ρ2 + 4c2(m+ 2)ρ4
] (30)

where m > 2, c is any positive constant and −1 < ρ < 1.

Proof . The moments between (28) to (30) inclusively follow from (25),(26) and
(27) with tedious algebraic simplifications.

In case ρ = 0,the moments match with that of T = U + cV where U and V
have independent chi-square distributions each with degrees of freedom m(> 2).

The skewness and kurtosis of a random variable T are given by the moment
ratios αi(T ) = µiµ

−i/2
2 , i = 3, 4. The theorem below follows from Theorem 11.

Theorem 12. Let T have a density function given by (7). The coefficient of
skewness and kurtosis of T where c is any non-negative constant, are given by

α3(T ) =
2
√

2(c+ 1)(3cρ2 + c2 − c+ 1)√
m(2cρ2 + c2 + 1)3/2

(31)

and
α4(T ) = 3 +

12

m(2ρ2c+ c2 + 1)2
(2c2ρ4 + 4c(c2 + c+ 1) + c4 + 1) (32)

respectively, where m > 2, c is any positive constant and −1 < ρ < 1.

In case ρ = 0, the above coefficient of skewness and kurtosis simplifies to, as
expected, that for T = U+cV where U and V are independent chi-square with the
same degrees of freedom m(> 2). In case c = 1, ρ decreases to 0 and the degrees
of freedom m increases indefinitely, then the coefficient of skewness and that of
kurtosis converges to 0 and 3 as expected.

6. Conclusion

We have developed the distributional characteristics of linear combination of
correlated chi-square variables. Based on the results in the paper, efficient com-
putational algorithms can be developed along the line of Bausch (2012) who de-
veloped an efficient algorithm for computing linear combination of independent
chi-square variables.
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Abstract

The problem of diagnostic checking is tackled from the perspective of the
subspace methods. Two statistics are presented and their asymptotic distri-
butions are derived under the null hypothesis. The procedures are devised
to deal with univariate and multivariate processes, are flexible and able to
separately check regular and seasonal correlations. The performance in finite
samples of the proposals is illustrated via Monte Carlo simulations and two
examples with real data.

Key words: Diagnostic checking, Portmanteau test, Residual autocorrela-
tion, Residuals.

Resumen

Este artículo trata el problema de la diagnosis residual desde la per-
spectiva de los métodos de subespacios. Se presentan dos estadísticos y sus
distribuciones asintóticas bajo la hipótesis nula. Ambos estadísticos pueden
usarse con procesos univariantes o multivariantes, son flexibles y permiten
contrastar separadamente las correlaciones regulares y estacionales. El com-
portamiento en muestras finitas de las dos propuestas se ilustra mediante
simulaciones de Monte Carlo y dos ejemplos con datos reales.

Palabras clave: autocorrelación residual, diagnosis de residuos, test de
Portmanteau, residuos.

1. Introduction

Since the seminal work by Box & Pierce (1970), or the enhanced version by
Ljung & Box (1978), many studies have focused in the ability of the statistical

aProfessor. E-mail: agarciah@ucm.es
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tests to determine the adequacy of a model. The procedures suggested in this
paper cope with this problem from a novel perspective.

We use a subspace methods-based approach to derive two tests and their
asymptotic distributions under the null of zero correlations up to order k. As
subspace methods, the procedures are devised to deal with univariate and multi-
variate processes that leads to a generalization of Ljung & Box (1978) and Hosking
(1980) -which is the Ljung-Box multivariate version- statistics, hereafter QLB and
PH , respectively.

The flexibility of the tests allows use to obtain gains in terms of statistical power
and robustness against non-robust competitors as QLB and PH . We propose that
these gains can improve by tuning a specific matrix that may be modified by
the user. Although this is not investigated in this paper, the question is briefly
addressed in the conclusion. However, no comparison against robust statistics is
performed as ours do not belong to this type of test. Our proposals are also able
to separately test seasonal correlations. When applied to seasonal data, our tests
present a gain in terms of degrees of freedom with respect to alternatives devised
to cope with seasonality, as McLeod (1978) or Ursu & Duchesne (2009), and in
terms of statistical power when compared to QLB . A Monte Carlo study shows
that the finite sample properties of one of our tests outperform those of QLB in
terms of nominal size, when the number of lags chosen grows, and in statistical
power.

Finally, results in Aoki (1990), Casals, Sotoca & Jerez (1999) and Casals,
García-Hiernaux & Jerez (2012) imply that Multiple-Source Error (MSE) state
space, Single-Source Error (SSE) state space and VARMAX models are equally
general and freely interchangeable. This means that our derivation of the distri-
bution for the residuals of a VARMA model permits to test the adequacy of its
equivalent MSE or SSE state space model. Consequently, our procedures can be
sequentially used to determine the system order in a state space model (since the
null hypothesis can always be written as residuals with system order equal to zero)
which is a critical decision in the subspace methods literature and applied data
modeling.

The plan of the paper is as follows. Section 2 presents previous results in
subspace methods that will be used later. Some distributional results and the
two tests proposed are derived in Sections 3 and 4, respectively. Lastly, Section
5 compares the performance of our proposals with Ljung-Box and Hoskings’ tests
using Monte Carlo experiments and two applications to real data.

To express the results precisely, we introduce the following notation which will
be use throughout the paper: d→ means converges in distribution to, a.s.→ means
converges almost surely to and plim means convergence in probability. These
three concepts are defined, e.g., in White (2001). Furthermore, In will be an
n-dimensional identity matrix and Am a square m−by−m matrix, unless defined
otherwise. The proofs of the propositions are given in the Appendix.
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2. Previous Results in Subspace Methods

Consider a linear fixed-coefficients system that can be described by the follow-
ing state space model:

xt+1 = Φxt +Eψt (1a)
zt = Hxt +ψt (1b)

where xt is a state n-vector, n being the true order of the system. In addition,
zt is an observable output m-vector, which is assumed to be zero-mean, ψt is
an unobservable input m-vector, and Φ, E and H are parameter matrices with
dimensions (n × n), (m × m) and (n × m), respectively. We suppose that the
following assumptions hold in (1a-1b).
Assumptions. A.1: ψt is a sequence of zero-mean uncorrelated variables with
E(ψtψ

′
t) = Γ, Γ, where Γ is a positive definite matrix. A.2: The system is stable

and strictly minimum-phase, i.e., all the eigenvalues of Φ and (Φ−EH) lie inside
the unit circle.

We use the SSE, or also called innovations, form (1a-1b) since it is general
and simpler than other representations. Its generality is discussed by Casals et al.
(2012), who show that SSE, MSE and VARMAX models are equally general and
freely interchangeable.

Additionally, throughout the paper we will also use z̄t, a standardized version

of zt, defined as z̄t = Σ̂
− 1

2 zt, where Σ̂ = T−1
T∑
t=1
ztz
′
t and T is the sample size.

García-Hiernaux, Jerez & Casals (2010) show that model (1a-1b) can be trans-
formed into a single equation in matrix form asZf = OXf+VΨf , where: a)Zf is
a block Hankel matrix whose columns can be generally defined as [z′t, . . . ,z

′
t+f−1]′

and each column is specified by a different value of t such that: t = p+ 1, . . . , T −
f + 1;1 b) p and f are two integers chosen by the user, where p > n; and, c) Xf

and Ψf are as Zf but with xt or ψt, respectively, instead of zt. For simplic-
ity, we assume p = f , denoting this integer by i. In this case, Zf and Ψf are
im × (T − 2i + 1) matrices. To simplify the notation, we denote the number of
columns of both matrices by T∗ = T − 2i + 1. Last, as it is detailed in García-
Hiernaux et al. (2010), Section 2, matrices O and V are known functions of the
original parameter matrices, Φ, E and H:

O :=
(
H ′ (HΦ)′ (HΦ2)′ . . . (HΦi−1)′

)′
im×n (2)

V :=


Im 0 0 . . . 0

HE Im 0 . . . 0

HΦE HE Im . . . 0
...

...
...

...
...

HΦi−2E HΦi−3E HΦi−4E . . . Im


im

(3)

1From now on all the block Hankel matrices will be defined in a similar way.
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Given A.2 and for large values of i and T , Xf is to a close approximation
representable as a linear combination of the past of the output, MZp, where
Zp := [z′t−p, . . . ,z

′
t−1]′ with t = p+ 1, . . . , T − f + 1. Then, the relation between

the past and the future of the output can be expressed by:

Zf ' βZp + VΨf (4)

where β = OM . For a given system order n, subspace methods first solve a
reduced-rank (as β is an im square matrix with rank n < im) weighted least
squares problem by estimating β as:

β̂ = ZfZ
′
p(ZpZ

′
p)
−1 (5)

and splitting it to estimateO andM , and then V . Finally, the parameter matrices
in (1a-1b) can be obtained from the estimates Ô, M̂ and V̂ , see, e.g., Katayama
(2005).

3. Some Distributional Results

We begin by establishing the null hypothesis that zt has no correlations differ-
ent from zero up to lag order k, i.e., H0: ρj = 0, j = 1, 2, . . . , k, where ρj is the
correlation coefficient of order j. It is common in the literature that the user just
chooses k to conduct the hypothesis testing. Accordingly, we define i as a function
of k, such that i is the integer rounded toward infinity of (k + 1)/2. However, the
tests could be directly adapted to any other value of i, or even different values of
p and f .

The first proposal uses a generalized least squares approach. Using the pre-
viously defined standardized version of the output and input, we have Z̄f =
β̄Z̄p + V̄ Ψ̄f , where Z̄p, Ψ̄p are as Zp,Ψp but with z̄t, ψ̄t instead of the origi-
nal zt,ψt. Matrix β̄ can be estimated as (5), but with the standardized matrices
Z̄p and Z̄f instead of Zp and Zf . Notice that an immediate consequence of the
null hypothesis is that β̄ = 0im. By applying the vec operator, which stacks the
columns of a matrix into a long vector, on ˆ̄β we state the following proposition:

Proposition 1. Given A.1-A.2, under H0,
√
T∗vec(

ˆ̄β|Z̄p)
d→ N

(
0, Π̄), where Π̄

is derived in the Appendix.

The second test comes from a canonical correlation approach. This one is
based on the information held in O, which affects Zf through β, see (4). The
canonical correlation analysis (CCA) between Zf and Zp is usually performed
by analyzing the product (ZfZ

′
f )−

1
2ZfZ

′
p(ZpZ

′
p)
− 1

2 , see Katayama (2005) for a
detailed description on CCA. From equation (5), one could get the product above
from (ZfZ

′
f )−

1
2 Ô, estimating O as ZfZ ′p(ZpZ

′
p)
− 1

2 and then M as (ZpZ
′
p)
− 1

2 ,
so that the equality β̂ = ÔM̂ holds. This second alternative leads to Proposition
2:

Proposition 2. Given A.1-A.2, under H0,
√
T∗vec

(
(ZfZ

′
f )−

1
2 Ô|Zp

) d→ N
(
0, Π̄).
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4. The Test Statistics

The covariance matrix Π̄ is not, generally, the identity matrix. In fact, it is
only so when i = 1. For i > 1 some elements in β̂ and (ZfZ

′
f )−

1
2 Ô are perfectly

correlated by construction, see equation (8) in the Appendix. However, as the
structure of Π̄ is known, the following proposition applies.

Proposition 3. For any random matrix A such that
√
T∗vecA

d→ N
(
0, Π̄), there

is an idempotent matrix P (im)2 of rankm2k, such that SA = T∗vec(A)′P vec(A)
d→

χ2
m2k.

Corollary 1. Consequently, by combining Propositions 1, 2 and 3, we get that both,
Sβ = T∗vec(

ˆ̄β)′P vec( ˆ̄β) and SO = T∗vec
(
(ZfZ

′
f )−

1
2 Ô
)′
P vec

(
(ZfZ

′
f )−

1
2 Ô
)
con-

verge to a chi-square distribution with m2k degrees of freedom.

Matrix P is the product of two weighting matrices that average the perfectly
correlated elements of vec(A) in a vector ofm2k uncorrelated elements. This point
deserves further discussion, as it makes the procedure flexible by tuning matrix P
according on the specific case. For instance, some P could be chosen with the aim
of reducing the effects of outliers or increasing the statistical power of the tests.

We have seen that, when i > 1 some elements in ˆ̄β and (ZfZ
′
f )−

1
2 Ô are

perfectly correlated. Matrix P , as it is proposed in the proof of Proposition
3 averages the perfectly correlated elements to obtain a vector of uncorrelated
components. The procedure computes each k-order correlation for different non-
disjoint subsamples and averages them to obtain a single one. In this way, the effect
of an outlier will be mitigated, provided that it only affects a small proportion of
the weighted correlations. This will be more likely the more subsamples we use,
i.e., the higher i is. Obviously, our statistics do not use robust estimation methods,
as M-estimators or MM-estimators, and therefore they are not robust statistics and
will perform worse than those methods in the presence of outliers. However, we
expect that they present a better performance than non-robust statistics as QLB
in such cases; specifically, innovational outliers, additive outliers or level changes
(see, for definitions, Tsay 1988). An example illustrates this feature in the next
section.

An interesting point that deserves more attention is that one could easily tune
the matrix P according to the data. If we are suspicious about the presence of
outliers then, instead of calculating the mean of several k-order correlation (which
is the proposal here), the median or the minimum could be used. In these cases,
the distribution of the statistics should be derived but the statistics are likely to
be more robust.

On the other hand, often in practice, only the low-order correlations are of
interest to analysts. Consequently, the possibility of modifying P by increasing
the weights of low lags (either ad-hoc or using a more sophisticated mechanism)
should increase the power of the tests.

In any case, a standard use of the Portmanteau tests is to check the residuals
obtained from fitting Vector Autoregressive Moving Average, VARMA, models.
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Here we adopt the usual definition of a stationary m-variate ARMA(p, q) process
(see, e.g., Liu 2006, p. 14.2). Nevertheless, when zt are the residuals from a
VARMA model, the asymptotic distribution of Sβ and SO is not as it has been
shown. The reason is that A.1 does not hold, as residuals, contrary to innovations,
present some linear constraints inherit from the VARMA estimation (see, e.g.,
Mauricio 2007). In these circumstances, the following proposition establishes the
asymptotic distribution of both statistics.

Proposition 4. When zt in (1b) are the residuals from a fittedm-vector ARMA(p,q)
model, then, under H0, Sβ and SO converge in distribution to a χ2

m2(k−p−q).

At this point, notice that testing H0 in any m-variate process requires (if
the Ljung-Box test is used) a Q-matrix that leads to m2 different statistics. As
Hosking (1980) test, ours offer a more natural scalar statistic instead. Further,
it is straightforward to see that for p = 1 and f = k + 1 both, Sβ and SO, are
equivalent to: (i) Ljung-Box statistic when m = 1 and (ii) Hoskings’ statistic when
m ≥ 1 (see, Hosking 1980, p. 605). In short, our procedures generalize Ljung-Box
and Hosking’s procedures, allowing for different values of p and f .

Furthermore, these results are extended to multiplicative seasonal VARMA(p, q)
×(P,Q)s models, where s is the seasonal period and (P,Q) are the seasonal au-
toregressive and moving average orders, respectively (see, Liu 2006, p. 14.36).
Regarding this, McLeod (1978), for the univariate case (m = 1), and Ursu & Duch-
esne (2009), for multivariate processes, proved that an adjusted version of the Q-
statistic follows a χ2

m2(k−p−q−P−Q). With our proposals, if one only identifies and
estimates the seasonal parameters (P,Q), Sβ or SO and Proposition 4 could easily
be used to check whether there is seasonal correlation in the residuals, testing H0:
ρj = 0, j = s, 2s, . . . , ks. The statistics should be computed by replacing Zp and
Zf by their seasonal counterparts Zsp := [z′t−si, z

′
t−s(i−1), . . . ,z

′
t−s]

′ and Zsf :=

[z′t, z
′
t+s, . . . ,z

′
t+s(i−1)]

′, where t = si+1, s(i+1)+1, . . . , T−s(i−1). In those cases
Sβ and SO follow a χ2

m2(k−P−Q). Hence, the adequacy of a VARMA(p, q)×(P,Q)s
model can be checked by sequentially identifying, estimating and applying the tests
using the seasonal matrices, Zsp and Zsf , and then the regular ones, Zp and Zf .
The sequential procedure implies a gain in terms of degrees of freedom with re-
spect to Ursu & Duchesne (2009) when testing for seasonal correlation, as we only
consider the seasonal part and not the complete model. This may be a great
advantage in very short samples.

5. Numerical Examples

In this section we investigate the finite sample properties of the proposed tests.
Its performance is compared with that of Ljung-Box (QLB) and Hosking (PH)
statistics, as they are the most common and cited diagnostic tests in the literature
for the univariate and the multivariate case, respectively. As said previously, no
comparison against robust methods is made as ours do not fulfill those character-
istics. However, in order to analyze its behavior in different situations, we split the
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study into some Monte Carlo simulations of univariate processes without outliers
contamination and two applications to real data in which, at least the first one,
contains documented additive outliers.

5.1. Monte Carlo Simulations

Firstly, we will study how the autocorrelation structure affects the empirical
size and power of the tests.
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Figure 1: Empirical size and power of Sβ , SO and QLB for different ARMA processes
(computed with a χ2

k at 5% and 5000 replications). The graphs at the bottom
depict the size and power for two seasonal processes. In these cases, QLB is
computed with k = 24 to be able to capture the seasonal structure, while Sβ
and SO are computed with the seasonal matrices Zs

p and Zs
f and ks = 2.

Figure 1 presents the empirical size and power of SO, Sβ and QLB for alter-
native AR(1) and MA(1) processes, with different k (lags) and T (sample size).
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Hosking’s test is omitted as it coincides with QLB in univariate processes.2 The
most noticeable features of this exercise are:

1. In processes without seasonality and short samples (T = 50):

a) QLB and Sβ perform very similarly with autoregressive structures, both
being slightly more powerful than SO.

b) The empirical power of QLB is clearly outperformed by our two pro-
posals when MA structures. This result partially coincides with Monti
(1994) who proposes a test using the residual partial autocorrelations
whose behavior is better than that of QLB if the order of the MA is
understated. However, in that case it was shown that QLB was more
powerful if the order of the AR part was understated. In contrast, we
did not find any evidence of this when applying Sβ .

2. The asymptotically equivalence of the three tests is observed when T grows.
For T = 300 and a AR(1) process the performance of the three tests is almost
identical. When T = 200 and a MA(1) process our tests still outperform
QLB , although less evidently than when T = 50.

3. In seasonal processes, SO and Sβ clearly outperform QLB in terms of statis-
tical power. Not surprisingly, this enhancement is even bigger with seasonal
MA(1) processes. The explanation comes from the fact that SO and Sβ are
computed with the seasonal matrices Zsp and Zsf defined in Section 4 and
the test is then computed with ks = 2. However, QLB is computed with
k = 24 to be able to capture the seasonal correlation.

Secondly, we analyze the empirical distribution of the statistics under H0 for
white noise samples and increasing values of k. Notice that in those cases the null
distribution follows a χ2

k. In this context, Figure 2 shows that Sβ better fits the
theoretical distribution than QLB and SO, when k = 15 and T = 50. Interestingly
enough, the simulations evidence that QLB and SO empirical distributions get
further away from the theoretical one when k increases for a given T . Nevertheless,
the distribution of Sβ correctly fits its theoretical counterpart regardless of the
value of k.3

5.2. Two examples with real data

The first example with real data considers the Residence Telephone Extensions
Inward Movement known as RESEX series (yt). The left plot of Figure 3 shows
the original monthly series that goes from January 1966 to May 1973, where obser-
vations t = 83, 84 are larger than the rest. These two outliers have a known cause,
namely a bargain month, in which residence extensions could be requested free of

2Simulations with higher lags in pure autoregressive, pure moving average or ARMA models
show similar or mixed results that do not suggest additional conclusions and, consequently, are
not presented here. However, they are available from the author upon request.

3Additional simulations not shown here are available from the author upon request.
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Figure 2: Empirical distribution for Sβ , SO and QLB compared to a theoretical χ2
15;

250,000 replications for T = 50 and k = 15.

charge. Robust methods identify an AR(1) in the regularly and seasonally differ-
enced transformation (∇∇12yt), see, e.g., Rousseeuw & Leroy (1987) or Li (2004).
On the contrary, standard methods usually do not capture the autocorrelation
structure due to the effect of the outliers.
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Figure 3: Top plot: Original RESEX series (yt). Bottom plot: P-values of Sβ , SO
and QLB for lags (k) from 1 to 25 obtained by applying the statistics to the
transformed series ∇∇12 log yt.

When we apply Sβ , SO and QLB to the transformed series ∇∇12 log yt, we find
that QLB does not reject the null from k = 7 at 5% of significance and from k = 8
at 10%. However, SO rejects the null at a 5% for all k except when k = 12 − 17,
where the p-values always remain below 16%. Finally, Sβ behaves much better
than QLB and SO with this data, rejecting the null at 1% of significance for all
k studied. This example is relevant as most empirical works only show the QLB
values for high lags (usually 10, 15 or 20) without paying attention to the loss of
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power when k increases, that can grow dramatically in the presence of outliers. Sβ
behavior explanation lies in the fact that i has been defined as a positive function
of k (see Section 2), so when k grows, i increases. As i is the number of subsamples
to compute the autocorrelations of the same order, when i increases, the weight
of the contaminated subsamples diminishes.

The second example deals with the logarithms of indices of monthly flour prices
in the cities of Buffalo, Minneapolis and Kansas City, over the period from August
1972 to November 1980, which give us 100 observations at each site. The aim of
modeling these data is to illustrate the performance of the proposed statistics, as
specification tools, and compare it with QLB and PH .

Since all series appear non-stationary, we use the log-difference transformation
zt = ∇ log(yt), where yt are the original series. Table 1 shows the results of
applying the statistics to zt with different lags. The first conclusion is that even if
all the tests suggest that there are significant correlations, at least up to order one,
QLB presents very low power when a (not-so) large lag is chosen. It seems that
the significant correlations at lag one are diluted by insignificant correlations at
other lags, and this effect is much more important in QLB than in Sβ , SO or PH .
In this context, notice that Sβ is the only statistic that keeps its p-value under 5%
for k = 5, 10. Additionally, QLB only reveals 5 out of 9 correlations statistically
significant at 5%, when k = 1.

Table 1: P-value of the statistics. H0: There are no correlations up to lag k in zt.
k (lag) SO Sβ PH QLB

1 .000∗ .000∗ .000∗

 .172 .026∗ .047∗

.103 .027∗ .056

.045∗ .018∗ .066



5 .241 .035∗ .072

.822 .416 .506

.716 .421 .493

.470 .309 .549



10 .155 .003∗ .082

.954 .744 .632

.918 .734 .545

.779 .682 .573


∗ rejects at 5%.

Following the results obtained with QLB at 5% in Table 1 when k = 1, a
restricted VAR(1) model (I − Φ1B)zt = at is tentatively specified. Parameter
estimates result in:

Φ̂1 =

 0 −.188∗ −.035

0 −.289∗ 0

−.401∗ .117 0

 , Γ̂a =

2.263 2.296 2.202

2.496 2.364

2.770

× 10−3, (6)

where ‘0’ denotes an entry constrained to be zero and ‘∗’ means the parameter
is significant at 5%. Table 2 presents the p-value of the diagnostic tests on the
residuals of model (6).
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Table 2: P-value of the statistics. H0: There are no correlations up to lag k in model
(6) residuals.

Statistic
k (lags)

2 5 10 15
SO .003∗ .200 .110 .202
Sβ .000∗ .003∗ .006∗ .007∗

PH .000∗ .037∗ .052 .256
Q†LB .429 .869 .792 .884

Q†LB is to the lowest p-value among all the elements of the QLB matrix.
∗ rejects at 5%.

QLB suggests that the correlations are zero for k = 2, 5, 10, 15 at 10% level
of significance, implying that model (6) is appropriate. However, SO, PH and
Sβ reject H0 for k = 2, k = 2, 5, 10 and k = 2, 5, 10, 15, respectively, at 5%
level. Hence, SO, PH and particularly Sβ strongly evidence that QLB leads to
an inappropriate specification. Instead, if we specify an unrestricted VAR(1), the
estimation returns:

Φ̂1 =

1.226∗ −1.355∗ .005

.830∗ −1.027∗ .035

.463 −.813∗ .142

 , Γ̂a =

2.033 2.140 2.039

2.390 2.253

2.647

× 10−3 (7)

To check if the residual correlations of model (7) are zero, the four procedures are
again employed. Table 3 shows these results. None of the tests rejects H0 for any
value of k. Surprisingly, QLB presents the smallest evidence in favor of the null
out of the four alternative for k = 2, 5. Model (7) was proposed by Lütkepohl &
Poskitt (1996) and, as it was shown in Grubb (1992), is better than many other
alternatives, in particular model (6).

Table 3: P-value of the statistics. H0: There are no correlations up to lag k in model
(7) residuals.

Statistic
k (lags)

2 5 10 15
SO .953 .952 .480 .454
Sβ .937 .952 .445 .506
PH .945 .951 .601 .838
Q†LB .455 .756 .736 .858

Q†LB is to the lowest p-value among all the elements of the QLB matrix.
∗ rejects at 5%.

From this exercise with multiple series we conclude that: (i) multivariate Port-
manteau statistics, Sβ,SO and PH , perform better than the multiple QLB , and
(ii) Sβ seems to be more powerful than SO and PH when k grows.
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6. Concluding Remarks

This work tackles the problem of diagnostic checking from an original view-
point. Two statistics based on subspace methods are presented and their asymp-
totic distributions are derived under the null. They generalize the Box-Pierce
statistic for single series, the Hoskings’ statistic in the multivariate case and are
able to separately test seasonal and regular correlations. Monte Carlo simulations
and two examples with real data show that our proposals perform better than the
common Ljung-Box Q-statistic in many different situations. The procedures can
sequentially be used to determine the system order, as the null hypothesis can
always be written as n = 0, which is a critical decision in the subspace methods
literature and the applied data modeling.

Moreover, the subspace structure and the possibility of tuning a weight matrix
make the tests more flexible and robust against outliers than non-robust alterna-
tives. In this paper we just propose a particular form for this matrix P (see proof
of Proposition 3), but others are possible and could be fitted to the characteris-
tics of the data. A deeper analysis of this point with the suggestion of different
matrices P could be the core of a next research.

Finally, the procedures used in the numerical examples and described in the pa-
per are implemented in a MATLAB toolbox for time series modeling called E4 that
can be downloaded from the webpage www.ucm.es/info/icae/e4. The source
code for all the functions in the toolbox is freely provided under the terms of the
GNU General Public License. This site also includes a complete user manual and
other materials.
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Appendix

Proof of Proposition 1. Equation (4) can be written as an equality by
including a term that tends to zero at an exponential rate as a result of the
minimum-phase assumption. For the lack of simplicity, we neglect this term during
the proof and treat equation (4) as an equality. By applying the vec operator to the
standardized version of equation (4), we have vecZ̄f = (Z̄

′
p ⊗ Iim)vecβ̄ + vecΨ̄f ,

where we use that, under H0, V̄ = Iim. From this, vec ˆ̄β = [(Z̄
′
p ⊗ Iim)′(Z̄

′
p ⊗

Iim)]−1(Z̄
′
p ⊗ Iim)′vecZ̄f , and hence we get vec( ˆ̄β − β̄) = H̄

−1
Ā
′
vecΨ̄f , where

H̄ = Ā
′
Ā and Ā = Z̄

′
p⊗Iim. Therefore, the covariance of vec ˆ̄β conditional to Z̄p

is cov[vec ˆ̄β|Z̄p] = H̄
−1
Ā
′
(Ω⊗Im)ĀH̄

−1, where (Ω⊗Im) denotes de covariance
of vecΨ̄ and we use that, underH0, E(z̄tz̄

′
t) = E(ψ̄tψ̄

′
t) = Im. Asymptotically, the

Ergodic Theorem (see, Theorem 3.34, White 2001) and H0 ensure that T−1
∗ Ā

′
(Ω⊗

Im)Ā
a.s.→ Π̄ and T∗H̄

−1 a.s.→ I(im)2 , where Π̄ has the following structure:

Π̄ =


Iim2 Πi−1 Πi−2 . . . Π1

Π′i−1 Iim2 Πi−1 . . . Π2

Π′i−2 Π′i−1 Iim2 . . . Π3

...
...

...
. . .

...
Π′1 Π′2 Π′3 . . . Iim2


(im)2

(8)

where Πi−j is a diagonal im2 matrix with ωi−j in the main diagonal,

ωi−j =

(
0 Im(i−j)
0 0

)
im

and j = 1, 2, . . . , T* − 1 (9)

Moreover, when j ≥ i, ωi−j is an im zero-matrix. This particular composi-
tion of Π̄ is inherited from the structure of Ψf . Consequently,

√
T∗vec(

ˆ̄β|Z̄p)
d→

N
(
0, Π̄). �

Proof of Proposition 2. Let (ZfZ
′
f )−

1
2 Ô = (ZfZ

′
f )−

1
2ZfZ

′
p(ZpZ

′
p)
− 1

2 , which
becomes (ZfZ

′
f )−

1
2 Ô = (ZfZ

′
f )−

1
2 (OMZp + Ψf )Z ′p(ZpZ

′
p)
− 1

2 under the null.
Substituting M = (ZpZ

′
p)
− 1

2 and vectorizing, we get vec[(ZfZ ′f )−
1
2 (Ô −O)] =[(

(ZpZp)
− 1

2Z ′p
)
⊗ (ZfZ

′
f )−

1
2

]
vecΨf .

The covariance matrix of vec[(ZfZ ′f )−
1
2 (Ô−O)] conditional to Zp is written

E
[[(

(ZpZ
′
p)
− 1

2Zp
)
⊗(ZfZ

′
f )−

1
2

]
vecΨfvecΨ

′
f

[(
Z ′p(ZpZ

′
p)
− 1

2

)
⊗(ZfZ

′
f )−

1
2

]
|Zp
]
.

By replacing (ZfZ
′
f )−

1
2 = (ZfZ

′
f )−

1
2 and using that, under H0, Zf |Zp = Zf ,

the covariance becomes
[(

(ZpZ
′
p)
− 1

2Zp
)
⊗ (ZfZ

′
f )−

1
2

]
(Ω⊗Q)

[(
Z ′p(ZpZ

′
p)
− 1

2

)
⊗

(ZfZ
′
f )−

1
2

]
. Again under the null hypothesis,

√
T∗(ZfZ

′
f )−

1
2

a.s.→ Ii ⊗ Γ−
1
2

and
√
T∗(ZpZ

′
p)
− 1

2
a.s.→ Ii ⊗ Γ−

1
2 hold. Using the properties of the Kronecker
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product, we can finally write cov[vec((ZfZ
′
f )−

1
2 Ô)]

a.s.→ T−2
∗

[[(
(Ii ⊗ Γ−

1
2 )Zp

)
⊗

Ii
]
Ω
[(
Z ′p(Ii ⊗ Γ−

1
2 )
)
⊗ Ii

]]
⊗ Im.

On the other hand, the covariance of vec(β̂|Zp) is H̄
−1

(Z̄p⊗Iim)(Ω⊗Im)(Z̄
′
p⊗

Iim)H̄
′−1 a.s.→ T−1

∗ Π̄. Finally, as limT→∞ |Z̄p − (Ii ⊗ Γ−
1
2 )Zp| = 0, then both,

vec( ˆ̄β|Zp) and cov[vec((ZfZ
′
f )−

1
2 Ô)], tend asymptotically to T−1

∗ Π̄. �

Proof of Proposition 3. As matrix Π̄ is known, it is straightforward to see
that not all the elements in A are independent, except when i = 1, that implies
Π̄ = Im2 . Given the structure of Π̄ and using the submatrix Matlab notation:
(i) The first im elements of vecA, which are A1:im,1:m, are uncorrelated as the
square submatrix Π̄1:im = Iim2 , and (ii) as the first m rows of Π̄

′
i−1 are ze-

ros, then the elements of the submatrix A1:m,m+1:m+2 are also uncorrelated with
those of A1:im,1:m. This occurs for every element in the submatrix A1:m,m+1:im

due to the structure of zeros in Π̄
′
i−k, k = 1, 2, . . . , i − 1. Then the elements

in A1:m,m+1:im are uncorrelated with those of A1:im,1:m and, therefore, Π̄ is of
rank m2(2i − 1). In order to extract m2k independent elements from A, we use
the singular value decomposition (SVD) of Π̄, yielding a matrix B(im)2×m2k such

that Π̄
svd
= US

1
2S

1
2V ′ = BB′. Consequently, we have B†Π̄B′† = Im2k, where

‘†’ denotes the Moore-Penrose pseudo inverse, and B†vec(A)
d→ N

(
0, T−1

∗ Im2k)

which leads to SA = T∗vec(A)′P vec(A)
d→ χ2

m2k, P = B′†B† being a symmetric
idempotent matrix of rank m2k. �

Proof of Proposition 4. Let the rth autocovariance matrix of the innova-
tions be Cr = T−1ψtψ

′
t−r and the rth residual autocovariance matrix be Ĉr =

T−1ψ̂tψ̂
′
t−r. Further, define C = (C1C2 . . . Ck) and similary Ĉ. (Hosking 1980)

proved that vec(Ĉ) = Dvec(C) where D is idempotent of rank m2(k−p−q). Let
ˆ̄β∗ be as in (5) but using z̄t instead of zt and assuming that z̄t are the standardized
residuals from a VARMA(p, q) model. In such a case, ˆ̄β∗

a.s.→ ₡̂(Ii ⊗ Im)−1 = ₡̂
where:

₡̂ =


Ĉ k̄−i+1 Ĉ k̄−i . . . Ĉ1

Ĉ k̄−i+2 Ĉ k̄−i+1 . . . Ĉ2

...
...

. . .
...

Ĉ k̄ Ĉ k̄−1 . . . Ĉ k̄−i+1


im

with k̄ ≡
{
k if k is odd
k + 1 if k is even.

(10)
Then, we can write B†vec( ˆ̄β∗) = D̄B†vec( ˆ̄β) as it was done by (Hosking 1980),
since B†vec( ˆ̄β∗) and B

†vec( ˆ̄β) have, asymptotically, the same elements as vec(Ĉ)
and vec(C), respectively, but sorted in different order. Likewise, D̄ has the same
rows as D, but ordered differently, that yields rank(D̄) = rank(D) = m2(k− p−
q). Finally, we previously showed that B†vec( ˆ̄β|Zp)

d→ N
(
0, T−1

∗ Im2k) and, con-
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sequently, B†vec( ˆ̄β∗|Zp)
d→ N

(
0, T−1

∗ D̄), which leads to T∗vec( ˆ̄β∗)
′P vec( ˆ̄β∗)

d→
χ2
m2(k−p−q). �
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Abstract

In this article we show that the Kullback’s statistic for testing equality
of several correlation matrices may be considered a modified likelihood ratio
statistic when sampling from multivariate normal populations. We derive
the asymptotic null distribution of L∗ in series involving independent chi-
square variables by expanding L∗ in terms of other random variables and
then inverting the expansion term by term. An example is also given to
exhibit the procedure to be used when testing the equality of correlation
matrices using the statistic L∗.

Key words: Asymptotic null distribution, Correlation matrix, Covariance
matrix, Cumulants, Likelihood ratio test.

Resumen

En este artículo se muestra que el estadístico L∗ de Kullback , para probar
la igualdad de varias matrices de correlación, puede ser considerado como un
estadístico modificado del test de razón de verosimilitud cuando se muestrean
poblaciones normales multivariadas. Derivamos la distribución asintótica
nula de L∗ en series que involucran variables independientes chi-cuadrado,
mediante la expansión de L∗ en términos de otras variables aleatorias y
luego invertir la expansión término a término. Se da también un ejemplo
para mostrar el procedimiento a ser usado cuando se prueba igualdad de
matrices de correlación mediante el estadístico L∗.
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1. Introduction

The correlation matrix is one of the foundations of factor analysis and has
found its way into such diverse areas as economics, medicine, physical science
and political science. There is a fair amount of literature on testing properties
of correlation matrices. Tests for certain structures in a correlation matrix have
been proposed and studied by several authors, e.g, see Aitkin, Nelson, and Rein-
furt (1968), Gleser (1968), Aitkin (1969), Modarres (1993), Kullback (1997) and
Schott (2007). In a series of papers, Konishi (1978, 1979a, 1979b) has developed
asymptotic expansions of correlation matrix and applied them to various problems
of multivariate analysis. The exact distribution of the correlation matrix, when
sampling from a multivariate Gaussian population, is derived in Ali, Fraser and
Lee (1970) and Gupta and Nagar (2000).

If the covariance matrix of α-th population is given by Σα and ∆α is a diagonal
matrix of standard deviations for the population α, then Pα = ∆−1α Σα∆−1α is the
correlation matrix for the population α. The null hypothesis that all k populations
have the same correlation matrices may be stated as H : P1 = · · · = Pk.

Let the vectors xα1,xα2, . . . ,xαNα be a random sample of size Nα = nα + 1
for α = 1, 2, . . . , k from k multivariate populations of dimensionality p. Further,
we assume the independence of these k samples. Let xα =

∑Nα
i=1 xαi/Nα, Aα =∑Nα

i=1(xαi−xα)(xαi−xα)′ and Sα = Aα/Nα. Further, letDα be a diagonal matrix
of the square roots of the diagonal elements of Sα. The sample correlation matrix
Rα is then defined by Rα = D−1α SαD

−1
α . Let n =

∑k
α=1 nα and R =

∑k
α=1 nαRα.

Kullback (1967) derived the statistic L∗ =
∑k
α=1 nα ln{det(R)/ det(Rα)} for

testing the equality of k correlation matrices based on samples from multivariate
populations. This statistic was later examined by Jennrich (1970) who observed
that the statistic proposed by Kullback failed to have chi-square distribution as-
cribed to it. For further results on this topic the reader is referred to Browne (1978)
and Modarres and Jernigan (1992).

Although the Kullback’s statistic L∗ is not equal to the modified likelihood ratio
criterion, we here show that it may be considered an approximation of the modified
likelihood ratio statistic when sampling from multivariate normal populations.

In Section 2, we show that Kullback’s statistic can be viewed as an approxima-
tion of the modified likelihood ratio statistic based on samples from multivariate
normal populations. Section 3 deals with some preliminary results and definitions
which are used in subsequent sections. In sections 4 and 5, we obtain asymptotic
null distribution of L∗ by expanding L∗ in terms of other random variables and
then inverting the expansion term by term. Finally, in Section 6, an example
is given to demonstrate the procedure to be used when testing the equality of
correlation matrices using the statistic L∗. Some results on matrix algebra and
distribution theory are given in the Appendix.
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2. The Test Statistic

In this section, we give an approximation of the likelihood ratio test statistic
λ for testing equality of correlation matrices of several multivariate Gaussian pop-
ulations. The test statistic λ was derived and studied by Cole (1968a, 1968b)
in two unpublished technical reports (see Browne 1978, Modarres and Jerni-
gan 1992, 1993). However, these reports are scarcely available, and therefore the
sake of completeness and for a better understanding it seems appropriate to first
give a concise step-by-step derivation of the test statistic λ.

If the underlying populations follow multivariate normal distributions, then
the likelihood function based on the k independent samples, when all parameters
are unrestricted, is given by

L(µ1, . . . ,µk,Σ1, . . . ,Σk)

=

k∏
α=1

[
(2π)pNα/2 det(Σα)Nα/2

]−1
× exp

[
−1

2

k∑
α=1

tr
(
Σ−1α Aα

)
− 1

2

k∑
α=1

tr
{

Σ−1α (x̄α − µα)(x̄α − µα)′
}]

where for α = 1, . . . , k we have µα ∈ Rp and Σα > 0. It is well known that for any
fixed value of Σα the likelihood function is maximized with respect to the µα’s
when µ̂α = xα.

Let ∆α be a diagonal matrix of standard deviations for the population α.
Further, let Pα = ∆−1α Σα∆−1α be the population correlation matrix for the pop-
ulation α. The natural logarithm of the likelihood function, after evaluation at
µ̂α = xα, may then be written as

ln[L(x̄1, . . . , x̄k,∆1P1∆1, . . . ,∆kPk∆k)]

= −1

2
Np ln(2π)− 1

2

k∑
α=1

Nα ln[det(Pα∆2
α)]− 1

2

k∑
α=1

tr(NαP
−1
α GαRαGα)

where N =
∑k
α=1Nα and Gα = ∆−1α Dα. Further, when the parameters are

unrestricted, the likelihood function L(x1, . . . ,xk,∆1P1∆1, . . . ,∆kPk∆k) is max-
imized when − ln[det(Pα∆2

α)] − tr
(
P−1α GαRαGα

)
is maximized for each α. This

is true when

ln[det(Pα∆2
α)] + tr

(
P−1α GαRαGα

)
= ln[det(∆αPα∆α)] + tr

(
∆−1α P−1α ∆−1α DαRαDα

)
is minimized for each α. This is achieved when ∆αPα∆α = DαRαDα. From this
it follows that the maximum value of L(x1, . . . ,xk,∆1P1∆1, . . . ,∆kPk∆k), when
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the parameters are unrestricted, is given by

ln[L(x̄1, . . . , x̄k, D1R1D1, . . . , DkRkDk)]

= −1

2
Np[ln(2π) + 1]− 1

2

k∑
α=1

Nα ln[det(RαD
2
α)]. (1)

Let P be the common value of the population correlation matrices under the null
hypothesis of equality of correlation matrices. The reduced parameter space for
the covariance matrices is the set of all covariance matrices that may be written
as ∆αP where P is a correlation matrix and ∆α is a diagonal matrix with positive
elements on the diagonal. The restricted log likelihood function is written as

ln[L(x̄1, . . . , x̄k,∆1P, . . . ,∆kP )]

= −1

2
Np ln(2π)− 1

2

k∑
α=1

Nα ln[det(P∆2
α)]− 1

2

k∑
α=1

Nα tr
(
P−1GαRαGα

)
.

Let P−1 = (ρij). Since ∆α is a diagonal matrix,

ln[det(∆α)2] = 2 ln[det(∆α)] = 2 ln

[
p∏
i=1

σαii

]
= 2

p∑
i=1

ln(σαii)

Also, since Gα = ∆−1α Dα is a diagonal matrix, we have

tr
(
P−1GαRαGα

)
=

p∑
i=1

p∑
j=1

ρijgαjrαijgαi

Thus,

ln[L(x̄1, . . . , x̄k,∆1P, . . . ,∆kP )]

= −1

2
Np ln(2π)− 1

2

k∑
α=1

Nα

p∑
i=1

ln(σαii)−
1

2

k∑
α=1

Nα ln[det(P )]

− 1

2

k∑
α=1

Nα

p∑
i=1

p∑
j=1

ρijgαjrαijgαi

Since, gαi = sαii/σαii, differentiation of ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )] with re-
spect to σαii yields

∂

∂σαii
ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )] = − Nα

2σαii
+

Nα
2σαii

p∑
j=1

gαigαjρ
ijrαij

Further, setting this equal to zero gives
∑p
j=1 gαigαjρ

ijrαij−1 = 0. Differentiating
ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )] with respect to the matrix P using Lemma 6, we
obtain

∂

∂P
ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )] = −1

2
NP−1 +

1

2

k∑
α=1

NαP
−1GαRαGαP

−1
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Setting this equal to zero, multiplying by 2, pre and post multiplying by P and
dividing by N gives P =

∑k
α=1NαGαRαGα/N so that

∑k
α=1Nαg

2
αi/N = 1.

The likelihood ratio test statistic λ for testing H : P1 = · · · = Pk is now derived
as

λ =

k∏
α=1

det(RαD
2
α)Nα/2

det(P̂ ∆̂2
α)Nα/2

where P̂ and ∆̂2
α are solutions of P̂ =

∑k
α=1Nα∆̂−1α Sα∆̂−1α /N and

∑p
j=1 ρ

ijsαij−
1 = 0, i = 1, . . . , p, respectively.

To obtain an approximation of the likelihood ratio statistic we replace σαii
by its consistent estimator σ̂αii. Then, it follows that ĝαii = sαii/σ̂αii and
Ĝα = diag(ĝα1, . . . , ĝαp), and the estimator of P is given by P̂ =

∑k
α=1NαĜαRα

Ĝα/N . Thus, an approximation of the maximum of ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )]
is given as

− 1

2
Np[ln(2π) + 1]− 1

2

k∑
α=1

Nα ln[det(∆̂α)2]− 1

2
N ln[det(P̂ )] (2)

As the sample size goes to infinity, sαii/σ̂αii converges in probability to 1 so that
Ĝα converges in probability to Ip. This suggest further approximation of (2) as

− 1

2
Np[ln(2π) + 1]− 1

2

k∑
α=1

Nα ln[det(Dα)2]− 1

2
N ln

[
det

(
k∑

α=1

Nα
N
Rα

)]
(3)

Now, using (1) and (3), the likelihood ratio statistic is approximated as

λ̃ =

∏k
α=1 det(Rα)Nα/2

det(
∑k
α=1NαRα/N)N/2

(4)

Further, replacing Nα by nα above, an approximated modified likelihood ratio
statistic is derived as

M =

∏k
α=1 det(Rα)nα/2

det(
∑k
α=1 nαRα/n)n/2

=

∏k
α=1 det(Rα)nα/2

det(R)n/2
(5)

Since −2 lnM =
∑k
α=1 nα ln{det(R)/ det(Rα)} = L∗, the statistic proposed by

Kullback may be thought of as an approximated modified likelihood ratio statistic.

3. Preliminaries

Let the vectors xα1, . . . ,xαNα be a random sample of size nα for α = 1, . . . , k
from k multivariate populations of dimensionality p and finite fourth moments.
The characteristic function for the population α is given by φ∗α(t) = E[exp(ι t′x)]

Revista Colombiana de Estadística 36 (2013) 239–260



244 Arjun K. Gupta, Bruce E. Johnson & Daya K. Nagar

where ι =
√
−1 and t = (t1, . . . , tp)

′. The log characteristic function for population
α may be written as

ln[φ∗α(t)] =

∞∑
r1+···+rp=1

κ∗α(r1, . . . , rp)

p∏
j=1

(ιtj)
rj

rj !
, rj ∈ I+ (6)

where I+ is the set of non-negative integers. The cumulants of the distribution are
the coefficients κ∗α(r1, . . . , rp). If r1 + · · ·+ rp = m, then the associated cumulant
is of order m. The relationship between the cumulants of a distribution and the
characteristic function provide a convenient method for deriving the asymptotic
distribution of statistic whose asymptotic expectations can be derived.

The cumulants of order m are functions of the moments of order m or lower.
Thus if the mth order moment is finite, so is the mth order cumulant. Let µi =
E(Xi), µij = E(XiXj), µijk = E(XiXjXk), and µijk` = E(XiXjXkX`) and κi,
κij , κijk, and κijk` be the corresponding cumulants. Then, Kaplan (1952) gives
the following relationship:

κi = µi,

κij = µij − µiµj ,
κijk = µijk − (µiµjk + µjµik + µkµij) + 2µiµjµk,

κijk` = µijk` −
4∑
µiµjk` −

3∑
µijµk` + 2

6∑
µiµjµk` − 6µiµjµkµ`

where the summations are over the possible ways of grouping the subscripts, and
the number of terms resulting is written over the summation sign.

Define the random matrix Vα as

Vα =
√
nα

(
1

nα
∆−1α Aα∆−1α − Pα

)
(7)

Then, the random matrices V (0)
α , V (1)

α and V (2)
α are defined as

V (0)
α = diag(vα11, vα22, . . . , vαpp) (8)

V (1)
α = Vα −

1

2
V (0)
α Pα −

1

2
PαV

(0)
α (9)

and

V (2)
α =

1

4
V (0)
α PαV

(0)
α − 1

2
VαV

(0)
α − 1

2
V (0)
α Vα +

3

8
(V (0)
α )2Pα +

3

8
Pα(V (0)

α )2 (10)

Konishi (1979a, 1979b) has shown that

Rα = Pα +
1
√
nα
V (1)
α +

1

nα
V (2)
α +Op(n

−3/2
α )

The pooled estimate of the common correlation matrix is

R =

k∑
α=1

ωαRα
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so that
R = P +

1√
n
V

(1)
+

1

n
V

(2)
+Op(n

−3/2)

where ωα = nα/n, P =
∑k
α=1 ωαPα, V

(1)
=

∑k
α=1

√
ωα V

(1)
α and

V
(2)

=
∑k
α=1 V

(2)
α . The limiting distribution of Vα =

√
nα
(
∆−1α Aα∆−1α /nα − Pα

)
is normal with means 0 and covariances that depend on the fourth order cumulants
of the parent population (Anderson 2003, p. 88).

Since ∆α is a diagonal matrix of population standard deviations, ∆−1α xα1, . . . ,
∆−1α xαNα may be thought of as Nα observations from a population with finite
fourth order cumulants and characteristic function given by

ln[φα(t)] =

∞∑
r1+···+rp=1

κα(r1, . . . , rp)

p∏
j=1

(ιtj)
rj

rj !
, rj ∈ I+ (11)

where the standardized cumulants, κα(r1, r2, . . . , rp), are derived from the expres-
sion (6) as

κα(r1, r2, . . . , rp) =
κ∗α(r1, r2, . . . , rp)

σα11χr1σα22χr2 · · ·σαppχrp

with χrj = 1 if rj = 0, χrj = 1/σ(α)jj if rj 6= 0 and Σ−1α = (σ(α)jj).
K-statistics are unbiased estimates of the cumulants of a distribution, and

may be used to derive the moments of the statistics which are symmetric func-
tions of the observations (Kendall and Stuart 1969). Kaplan (1952) gives a series
of tensor formulaes for computing the expectations of various functions of the
k-statistics associated with a sample of size N from a multivariate population.
For the definition of the k-statistics, let N (r) = N(N − 1) · · · (N − r + 1).

If si1i2···i` denotes the product Xi1Xi2 · · ·Xi` summed over the sample, the
tensor formulae for the k-statistics may be shown to be as follows:

ki =
si
N
, kij =

Nsij − sisj
N (2)

, kijk =
N2sijk −N

3∑
sisjk + 2sisjsk

N (3)

kijk` =
N(N + 1)(Nsijk` −

4∑
sisjk`)−N (2)

3∑
sijsk` + 2N

6∑
sisjsk` − 6sisjsks`

N (4)

κ(ab, ij) = E[(kab − κab)(kij − κij)]

=
κabij
N

+
κaiκbj + κajκbi

N − 1

κ(ab, ij, pq) = E[(kab − κab)(kij − κij)(kpq − κpq)]

=
κabijpq
N2

+

12∑ κabipκjq
N(N − 1)

+

4∑ (N − 2)κaipκbjq
N(N − 1)2

+

8∑ κaiκbpκjq
(N − 1)2
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The summations are over the possible ways of grouping the subscripts, and the
number of terms resulting is written over the summation sign.

The matrix Vα is constructed from observations from the standardized distri-
bution so that vαij =

√
nα(kαij − ραij) where kαij is the related k-statistic for

standardized population α. Kaplan’s formulae may be applied to derive the fol-
lowing expressions for the expectations of elements of the matrices Vα (note that
καij = ραij). We obtain

E(vαij) = 0

E(vαijvαk`) = καijk` + ραikραj` + ραi`ραjk +O(n−1α )

and

E(vαijvαk`vαab) =
1
√
nα

[
καijk`ab +

12∑
καijkaρα`b +

4∑
καikaκαj`b

+

8∑
ραikραjaρα`b

]
+O(n−3/2α )

The random matrices V (0)
α , V (1)

α and V (2)
α are defined in (8), (9), and (10), respec-

tively. The expectations associated with these random matrices are given as

E(v
(1)
αij) = 0

E(v
(2)
αij) =

1

4
ραijκαiijj −

1

2
(καiiij + καijjj) +

3

8
ραij(καiiii + καjjjj)

+
1

2
(ρ3αij − ραij) +O(n−1α )

E(v
(1)
αijv

(1)
αk`) = καijk` −

1

2
(ραijκαiik` + ραijκαjjk` + ραk`καijkk + ραk`καij``)

+
1

4
ραijραk`(καiikk + καii`` + καjjkk + καjj``)

− (ραk`ραikραjk + ραk`ραi`ραj` + ραijραikραi` + ραijραjkραj`)

+
1

2
ραijραk`(ρ

2
αik + ρ2αi` + ρ2αjk + ρ2αi`)

+ (ραikραj` + ραi`ραjk) +O(n−1α ) (12)

and

E(v
(1)
αijv

(1)
αk`v

(1)
αab) =

1
√
nα

(
tα1 −

1

2
tα2 +

1

4
tα3 −

1

8
tα4

)
+O(n−3/2α )

where

tα1 = καijk`ab +

12∑
καijkaκα`b +

4∑
καikaκαi`b +

8∑
ραikραjaρα`b
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tα2 =

3∑
ραij

[
καiik`ab + καjjk`a +

12∑
(καiika + καjjka)

+

3∑
(καikaκαi`b + καjkaκαj`b) +

8∑
(ραikραiaρα`b + ραjkραjaρα`b)

]

tα3 =

3∑
ραijραk`

[
καiikkab + καii``ab + καjjkkab + καjj``ab

+

12∑
(καiikaραkb + καii`aρα`b + καjjkaραkb + καjj`aρα`b)

+

3∑
(καikaκαikb + καi`aκαi`b + καjkaκαjkb + καj`aκαj`b)

+

8∑
(ραikραiaραbk + ραi`ραiaρα`b + ραjkραjaραbk + ραj`ραjaρα`b)

]
and

tα4 = ραijραk`ραab

8∑[
καiikkaa +

12∑
(καiikaραka) +

3∑
(καikaκαikb)

+

8∑
(ραikραiaραka)

]
Lemma 1. The diagonal elements of V (1)

α are zero.

Proof . Using (9) and the fact that V (0)
α is a diagonal matrix, we have

v
(1)
αij = vαij −

1

2
ραij(vαii + vαjj)

The result follows by taking j = i above and noting that diagonal elements of Pα
are 1.

Lemma 2. The diagonal elements of V (2)
α are zero.

Proof . Using (10) and the fact that V (0)
α is a diagonal matrix, we get

v
(2)
αij =

1

4
v
(0)
αiiραijv

(0)
αjj −

1

2
vαij(vαjj + vαii) +

3

8
ραij(v

2
αii + v2αjj)

The result follows by substituting j = i above and observing that ραii = 1.

4. Asymptotic Expansion of L∗

In order to derive the asymptotic distribution for L∗ the statistic is first ex-
panded in terms of other random variables (see Konishi and Sugiyama 1981).
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The statistic L∗ may be written as L∗ = ng(R1 . . . , Rk) where g(R1, . . . , Rk) =

ln[det(R)]−
∑k
α=1 ωα ln[det(Rα)]. Let

Bα =
1
√
nα
P−1α V (1)

α +
1

nα
P−1α V (2)

α

Since, Pα, V
(1)
α and V (2)

α are all positive definite, so is Bα. This insures that the
eigenvalues of Bα exist and are positive. Also, as nα becomes large, the elements
in Bα become small so that the characteristic roots may be assumed to be less
than one. Using Lemma 5,

ln[det(Rα)] = ln[det(Pα + PαBα)] +Op(n
−3/2
α )

= ln[det(Pα)] + tr(Bα)− 1

2
tr(BαBα) +Op(n

−3/2
α )

Now, BαBα = n−1α P−1α V
(1)
α P−1α V

(1)
α +Op(n

−3/2
α ) so that

ln[det(Rα)] = ln[det(Pα)] +
1
√
nα

tr(P−1α V (1)
α ) +

1

nα
tr(P−1α V (2)

α )

− 1

2nα
tr
(
P−1α V (1)

α P−1α V (1)
α

)
+Op(n

−3/2
α )

A similar expansion for ln[det(R)] may be obtained by defining B by

B =
1√
n

k∑
α=1

√
ωαP

−1
V (1)
α +

1

n

k∑
α=1

P
−1
V (2)
α

Then

ln[det(R)] = ln[det(P + PB)] +Op(n
−3/2)

= ln[det(P )] + tr(B)− 1

2
tr(BB) +Op(n

−3/2)

Since BB = n−1
∑k
α=1

∑k
β=1

√
ωαωβP

−1
V

(1)
α P

−1
V

(1)
β +Op(n

−3/2),

ln[det(R)] = ln[det(P )] +
1√
n

k∑
α=1

√
ωα tr(P

−1
V (1)
α ) +

1

n

k∑
α=1

tr(P
−1
V (2)
α )

− 1

2n

k∑
α=1

k∑
β=1

√
ωαωβ tr(P

−1
V (1)
α P

−1
V

(1)
β ) +Op(n

−3/2)

Combining these expressions yields

g(R1, . . . , Rk) = ln[det(P )]−
k∑

α=1

ωα ln[det(Pα)] +
1√
n

k∑
α=1

√
ωα tr(HαV

(1)
α )

+
1

n

k∑
α=1

tr(HαV
(2)
α ) +

1

2

k∑
α=1

ωα
nα

tr(P−1α V (1)
α P−1α V (1)

α )
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− 1

2n

k∑
α=1

k∑
β=1

√
ωαωβ tr(P

−1
V (1)
α P

−1
V

(1)
β ) +Op(n

−3/2)

where Hα = (hαij) = (P
−1−P−1α ) = H ′α. Let G(R1, . . . , Rk) =

√
n[g(R1, . . . , Rk)

−g(P1, . . . , Pk)]. Then, since
√
n(ωα/nα) = (

√
n)−1, we obtain

G(R1, . . . , Rk) =

k∑
α=1

√
ωα tr(HαV

(1)
α ) +

1√
n

k∑
α=1

tr(HαV
(2)
α )

+
1

2
√
n

k∑
α=1

tr(P−1α V (1)
α P−1α V (1)

α )

− 1

2
√
n

k∑
α=1

k∑
β=1

√
ωαωβ tr(P

−1
V (1)
α P

−1
V

(1)
β ) +Op(n

−1) (13)

Theorem 1. The expression G(R1, . . . , Rk) may be written as

G(R1, . . . , Rk) =

k∑
α=1

∑
i<j

√
ωα h̄αijv

(1)
αij +

1√
n

k∑
α=1

∑
i<j

h̄αijv
(2)
αij

+
1√
n

k∑
α=1

∑
i<j

∑
k<`

qα(ij, k`)v
(1)
αijv

(1)
αk`

− 1√
n

k∑
α=1

k∑
β=1

∑
i<j

∑
k<`

√
ωαωβ q(ij, k`)v

(1)
αijv

(1)
βk` +Op(n

−1)

where P−1α = (ρijα ), P
−1

= (ρij), hαij = 2(ρij − ρijα ), qα(ij, k`) = ρi`αρ
jk
α +

ρikα ρ
j`
α and q(ij, k`) = ρi`ρjk + ρikρj`.

Proof . Using results on matrix algebra, we have

k∑
α=1

√
ωα tr(HαV

(1)
α ) =

k∑
α=1

√
ωα

p∑
i=1

p∑
j=1

hαjiv
(1)
αij

and since Hα is symmetric, application of Lemma 3 yields

k∑
α=1

√
ωα tr(HαV

(1)
α ) =

k∑
α=1

√
ωα
∑
i<j

(hαji + hαij)v
(1)
αij =

k∑
α=1

√
ωα
∑
i<j

hαijv
(1)
αij

In an entirely similar manner,

k∑
α=1

tr(HαV
(2)
α ) =

k∑
α=1

∑
i<j

hαijv
(2)
αij
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Using Lemma 4, results on matrix algebra and the symmetry of V (1)
α , we have

1

2

k∑
α=1

tr(P−1α V (1)
α P−1α V (1)

α )

=
1

2

k∑
α=1

p∑
i=1

p∑
j=1

p∑
k=1

p∑
`=1

ρi`αρ
jk
α v

(1)
αijv

(1)
αk`

=
1

2

k∑
α=1

∑
i<j

∑
k<`

(ρi`αρ
jk
α + ρj`α ρ

ik
α + ρikα ρ

j`
α + ρi`αρ

jk
α )v

(1)
αijv

(1)
αk`

=

k∑
α=1

∑
i<j

∑
k<`

qα(ij, k`)v
(1)
αijv

(1)
αk`

In a similar manner,

1

2

k∑
α=1

k∑
β=1

√
ωαωβ tr(P

−1
V (1)
α P

−1
V

(1)
β )

=

k∑
α=1

k∑
β=1

∑
i<j

∑
k<`

√
ωαωβ q(ij, k`)v

(1)
αijv

(1)
βk`

Combining these expansions in (13) completes the proof.

Corollary 1. In the special case p = 2, G(R1, . . . , Rk) may be written as

G(R1, . . . , Rk) = 2

k∑
α=1

√
ωα

(
ρα

1− ρ2α
− ρ

1− ρ2

)
v
(1)
α12

+
2√
n

k∑
α=1

(
ρα

1− ρ2α
− ρ

1− ρ2

)
v
(2)
α12 +

1√
n

k∑
α=1

1 + ρ2α
(1− ρ2α)2

(v
(1)
α12)2

− 1√
n

k∑
α=1

k∑
β=1

1 + ρ2

(1− ρ2)2
v
(1)
α12v

(1)
β12 +Op(n

−1).

Proof . For p = 2,
∑
i<j consists of single term corresponding to i = 1, j = 2.

Also, Pα =
( 1 ρα
ρα 1

)
so that P−1α = (1 − ρ2α)−1

( 1 −ρα
−ρα 1

)
. Similarly, P

−1
=

(1 − ρ2)−1
(

1 −ρ
−ρ 1

)
. Thus, the off diagonal element of Hα is given by ρα(1 −

ρ2α)−1 − ρ(1 − ρ2)−1. Further, qα(12, 12) = ρ12α ρ
21
α + ρ11α ρ

22
α = (1 + ρ2α)/(1 − ρ2α)2

and q(12, 12) = (1 + ρ2)/(1− ρ2)2. The result follows by using these values in the
theorem.

5. Asymptotic Null Distribution of L∗

In this section we derive asymptotic distribution of the statistic L∗ when the
null hypothesis is true.
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Define the k × k matrix W as W = (wij) where wii = 1 − ωi and for i 6= j,
wij = −√ωiωj = wji, 1 ≤ i, j,≤ k. The matrix W has rank k − 1 and each of its
non-zero eigenvalues is equal to 1.

Theorem 2. Let the k correlation matrices R1, . . . , Rk be based on independent
samples of sizes N1, . . . , Nk, respectively, with finite fourth order cumulants. De-
fine the kp(p− 1)/2× 1 vector v(1) by

v(1) =(v
(1)
1,1,2,v

(1)
1,1,3,. . .,v

(1)
1,p−1,p,v

(1)
2,1,2,v

(1)
2,1,3,. . .,v

(1)
2,p−1,p,. . .,v

(1)
k,1,2,v

(1)
k,1,3,. . .,v

(1)
k,p−1,p)

′

where V (1)
α is as defined in (9). Let Q = (q(ij, k`)) be the p(p− 1)/2× p(p− 1)/2

matrix of coefficients defined in Theorem 1.

Let Tα be the asymptotic dispersion matrix of V (1)
α with entry (ij, k`) equal to

E(v
(1)
αijv

(1)
αk`) given in (12). Then, the asymptotic dispersion matrix of v(1) is

T ∗ =


T1 0 · · · 0

0 T2 · · · 0
...

...
0 0 · · · Tk


Under the null hypothesis

L∗ =

p(p−1)(k−1)/2∑
i=1

λiyi +Op(n
−1/2)

where y1, . . . , yp(p−1)(k−1)/2 are independent, yi ∼ χ2
1, 1 ≤ i ≤ p(p−1)(k−1)/2 and

λ1, . . . , λp(p−1)(k−1)/2 are the eigenvalues of T ∗(Q⊗W ). If the standardized fourth
order cumulants of the populations are all equal, then Tα = T for α = 1, . . . , k and

L∗ =

p(p−1)/2∑
i=1

θiui +Op(n
−1/2),

where u1, . . . , up(p−1)/2 are independent, ui ∼ χ2
k−1 and θ1, . . . , θp(p−1)/2 are the

eigenvalues of TQ.

Proof . Under the null hypothesis we have Pα = P for α = 1, . . . , k so that
g(P1, . . . , Pk) = 0, hαij = 0 and qα(ij, k`) = q(ij, k`) = ρi`ρjk + ρikρj` for all α.
Since g(R1, . . . , Rk) = ln[det(R)] −

∑k
α=1 ωα ln[det(Rα)] = n−1L∗, using Theo-

rem 1, one obtains

L∗ = ng(R1, . . . , Rk) = n[g(R1, . . . , Rk)− g(P1, . . . , Pk)]

=

k∑
α=1

∑
i<j

∑
k<`

q(ij, k`)v
(1)
αijv

(1)
αk`

−
k∑

α=1

k∑
β=1

∑
i<j

∑
k<`

√
ωαωβ q(ij, k`)v

(1)
αijv

(1)
βk` +Op(n

−1/2)
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=

k∑
α=1

k∑
β=1

wαβ
∑
i<j

∑
k<`

q(ij, k`)v
(1)
αijv

(1)
βk` +Op(n

−1/2)

= (v(1))′(Q⊗W )v(1) +Op(n
−1/2)

Since Q is of rank p(p − 1)/2 and W is of rank k − 1, the matrix Q ⊗W is of
rank p(p − 1)(k − 1)/2. From (8) and (9) it is clear that elements of V (1)

α are
linear functions of elements of Vα and the limiting distribution of Vα is normal
with means 0 and covariances that depend on the fourth order cumulants of the
parent population. Therefore, v(1) is asymptotically normal with means zero and
dispersion matrix T ∗. Thus, L∗ =

∑p(p−1)(k−1)/2
i=1 λiyi +Op(n

−1/2).
If the standardized fourth order cumulants are the same for each underlying

population, then T ∗ = T ⊗ I. Further, (T ⊗ I)(Q ⊗W ) = TQ ⊗W has as its
eigenvalues θiεj , i = 1, . . . , p(p − 1)/2, j = 1, . . . , k where θi are the eigenvalues
of TQ and εj are the eigenvalues of W . Since there are p(p − 1)/2 non-zero
eigenvalues of (T ⊗ I)(Q ⊗W ) each occurring with multiplicity k − 1, we have
L∗ =

∑p(p−1)/2
i=1 θiui +Op(n

−1/2).

Corollary 2. Let the k sample correlation coefficients r1, r2, . . . , rk be based on
independent samples of sizes N1, N2, . . . , Nk from bivariate populations with finite
fourth order cumulants. Let ρ be the hypothesized common correlation coefficient.
Define the k × 1 vector v(1) by

v(1) = (v
(1)
1 , . . . , v

(1)
k )′

where v(1)α = vα12 − ρ(vα11 + vα22) as defined in (9). Let

tα = (1− ρ2)2 +
1

4
ρ2(κα1111 + κα2222) +

(
1 +

1

2
ρ2
)
κα1122 − ρ(κα1113 + κα1222)

and define T ∗ = diag(t1, . . . , tk).Under the null hypothesis the statistic L∗ is
asymptotically expanded as

L∗ =
1 + ρ2

(1− ρ2)2

k−1∑
i=1

λiyi +Op(n
−1/2)

where y1, . . . , yk−1 are independent, yi ∼ χ2
1 and λ1, . . . , λ,k−1 are the eigenvalues

of T ∗W . If the standardized fourth order cumulants are equal, then

tα = (1− ρ2)2 +
1

4
ρ2(κ1111 + κ2222) +

(
1 +

1

2
ρ2
)
κ1122 − ρ(κ1113 + κ1222)

for α = 1, 2, . . . , k and

L∗ =

[
(1− ρ2)2 +

1

4
ρ2(κ1111 + κ2222) +

(
1 +

1

2
ρ2
)
κ1122

− ρ(κ1113 + κ1222)

]
1 + ρ2

(1− ρ2)2
χ2
k−1 +Op(n

−1/2)
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Proof . As shown in Corollary 1, when p = 2, Q is a scalar. If ρ is the common
correlation coefficient, then Q = (1 + ρ2)/(1 − ρ2)2. The asymptotic variance of
v
(1)
α12 is given in (12). Upon simplification,

E(v
(1)
α12v

(1)
α12) = tα = (1− ρ2)2 +

1

4
ρ2(κα1111 + κα2222) +

(
1 +

1

2
ρ2
)
κα1122

− ρ(κα1113 + κα1222) +Op(n
−1/2) (14)

so that T ∗ is the asymptotic covariance matrix of v(1). Further, T ∗(Q ⊗W ) =

[(1 + ρ2)/(1− ρ2)2]T ∗W . Thus L∗ = [(1 + ρ2)/(1− ρ2)2]
∑k−1
i=1 λiyi +Op(n

−1/2),
where λi are the eigenvalues of T ∗W . If the standardized fourth order cumulants
are identical, T = tI, so that there is one eigenvalue of TQ with multiplicity k.
This eigenvalue is merely t(1 + ρ2)/(1 − ρ2)2 and the result follows immediately
from Theorem 2.

Corollary 3. Let the k sample correlation coefficients r1, r2, . . . , rk be based on
independent samples of sizes N1, N2, . . . , Nk from bivariate populations which are
elliptically contoured with a common curtosis of 3κ and common correlation coef-
ficient ρ. Then

L∗ =
[
(1− ρ2)2 + (1 + 2ρ2)κ

] 1 + ρ2

(1− ρ2)2
χ2
k−1 +Op(n

−1/2)

Proof . For elliptically contoured distributions (Muirhead 1982, Anderson 2003,
Gupta and Varga 1993) the fourth order cumulants are such that κiiii = 3κiijj =
3κ for i 6= j and all other cumulants are zero (Waternaux 1984). Substituting this
into the expression for t in Corollary 2 yields t = (1−ρ2)2 +(1+2ρ2)κ. The result
then follows from Corollary 2.

Corollary 4. Let the k sample correlation coefficients r1, . . . , rk be based on in-
dependent samples of sizes N1, . . . , Nk from bivariate normal populations with a
common correlation coefficient ρ. Then

L∗ = (1 + ρ2)χ2
k−1 +Op(n

−1/2)

Proof . Normal distributions are special case of elliptically contoured distribu-
tions. The fourth order cumulants are all zero (Anderson 2003). The result follows
by setting κ = 0 in Corollary 3.

6. An Example

This example is included to demonstrate the procedure to be used when testing
the equality of correlation matrices by using the statistic L∗. The data represent
random samples from three trivariate populations each with identical correlation
matrix P given by

P =

1.0 0.3 0.2

0.3 1.0 −0.3

0.2 −0.3 1.0


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Since the statistic L∗ is an approximation of the modified likelihood ratio statistic
for samples from multivariate normal populations, it is particularly suited to pop-
ulations that are near normal. The contaminated normal model has been chosen
to represent such a distribution.

Samples of size 25 from contaminated normal populations with mixing param-
eter ε = 0.1 and σ = 2 were generated using the SAS system. These data are
tabulated in Gupta, Johnson and Nagar (2012). The density of a contaminated
normal model is given by

φε(x, σ,Σ) = (1− ε)φ(x,Σ) + εφ(x, σΣ), σ > 0, 0 < ε < 1

where φ(x,Σ) is the density of a multivariate normal distribution with zero mean
vector and covariance matrix Σ.

If the data were known to be from three normal populations all that would
be required at this point would be the sample sizes and the matrix of corrected
sums of squares and cross products. A key element, however, of the modified
likelihood ratio procedure is that this assumption need not be made, but the
fourth order cumulant must be estimated. To do this the k-statistics are calculated
using Kaplan’s formulae summarized in Section 3. The computations are made
considerably easier by standardizing the data so that all of the first order sums
are zero.

The computation using original (or standardized) data yields the following
estimates of the individual correlation matrices:

R1 =

 1.0000 0.5105 0.3193

0.5105 1.0000 −0.3485

0.3193 −0.3485 1.0000

 , det(R1) = 0.4024

R2 =

 1.0000 0.1758 0.2714

0.1758 1.0000 −0.2688

0.2714 −0.2688 1.0000

 , det(R2) = 0.7975

R3 =

 1.0000 0.2457 0.3176

0.2457 1.0000 −0.0331

0.3176 −0.0331 1.0000

 , det(R3) = 0.8325

Since each sample is of size 25, ωi = 1/3 for i = 1, 2, 3 and the pooled correlation
matrix is merely the average of these three matrices:

R =

 1.0000 0.3107 0.3028

0.3107 1.0000 −0.2168

0.3028 −0.2168 1.0000

 , det(R) = 0.7240

The value of the test statistic is now easily calculated as

L∗ = 72 ln(0.7240)− 24[ln(0.4024) + ln(00.7975) + ln(0.8325)]

= 8.7473
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The null hypothesis is to be rejected if the value of the test statistic is too large.
The next step of the procedure is to estimate the coefficients in the linear combi-
nation of chi-square variables that make up the actual distribution under the null
hypothesis. The most arduous part is the computation of the estimates of fourth
order cumulants.

Since the data are standardized, the formula for the k-statistic for the four way
product xi × xj × xk × x` simplifies to

kijk` =
1

N (4)
[N2(N + 1)sijk` −N(N − 1)(sijsk` + siksj` + si`sjk)]

where N (4) = N(N − 1)(N − 2)(N − 3). Using this to estimate the cumulant
corresponding to x21x22 yields k1122 = 0.6670. The computation for other fourth
order cumulant are performed similarly. The resulting estimates are then pooled
across population to yield an estimate of the common fourth order cumulants
used in building the tau matrix (it is possible, of course, to drop the assumption
of common fourth order cumulants and use the nine by nine matrix that would
result if each separate tau matrix were joined in a block diagonal matrix). The
estimates of the fourth order cumulants are summarized in the Table 1.

The pooled correlation matrix and these estimates are now used to build the
estimated covariance matrix V (1). The entry corresponding to v(1)ij v

(1)
k` is given by

kijk` −
1

2
(rijkiik` + rijkjjk` + rk`kijkk + rk`kij``)

+
1

4
rijrk`(kiikk + kii`` + kjjkk + kjj``)

− (rk`rikrjk + rk`ri`rj` + rijrikri` + rijrjkrj`)

+
1

2
rijrk`(r

2
ik + r2i` + r2jk + r2j`) + rikrj` + ri`rjk

where rij is the pooled estimate of the correlation value and kijk` is the correspond-
ing pooled fourth order cumulant. The entry corresponding to 12, 13 is given by
t12,13 = −0.3065. Similar calculations yield the following covariance matrix corre-
sponding to (v

(1)
α12, v

(1)
α13, v

(1)
α23)′,

T =

 1.0150 −0.3065 0.1800

−0.3065 0.7242 0.3974

0.1800 0.3974 0.8179


To complete the example, the inverse of the pooled correlation matrix is used

to estimate the matrix Q. The entry corresponding to the element ij, k` is given
by rikrj` + ri`rjk where R−1 = (rij). These matrices are as follows:

R
−1

=

 1.3163 −0.5198 −0.5113

−0.5198 1.2546 0.4294

−0.5113 0.4294 1.2479


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Table 1: Estimated fourth order cumulants
Variables Population 1 Population 2 Population 3 Pooled

1111 0.9077 0.1181 0.9355 0.6538
1112 0.7765 -0.0387 -0.0565 0.2271
1113 -0.3015 0.7008 0.0677 0.1105
1122 0.6670 0.3595 -0.3663 0.2201
1123 -0.3917 0.3519 -0.1333 -0.0574
1133 -0.1848 0.6608 -0.7475 -0.0905
1222 0.4896 -0.7128 -0.0178 -0.0803
1223 -0.3005 0.1637 -0.2243 -0.1204
1233 -0.0980 0.6343 -0.1394 0.1323
1333 -0.3430 0.3973 -0.0773 -0.0077
2222 -0.0787 -0.9989 0.8134 -0.0881
2223 -0.2543 0.0750 0.1887 0.0032
2233 0.3800 -0.1764 -0.5454 -0.1139
2333 -0.8386 0.8496 0.2869 0.0993
3333 0.9130 -0.9196 1.3068 0.4334

Q =

 1.9217 0.8310 −0.8647

0.8310 1.9041 −0.8682

−0.8647 0.8682 1.7500


Most eigenvalues extraction routines require that the matrix being analyzed be
symmetric. Let A be the Cholesky decomposition of Q, that is Q = A′A where
A is an upper triangular matrix. Then the eigenvalues of TQ are the same as the
eigenvalues of ATA′ which is clearly symmetric. In this case

A =

 1.3863 0.5995 −0.6237

0 1.2429 −0.3977

0 0 1.0967



ATA′ =

 1.4111 −0.2877 −0.0246

−0.2877 0.8552 0.1849

−0.0246 0.1849 0.9837


and the eigenvalue of this matrix are 1.55, 1.0473 and 0.6527. Using Theorem 2,
the distribution of the statistic is estimated to be that of Y = (1.55)χ2

2+(1.0473)χ2
2

+(0.6527)χ2
2 where each of the chi-square variate is independent. Using Lemma 7

the cumulative probability value associated with 8.7473 is obtained as 0.7665 so
that the observed significance level is 0.2335. Thus, if the test is performed at
the α = 0.1 level of significance the conclusion reached is that there is insufficient
evidence to reject the null hypothesis that the samples are from populations with
identical correlation matrices.
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Resumen

La segregación y el emparejamiento son técnicas para estimar las compo-
nentes de varianza en modelos mixtos. Una pregunta que ha surgido es si la
segregación puede ser aplicada en situaciones en las que el emparejamiento
no es aplicable. Nuestra motivación para esta investigación se basa en el
hecho de que se quiere una respuesta a esta pregunta y se quiere explorar
esta importante clase de modelos con el fin de contribuir al desarrollo de los
modelos mixtos. Esto es posible utilizando la estructura algebraica de los
modelos mixtos con estructura de bloques ortogonal conmutativa. Se pre-
sentan dos ejemplos que muestran que la segregación puede ser aplicada en
situaciones donde el emparejamiento no es aplicable.

Palabras clave: álgebra conmutativa Jordan, componentes de varianza,
modelo mixto.

1. Introduction

Mixed models have orthogonal block structure, OBS, when their variance co-
variance matrices are orthogonal all the linear combinations of known pairwise
projection matrices, POOPM, add up to In with non negative coefficients. These
models play an important role in design of experiments (Houtman & Speed 1983,
Mejza 1992) and were introduced by Nelder (1965a, 1965b), continuing to play
an important part in the theory of randomized block designs (see Caliński &
Kageyama 2000, Caliński & Kageyama 2003).

A direct generalization of this class of models is that of models whose vari-
ance covariance matrices are linear combinations of known POOPM, we say these
models to have generalized orthogonal block structure, GOBS. Moreover if the
orthogonal projection matrix T on the space spanned by the mean vectors com-
mutes with these POOPM the model, (see Fonseca, Mexia & Zmyślony 2008) will
have commutative orthogonal block structure, COBS. Then, (see Zmyślony 1978),
its least square estimators, LSE, for estimable vectors will be best linear unbiased
estimators, BLUE, whatever the variance components.

In what follows, we will present techniques for the estimation of variance com-
ponents in COBS. These techniques will be based on the algebraic structure of
the models then being quite distinct from other techniques that require normality.
Moreover it has interesting developments, namely these related to model segrega-
tion.

The next Section presents the algebraic structure of the models considering
commutative Jordan algebras. Then we discuss, in section 3, the techniques for
the estimation of variance components: Matching and segregation. Segregation
displays the possibility of using the algebraic structure in estimation. Thus, in
subsections 3.1 and 3.2, we present two models in which this technique has to
be used to complete the structure based on estimation of variance components.
Lastly, we present some final remarks.
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2. Algebras and Models

Commutative Jordan Algebras, CJA, (of symmetric matrices) are linear spaces
constituted by symmetric matrices that commute and containing the square of
this matrices. Each CJA A has a principal unique basis (see, Seely 1971), pb(A),
constituted by pairwise orthogonal projection matrices. Any orthogonal projection
matrix belonging to A will be the sum of matrices in pb(A).

Moreover, given a family W of symmetric matrices that commute, there is a
minimal CJA A(W ) containing W (see, Fonseca et al. 2008).

Consider the model

Y =

w∑
i=0

Xiβi (1)

where β0 is fixed and the β1, . . . ,βw are independent, with null mean vectors and
variance covariance matrices

{
µ = X0β0

V(θ) =
∑w
i=1 θiMi

(2)

with Mi = XiX
′

i, i = 1, . . . , w. When the matrices in {T ,M , . . . ,Mw} commute
we have the CJA A(W ) with principal basis

Q = {Q1, . . . ,Qm}.

We can order the matrices in Q to have T =
∑z
j=1 Qj . Moreover

Mi =

m∑
j=1

bi,jQj , i = 1, . . . , w,

so that

V(θ) =

w∑
i=1

θiMi =

m∑
j=1

γjQj = V (γ)

with γj =
∑w
i=1 bi,jθi, j = 1, . . . ,m, thus the model will have COBS since its vari-

ance covariance matrices are linear combinations of known POOPM that commute
with the Q1, . . . ,Qm, belonging jointly to A(W ).

3. Segregation and Matching

Since R(Qj) ⊆ R(T ), j = 1, . . . , z we can estimate directly the γz+1, . . . , γm,
for which we have the unbiased estimators

γ̃j =
‖QjY‖2

r(Qj)
, j = z + 1, . . . ,m. (3)
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Partitioning matrix B = [bi,j ] as [B1 B2], where B1 has z columns, and
taking γ1= (γ1, . . . , γz)

′, γ2= (γz+1, . . . , γm)′, and σ2 = (σ2
1 , . . . , σ

2
w)′, with w ≤

m− z, we have
γl = B′lσ

2, l = 1, 2. (4)

When the column vectors of B
′

2 are linearly independent we have

σ2 = (B′2)+γ2, (5)

as well as
γ1 = B′1(B′2)+γ2, (6)

allowing the estimation of σ2 and γ1, through γ2. It may be noted that if the
matrices Q1, . . . ,Qm can be ordered in such a way that the transition matrix is

B =

[
B1,1 0

B2,1 B2,2

]
,

with B1,1 a z× z matrix, the model is said to be segregated, see Ferreira, Ferreira
& Mexia (2007) and Ferreira, Ferreira, Nunes & Mexia (2010). It can be pointed
out that, in that case, sub-matrices B1,1 and B2,2 are regular.

When B1 is a sub-matrix of B2, B
′
1 will be a sub-matrix of B′2 and so γ1 will

be a sub-vector of γ2, see Mexia, Vaquinhas, Fonseca & Zmyslony (2010). In this
case the match have between the components of γ1 and some components of γ2.
When this happens we say that the model has matching. Thus γ1 and

γ =
[
γ′
1 γ′

2

]′
,

can be directly estimated from γ2. If the row vectors ofB are linearly independent,
we have

σ2 = (B′)+γ, (7)

and we can also estimate σ2. Requiring the row vectors of B to be linearly in-
dependent is less restrictive than requiring the row vectors of B2 to be linearly
independent.

Below we introduce two examples which show that segregation can be applied
in situations where matching does not apply.

3.1. Segregation without Matching: Stair Nesting

We choose to present an example with stair nesting instead of the usual nesting
because stair nesting designs are unbalanced and use fewer observations than the
balanced case, and in addition, the degrees of freedom for all factors are more
evenly distributed, as was shown by Fernandes, Mexia, Ramos & Carvalho (2011).
Cox & Solomon (2003) suggested that having u factors, we will have u steps where
each step corresponds to one factor of the model.
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In order to describe the branching in such models, we can consider u+ 1 steps.
The first step, with index 0, has a0 = c0 = u branches, one per factor. In the
second step, with index 1, we have c1 = a(1) +u− 1 branches, a(1) the number of
“active” levels for the first factor and u−1 the number of the remaining factors. We
point out that the branch for the first factors concerns its “active” levels. For the
third step, with index 2, we have c(2) = a(1) + a(2) +u− 2, where a(1) represents
the number of “active” levels for the first two factors resulting from the branching
for the first factor; a(2) is the number levels for the second factor and u − 2, the
number of the remaining factors. In this way, for the (i + 1)-th step, with index
i, we have c(i) =

∑i
h=1 a(h) + u − i, i = 3, . . . , u branches. a(1), . . . , a(i) are the

number of “active” levels for the first i factors and u− i the number of remaining
factors. These designs are also studied in Fernandes, Ramos & Mexia (2010) and
some results of nesting may be seen, for example, in Bailey (2004).

The model for stair nesting designs is given by

Y =

u∑
i=0

Xiβi, (8)

with 

X0 = D(1a(1), . . . ,1a(i),1a(i+1), . . . ,1a(u))
...
Xi = D(Ia(1), . . . , Ia(i),1a(i+1), . . . ,1a(u)), i = 1, . . . , u− 1
...
Xu = D(Ia(1), . . . , Ia(i), Ia(i+1), . . . , Ia(u))

(9)

whereD(A1, . . . ,Au) is the block diagonal matrix with principal blocksA1, . . . ,Au

and 1a(s) is the vector with all a(s) components equal to 1.
In this approach we will assume that β0 = 1uµ, where µ is the general mean

value and the vectors βi, i = 1, . . . , u, are independent normal with null mean
vectors and variance-covariance matrix σ2

i Ic(i), i = 1, . . . , u, and

c(i) =

i∑
h=1

a(h) + u− i, i = 1, . . . , u

Hence Y is normal distributed with mean vector µ = 1nµ, and variance-
covariance matrix V =

∑u
i=1 σ

2
iMi, where Mi = XiX

′

i, i = 1, . . . , u, we have

M0 = D(Ja(1), . . . ,Ja(i))
...

M i = D(Ia(1), . . . , Ia(i),Ja(i+1), . . . ,Ja(u)), i = 1, . . . , u− 1
...

Mu = D(Ia(1), . . . , Ia(i), Ia(i+1), . . . , Ia(u))

(10)

Revista Colombiana de Estadística 36 (2013) 261–271



266 Sandra S. Ferreira, Dário Ferreira, Célia Nunes & João T. Mexia

with Js = 1s1
′
s. Now, the orthogonal projection matrix on r(X0), will be T given

by

T = D

(
1

a(1)
Ja(1), . . . ,

1

a(i)
Ja(i),

1

a(i+ 1)
Ja(i+1), . . . ,

1

a(u)
Ja(u)

)
(11)

Moreover, with Ka(i) = Ia(i) − 1
a(i)Ja(i) and 0a(i) the null a(i)× a(i) matrix,

i = 1, . . . , u, taking{
Qi = D(0a(1), . . . ,

1
a(i)Ja(i), . . . ,0a(u)), i = 1, . . . , u

Qi+u = D(0a(1), . . . ,Ka(i), . . . ,0a(u)), i = 1, . . . , u
(12)

we will have

T =

u∑
j=1

Qj

Mi =

i∑
j=1

(Qj +Qj+u) +

u∑
j=i+1

a(j)Qj , i = 1, . . . , u− 1.

Mu =

u∑
j=1

(Qj +Qj+u)

(13)

So we have
B =

[
B1 B2

]
,

with

B1 =


1 a(2) ... a(u)

1 1 ... a(u)
...

...
...

...
1 1 ... a(u)

1 1 ... 1

 , B2 =


1 0 ... 0

1 1 ... 0
...

...
...

...
1 1 ... 0

1 1 ... 1

 ,

so we have segregation but we do not have matching.
Let us consider an example where u = 3, a(1) = 3, a(2) = 2 and a(3) = 3

“active” levels and the number of observations in the design is n = 3 + 2 + 3 = 8.
So, we have g(1) = 2, g(2) = 1 and g(3) = 2 degrees of freedom for the first,
second, and third factors, respectively. The design is shown in Figure 1.

The random effects model for stair nesting can be summarized as

Y =

3∑
i=0

Xiβi (14)

where a(1) = 3, a(2) = 2 and a(3) = 3 are the levels for the 3 factors that nest.
We make the same assumptions on the random effects as we did in the section 3.1,
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Figure 1: Stair nested design.

where 

X0 = D(13,12,13)

X1 = D(I3,12,13)

X2 = D(I3, I2,13)

X3 = D(I3, I2, I3)

(15)

From formula (13) we obtain

M1 = D(I3,J2,J3)

M2 = D(I3, I2,J3)

M3 = D(I3, I2, I3)

(16)

Considering m = 6, z = 3, we have the pairwise orthogonal projection matrices

Q1 = { 13J3,02,03}

Q2 = {03,
1
2J2,03}

Q3 = {03,02,
1
3J3}

Q4 = {K3,02,03}

Q5 = {03,K2,03}

Q6 = {03,02,K3}
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and the matrices

M1 = Q1 + a(2)Q2 + a(3)Q3 + Q4

M2 = Q1 + Q2 + a(3)Q3 + Q4 + Q5

M3 = Q1 + Q2 + Q3 + Q4 + Q5 + Q6

It follows readily that

B =

 1 a(2) a(3) 1 0 0

1 1 a(3) 1 1 0

1 1 1 1 1 1


considering

B =
[
B1 B2

]
where

B1 =

 1 a(2) a(3)

1 1 a(3)

1 1 1


and

B2 =

 1 0 0

1 1 0

1 1 1


3.2. Segregation without Matching: Crossing

Let there be a first factor that crosses with a second that nests a third. The
factors will have a, b and c levels, respectively. The first and the third factors have
random effects and the second has fixed effects.

The mean vector will then be

µ = (1a ⊗ 1b ⊗ 1c)µ+ (1a ⊗ Ib ⊗ 1c)β (2)

where β (2) is the fixed vector of the effects for the second factor and ⊗ represent
the Kronecker matrix product.

The random effects part of the model will be

(Ia ⊗ 1b ⊗ 1c)β (1) + (Ia ⊗ Ib ⊗ 1c)β (1, 2) + (1a ⊗ Ib ⊗ Ic)β (3) +

+ (Ia ⊗ Ib ⊗ Ic)β (1, 3) ,

where β (1), β (1, 2), β (3) and β (1, 3) correspond to the effects of the first factor,
to the interactions of the first and second factors, to the effects of the third factor
and to the interactions between the first and the third factors. As usual, we assume
these vectors to be independent, homoscedastic and represent the corresponding
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variance components by σ2 (1), σ2 (1, 2), σ2 (3) and σ2 (1, 3). So the variance-
covariance matrix will be given by

V = σ2 (1) Ia⊗Jb⊗Jc+σ2 (1, 2) Ia⊗Ib⊗Jc+σ2 (3)Ja⊗Ib⊗Ic+σ2 (1, 3) Ia⊗Ib⊗Ic.

In this case the matrices in the principal basis will be

Q1 = 1
aJa ⊗

1
bJb ⊗

1
cJc

Q2 = Ka ⊗ 1
bJb ⊗

1
cJc

Q3 = 1
aJa ⊗Kb ⊗ 1

cJc
Q4 = Ka ⊗Kb ⊗ 1

cJc
Q5 = 1

aJa ⊗
1
bJb ⊗Kc

Q6 = Ka ⊗ 1
bJb ⊗Kc

Moreover the orthogonal projection matrix on Ω will be

T =
1

a
Ja ⊗ Ib ⊗

1

c
Jc = Q1 + Q3.

We will also have
Ia ⊗ Jb ⊗ Jc = bcQ1 + bcQ2

Ia ⊗ Ib ⊗ Jc = cQ1 + cQ2 + cQ3 + cQ4

Ja ⊗ Ib ⊗ Ic = aQ1 + aQ3 + aQ5

Ia ⊗ Ib ⊗ Ic = Q1 + Q2 + Q3 + Q4 + Q5 + Q6

Therefore

V =

6∑
j=1

γjQj ,

with 

γ1 = bcσ2 (1) + cσ2 (1, 2) + aσ2 (3) + σ2 (1, 3)

γ2 = bcσ2 (1) + cσ2 (1, 2) + σ2 (1, 3)

γ3 = cσ2 (1, 2) + aσ2 (3) + σ2 (1, 3)

γ4 = cσ2 (1, 2) + σ2 (1, 3)

γ5 = aσ2 (3) + σ2 (1, 3)

γ6 = σ2 (1, 3)

Now γ1 and γ3 are different from all other canonical variance components so
there is no matching. Despite this we have

σ2 (1, 3) = γ6
σ2 (3) = γ5−γ6

a

σ2 (1, 2) = γ4−γ6
c

σ2 (1) = γ2−cσ2(1,2)−σ2(1,3)
bc = γ2−γ4

bc

so all variance components either usual or canonic can be estimated.
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4. Final Remarks

COBS models consider important cases. In the second example in Section 3
we presented an example of a balanced crossing which, (see Fonseca, Mexia &
Zmyślony 2003, Fonseca, Mexia & Zmyślony 2007) can be extended to apply to all
models with balanced cross nesting, thus including a wide variety of well behaved
models.

The first example in section 3, that of stair nesting, displays a different model
also with COBS. Besides the algebraic structure enables us to obtain unbiased
estimators without normality. The LSE for estimable vectors are BLUE, whatever
the variance components.
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Appendix

Lemma 3. Let V = (vij) be a p× p symmetric matrix with zero on the diagonal
and let C = (cij) be a p× p symmetric matrix. Then

tr(CV ) =

p∑
i=1

p∑
j=1

cijvij = 2
∑
i<j

cijvij

Proof . The proof is obtained by noting that vjj = 0 and cij = cji.

Lemma 4. Let Vα = (vαij) and Vβ = (vβij) be p × p symmetric matrices with
zero on the diagonal. Then

p∑
i=1

p∑
j=1

p∑
k=1

p∑
`=1

cijk`vαijvβk` =
∑
i<j

∑
k<`

(cijk` + cij`k + cjik` + cji`k)vαijvβk`.

Proof . Using Lemma 3, the sum may be written as

p∑
i=1

p∑
j=1

∑
k<`

(cijk` + cij`k)vαijvβk`

The proof is obtained by applying Lemma 3 second time.

Lemma 5. Let A be a real symmetric matrix with eigenvalues that are less than
one in absolute value, then

− ln[det(I −A)] = tr(A) +
1

2
tr(A2) +

1

3
tr(A3) + · · ·

Proof . See Siotani, Hayakawa and Fujikoshi (1985).

Lemma 6. Let R be a correlation of dimension p. Then

∂

∂P
ln[detR] = R−1

and

∂

∂P
tr(R−1B) = R−1BR−1

where B is a symmetric non-singular matrix of order p.

Proof . See Siotani, Hayakawa and Fujikoshi (1985).
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Lemma 7. Let Y1, Y2 and Y3 be independent random variables, Yi ∼ χ2
2, i = 1, 2, 3.

Define Y = α1Y1 + α2Y2 + α3Y3 where α1, α2 and α3 are constants, α1 > α2 >
α3 > 0. Then, the cumulative distribution function FY (y) of Y is given by

FY (y) =

3∑
i=1

Ci

[
1− exp

(
− y

2αi

)]
, y > 0,

where C1 = α2
1/(α1 − α3)(α1 − α2), C2 = −α2

2/(α2 − α3)(α1 − α2) and
C3 = α2

3/(α2 − α3)(α1 − α3)

Proof . We get the desired result by inverting the moment generating function
MY (t) =

∑3
i=1 Ci(1− 2αit)

−1, 2α1t < 1.
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Resumen

In this article, we consider the semiparametric regression model and ex-
amine influential observations which have undue effects on the estimators for
this model. One of the approaches to measure the influence of an individual
observation is to delete the observation from the data. The most common
measure based on this approach is Cook’s distance. Recently, Daniel Peña
introduced a new measure based on this approach. Pena’s measure is able
to detect high leverage outliers, which could be undetected by Cook’s dis-
tance, in large data sets in linear regression model. The Cook’s distances
for parameter vector, unknown smooth function and response variable in
semiparametric regression model are expressed by authors as functions of
the residuals and leverages. Following the study of them we derive a type
of Pena’s measure as functions of the residuals and leverages for the same
model. We compare the performance of these measures as to detection of
influential observations using real data, artificial data and simulation. The
results show that the performance of Pena’s measure is better than Cook’s
distance to detect high leverage outliers in large data sets in the semipara-
metric regression model such as in the linear regression model.

Palabras clave: Cook’s distance, High leverage outliers, Pena’s measure,
Semiparametric regression.

Abstract

En este articulo, se consideran modelos de regresión semiparamétrica y
se examinan observaciones influenciales que pueden tener efectos sobre los
estimadores para este modelo. Una de las formas de medir la influencia
de una observación individual es borrando la observación en el conjunto de
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datos. La medida más común bajo esta idea es la distancia de Cook. Re-
cientemente, Daniel Peña introdujo una nueva medida basada en estas ideas.
Las distancias de Cook para el vector de parámetros, la función de suaviza-
miento y la variable respuesta en modelos de regresión semiparamétrica han
sido expresadas por otros autores como funciones de los residuales y los pun-
tos de apalancamiento. Se deriva en este artículo, una medida del tipo de la
de Peña como función de los residuales y puntos de apalancamiento para el
mismo modelo. Se compara el desempeño de estas medidas para la detección
de observaciones influenciales usando datos reales y bajo simulación. Los re-
sultados muestran que la medida de Peña es mejor que la distancia de Cook
para detectar outliers y puntos de apalancamiento en conjuntos de datos
grandes en los modelos de regresión semiparamétrica tales como el modelo
de regresión lineal.

Key words: distancia de Cook, outliers, puntos de apalancamiento, medida
de Peña, regresión semiparamétrica.

1. Introduction

One or few observations could have serious effects on estimators. When an
observation is omitted from the analysis, the fitted equation may change hardly at
all. In this situation, the observation is considered as an influential observation.
Hence, the detection of these observations has received a great deal of attention
in the last decades. Numerous influence measures have been developed to detect
these observations. Firstly, Cook (1977) introduced Cook’s distance, which is
based on deleting the observations one after another and measuring their effects in
linear regression. Following the study of Cook (1977), most of ideas of detecting
influential observations based on the deleting approach have developed. In recent
years, Pena’s measure is one of these ideas.

The study of influential observations has been extended to other statistical
models using similar ideas such as in linear regression. However, most of the
influence measures are concerned with parametric regression models. In recent
years, the detection of influential observations in the nonparametric regression and
semiparametric regression have been studied (see Thomas 1991, Kim 1996, Kim &
Kim 1998, Kim, Park & Kim 2001, Zhu &Wei 2001, Kim, Park & Kim 2002, Zhang,
Mei & Zhang 2007).

In this article, we consider the influence of individual cases on estimators in the
semiparametric regression model and adjust the Pena’s measure (Pena 2005) for
this model. We compare the Pena’s measure and some types of Cook’s distances
suggested by Kim et al. (2002) as to the success of detection of high leverages
outliers in the semiparametric regression model.

The study is organized as follows. In Section 2, the semiparametric regression
model is introduced. In Section 3, the formulas of Cook’s distances for semi-
parametric regression model are given. In Section 4, Pena’s measure formula for
semiparametric regression is derived. In Section 5, the success of these measures
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to detect influential observations, particularly high leverages outliers in large data,
is analyzed via real data, artificial data and simulation.

2. Semiparametric Regression

Consider a semiparametric regression model with k explanatory variables

yi = zi
Tβββ +m(xi) + εi, (1 ≤ i ≤ n)

where yi’s are outcomes, zi is a k × 1 vector related to parametric component, xi
is a scalar, βββ is the k × 1 vector of unknown parameters and m is a smooth un-
known function. There are many approaches to estimate βββ andmmm. The Speckman
approach is one of them. Here, we follow the Speckman approach.

Let eZ = (I − S)Z and ey = (I − S)y where S is a smoother matrix. The
local polynomial and the spline estimators are two classes of smoothers in semi-
parametric regression. Here, we use a local polynomial estimator. Hence, the
(1 × n) jth row vector of S could be defined as Sxj = tT (XT

xWxXx)
−1

XT
xWx

where Xx is the n × (p + 1) matrix with its ijth element equal to (xi − x)j−1,
Wx = Diag(Kh(xi − x)) is the weight matrix with Kh(.) = K(. |h )/h being a
kernel function and h bandwidth controlling the size of the local neighborhood
and tT = tTx (x) = (1, x− x, . . . , (x− x)

p
) is a vector. Here, it is assumed that K

is a symmetric probability density function. The estimators of βββ and m suggested
in Speckman (1988) are given by

bβββ =
�eZT eZ�−1 eZT ey (1)

Òm(x) = S
�
y − Zbβββ� = S(I− ôH)y = H∗y (2)

where ôH = (I− S)
−1eZ �eZT eZ�−1 eZT (I − S) and H∗ = S

�
I− ôH�. The vector of

fitted values could be expressed from (1) and (2) as below

by = Zbβββ + Òm(x)

= H̆y
(3)

where H̆ is considered as hat matrix in linear regression model defined H̆ = ôH+H∗.
The residual vector is given by

ĕ = y − by = (I− H̆)y

which will be used in defining and interpreting Cook’s distances in the semipara-
metric regression model.

3. Cook’s Distance

Firstly, we briefly review the derivation of Cook’s distance in the linear regres-
sion model: y = Xβββ + εεε, where y is a response vector, X is a n × k matrix of
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known covariates, βββ is a vector of unknown parameters, and εεε is a vector of errors
with mean zero and a common unknown variance σ2. yi and xT

i denote the ith
row of y and X, respectively, and using the subscript (−i) means that the ith
observation is deleted. Hence, X−i denotes the matrix X withith row deleted.
Let bβββ = (XTX)−1XTy be the least squares estimator of βββ, by = Xbβββ = Hy where
H = X(XTX)−1XT is the hat matrix and s2 = eTe/(n− k) is estimation of σ2.

Cook’s distance for measuring the influence of the ith observation is defined
by

Ci = (bβββ − bβββ−i)
T (XTX)(bβββ − bβββ−i)/s

2tr(H)

Using the fact, bβββ − bβββ−i = (XTX)−1xiei/(1− hii)

the Cook’s distance can be written as leverage values and residuals

Ci =
1

tr(H)s2
e2ihii

(1− h2ii)
(4)

where hii is the diagonal elements of H and ei is the element of residual vector
e = y − by. The trace of H is defined to be the sum of the elements on the main
diagonal of H. As a projection matrix, H is symmetric and idempotent (H2 = H),
the eigenvalues of a projection matrix are either zero or one and the number of
non zero eigenvalues is equal to the rank of the matrix. In this case, rank(H) =
rank(X) = k and hence, trace(H) = k which means that tr(H) =

Pn
i=1 hii = k .

3.1. Cook’s Distance for bβββ in Semiparametric Regression

An influence measure for ith observation on bβββ may be defined as a type of
Cook’s distance in linear regression by

fCi =
(bβββ − bβββ−i)

T (eZT eZ)(bβββ − bβββ−i)

s2tr(ÜH)
(5)

Note that tr(ÜH) =
nP

i=1

ehii = k as in linear regression. Equation (5) can be

expressed as a function of the ith residual and leverage such as in (4) for semi-
parametric regression model as below

ÜCi =
1

s2k

ehiiee2i
(1− ehii)2 (6)

where eei is the ith component of residual vector ee = y − ey and ehii is the ith
diagonal component of ÜH = eZ(eZT eZ)−1eZT related to parametric component of
semiparametric regression model (Kim et al. 2002).
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3.2. Cook’s Distance for cm in Semiparametric Regression

An influence measure for ith observation on Òm may be defined as a type of
Cook’s distance utilizing (2) by

C∗
i =
{Òm(xi)− Òm−i(xi)}

s2tr(H∗)

It can be expressed as a function of the ith residual and leverage such as in (4)

C∗
i =

(h∗iie
∗
i )2

(1− h∗ii)2s2tr(H∗)
(7)

where e∗i is the ith component of residual vector e∗ = (I −H∗)y and h∗ii is the
ith diagonal component of H∗ related to the nonparametric component of the
semiparametric regression model (Kim et al. 2002).

3.3. Cook’s Distance for by in Semiparametric Regression

An influence measure for ith observation on by may be defined as a type of
Cook’s distance utilizing (3) such as in linear regression by

C̆i =
(by − by−i)

T (by − by−i)

s2tr(H̆)

It can be expressed as a function of the ith residual and leverage such as in (4)
for by

C̆i =
h̆iiĕ

2
i

(1− h̆ii)2s2tr(H̆)
(8)

where ĕi is the ith component of residual vector ĕ = y − by = (I− H̆)y and h̆ii is
the ith diagonal component of H̆ (Kim et al. 2002).

4. Pena’s Measure

Pena (2005) introduced a new measure to determine the influence of an ob-
servation based on how this observation is being influenced by the rest of the
data. That is, the predicted change when each observation in the data is deleted
is measured for each observation. In this way, the sensitivity of each observation
to changes in the data is measured. Pena (2005) showed that this type of influ-
ential analysis is able to indicate features in the data, such as clusters of high
leverage outliers. Pena’s measure has some advantages over Cook’s distance. In
a sample without outliers or high leverage observations, all of the cases have the
the same expected sensitivity with respect to the entire sample. This is an ad-
vantage over Cook’s distance which has an expected value that depends heavily
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on the leverage of the case. For large sample sizes with many predictors, the dis-
tribution of the Pena’s measure will be approximately normal. This is advantage
over Cook’s distance which has a complicated asymptotical distribution. The sam-
ple contaminated by a group of similar outliers with high leverages, this measure
could discriminate between outliers and good observations while Cook’s distance
fails to detect these observations. In addition, Pena’s measure can be useful for
identifying intermediate-leverage outliers that are not detected by Cook’s distance
(Pena 2005).

In the regression model, Pena’s measure is defined as

Si =
sTi si
ps2

(byi)

(9)

where si = (byi − byi(1), . . . , byi − byi(n)) is a vector and byi(j) is the ith fitted value
when the jth observation is deleted. Using the facts, the difference byi − byi(j) is
obtained as

byi − byi(j) = xT
i
bβββ − xT

i
bβββ−j =

hjjej
1− hjj

and s2
(byi)

= s2hii (10)

Pena’s measure can be expressed as a function of the ith residual and leverage
from (10)

Si =
1

ps2hii
=

nX
j=1

h2jie
2
j

(1− hjj)2
(11)

Pena (2005) stated that Si would be large if it exceeds median (Si)+4.5MAD(Si)
where MAD(Si) = median{|Si −median(Si)|}/0, 6745. Pena’s measure is very
effective in detection of high leverage outliers that can not be detected by Cook’s
distance in large data sets. Also, it is very simple to compute (Türkan, S. and
Toktamis, Ö. 2012).

4.1. Pena’s Measure for Semiparametric Regression

In this study, we derived Pena’s measure formula for the semiparametric re-
gression model. The fitted values vector in (3) can be written as

by = Zβββ + Òm(x)

= eZbβββ + Sy
(12)

Using ith row vector of S in (12), Sxi = tT (XT
xWxXx)−1XT

xWx, the ith fitted
value, byi, can be written byi = ezTi bβββ + txi

(xi)bβββxi

where bβββx = (XT
xWxXx)−1XT

xWxy and tx(xi) = (1, (xi − x), . . . , (xi − x)p). The
ith fitted value when jth observation is deleted, byi,−j , can be expressed as below:

byi,−j = ezTi bβββ−j + txi(xi)
bβββxi,−j (13)
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Utilizing Sherman-Morrison-Woodbury (SMW) theorem, byi − byi,−j can be ob-
tained as a function of the ith residuals and leverages

byi − byi,−j =
ehjjeej

1− ehjj +
hxi

(j, j)exi(j)

1− hxi
(j, j)

(14)

where ehij = ezTi (eZT eZ)−1ezj and hxi
(i, i) = (XT

xi
Wxi

Xxi
)−1Kh(0) are diagonal

elements of ÜH = eZ(eZT eZ)−1eZT and Hx = Xx(XT
xWxXx)−1XT

xWx, respectively.
From (14), Pena’s measure for semiparametric regression model can be obtained
as

eSi =
sTi si

tr(H̆)var(byi)
=

1

tr(H̆)var(byi)
nX

j=1

� ehjjeej
1− ehjj +

hxi(j, j)exi(j)

1− hxi
(j, j)

�2 (15)

(see Türkan 2012)

5. Application

In this section, we compare the performance of our adjusted Pena’s measure
with adjusted Cook’s distances in the semiparametric regression model to identify
influential observations via actual data, artificial data and a simulation.

5.1. Actual Data

We consider actual data related to diabetes. The response variable is the
logarithm of C-peptide concentration (y) at diagnosis and two predictors are age
(x) and base deficit (z) (Kim et al. 2002). The data set contains 41 observations.
There is a linear relationship between the logarithm of C-peptide concentration
and base deficit, however, there is a nonlinear relationship between the logarithm
of C-peptide concentration and age. Hence, the semiparametric regression model,
yi = zTi βββ +m(xi) + ε, is used. Following the study of Kim et al. (2002), the local
linear smoother was used and the bandwidth h = 5.6 was selected minimizing
cross-validation (CV) criterion (CV =

P
{ei/(1 − hii)}2). Table 1 shows the

estimates of both parametric and nonparametric components.
Figure 1 displays index plots of leverages values h̆ii and residuals ĕi.
As seen from Figure 1(a), observations 20 and 34 are considered as outliers but

these observations are not considered as high leverage from Figure 1(b) that the
values of h̆ii are not close to 1. Hence, it is said that there is no high leverage
outlier in the data.

Figure 2 displays an index plot of influence measures (ÜC,C∗
i , C̆i and eSi) for

this data.
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(a) (b)

Figure 1: (a) index plot of residuals, ĕi (b) index plot of leverages values, h̆ii

(a) (b)

(c) (d)

Figure 2: Plots for diabetes data: (a) index plot of Cook’s distance for bβββ, eCi (b) index
plot of Cook’s distance for Òm, C∗

i , (c) index plot of Cook’s distance for, by,
C̆i (d) index plot of Pena’s measure eSi.

Revista Colombiana de Estadística 36 (2013) 273–286



Detection of Influential Observations in Semiparametric Regression Model 281

Table 1: Estimates of parametric and nonparametric components
Estimates of Parametric Component
0.008 0.111
-0.501 0.312
0.339 0.261
-0.055 0.329
-0.539 -0.327
-0.711 0.286
-0.280 0.330
0.298 -0.430
0.366 0.323
0.033 -0.573
-0.369 0.181
0.213 -0.063
-0.079 -0.477
0.256 0.251
0.309 0.319
-0.133 0.210
-0.249 -0.407
0.404 0.251
0.036 -0.159
0.307 -0.382
0.176

Estimates of Nonparametric Component
4.950 4.450
5.206 5.345
05.279 5.319
5.282 5.168
4.563 5.343
5.332 5.342
5.341 5.253
5.003 5.295
4.617 5.327
4.912 5.297
5.156 4.941
4.950 4.912
4.435 4.852
5.316 5.089
5.156 5.338
5.309 5.257
5.282 5.329
5.191 5.338
5.298 5.212
5.333 5.289
5.304

From Figure 2, according to Cook’s distances (ÜC, C∗
i and C̆i) adjusted by

Kim et al. (2002), observations 6, 34, 31, 20 and 26 are considered the five most
influential observations on bβββ, observations 22, 13, 23, 26, 20 are considered the
five most influential observations on Òm and observations 34, 6, 20, 26, 13 are
considered the five most influential observations on by. As seen from Figure 1(a),
1(b), there are no high leverage outliers in the data. Therefore, according to our
adjusted Pena’s measure eSi, which is not useful in situations there are the outliers
with low leverage, no observation is considered influential.

5.2. Artificial Data

Since we illustrate the performance of adjusted Pena’s measure eSi, an artificial
data set with high leverage outliers is generated for semiparametric regression. We
generate the data set using the model in the study of Kim et al. (2002)

yi = 0.5zi + (xi − 0.5)2 + εi

We generate the 500 observations in which the last 50 observations would
be high leverage outliers. For this reason, the first 450 of xi from U(0, 1) and
zi = i/450 where εi is generated from N(0, 0.02). The remaining 50 of xi are
generated from U(5, 10) and zi = i/50 where εi is generated from N(5, 2). We
suspect the last 50 observations for high leverage outliers. Figure 3 shows that the
index plots of ÜC, C∗

i , C̆i and eSi.
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As seen from Figure 3, eSi perfectly identifies 50 observations (observations
451− 500) as high leverage outliers. It is said that eSi is very useful for identifying
high leverage outliers in semiparametric regression as in linear regression. In addi-
tion, eSi is clearly better than Cook’s distances (ÜCi, C

∗
i , C̆i) to detect high leverage

outliers in large data as mentioned before.

(a) (b)

(c) (d)

Figure 3: Plots for Diabetes data: (a) index plot of Cook’s distance for bβββ, eCi (b) index
plot of Cook’s distance for Òm, C∗

i , (c) index plot of Cook’s distance for, by,
C̆i (d) index plot of Pena’s measure eSi.

5.3. Simulation Results

Here, we present a Monte Carlo simulation study that is designed to compare
the performance of adjusted Pena’s measure for semiparametric regression model.
We generate the data sets from the same model in the previous section. We
consider three different sample sizes, n = 50, 100, 250 with two different levels of
influential observations (i.e, γ = 10%, 20%). The comparison of influence measures
(ÜC,C∗

i , C̆i and eSi) in semiparametric regression is carried out by the following
steps:

1. Generation of the data with certain percentage of high leverages (X’s out-
liers): For this purpose, we generate the first n(1 − γ)% of xi from U(0, 1)
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and zi = i/(n(1− γ)%) where εi is generated from N(0, 0.02). The remain-
ing nγ% of xi are generated from U(5, 10) and zi = i/(nγ%) where εi is
generated from N(0, 0.02).

2. Generation of the data with certain percentage of both high leverages (X’s
outliers) and outliers (Y ’s outliers): For this purpose, we generate the first
n(1 − γ)% of xi from U(0, 1) and zi = i/(n(1 − γ)%) where εi is generated
from N(0, 0.02). The remaining nγ% of xi are generated from U(5, 10) and
zi = i/(nγ%) where εi is generated from N(5, 2).

3. Generation of the data with certain percentage of both intermediate-leverages
and outliers (Y ’s outliers): For this purpose, we generate the first n(1−γ)% of
xi from U(0, 1) and zi = i/(n(1−γ)%) where εi is generated from N(0, 0.02).
The remaining nγ% of xi are generated from U(1, 3) and zi = i/(nγ%) where
εi is generated from N(5, 2).

4. Generation of the data with certain percentage of low outliers: For this pur-
pose, we generate the first n(1−γ)% of xi from U(0, 1) and zi = i/(n(1−γ)%)
where εi is generated from N(0, 0.02). The remaining nγ% of xi are gener-
ated from U(1, 3) and zi = i/(nγ%) where εi is generated from N(1, 0.2).

5. Each measure is computed from each of the 100 replications.

6. Make comparison of detection of influential observations by using correct
determination rate of each measure (i.e., total number of influential obser-
vations identified divided by total number of influential observations).

Table 2-5 show the correct determination rate of each measure (ÜC,C∗
i , C̆i andeSi) for different shows sizes and percentages of influential observations from 100

replications. From Table 2, adjusted Pena’s measure, eSi, performs similar results
with Cook’s distance C̆i for by to identify the high leverages for all the sample size.
But, it is better than ÜCi, C∗

i for all situations. From Table 3, adjusted Pena’s
measure, eSi clearly performs better than Cook’s distances for bβββ, Òm and by (ÜCi, C∗

i ,
C̆i) to detect high leverages outliers in large data. As seen from Table 3, almost all
high leverage outliers could correctly be detected by eSi for n = 250. From Table
4, adjusted Pena’s measure eSi successfully identifies intermediate leverage outliers
that are not detected by Cook’s distance for n = 100 and n = 250. From Table
5, adjusted Pena’s measure eSi fails to detect low outliers with no high leverage as
expected.
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Table 2: The correct determination rate of high leverages (X’s outliers).

Correct determination of measures (in percentages)

Sample
Size

Percentages of
influential

observations
eCi

C∗
i C̆i eSi

n=50 10% 33 60 60 68
20% 16 19 39 36

n=100 10% 23 11 39 45
20% 17 14 38 35

n=250 10% 49 50 69 72
20% 43 17 75 76eCi: Cook’s distance for bβββ; C∗

i : Cook’s distance for Òm; C̆i: Cook’s distance for by; eSi: Adjusted
Pena’s measure

Table 3: The correct determination rate of both high leverages (X’s outliers) and out-
liers (Y ’s outliers).

Correct determination of measures (in percentages)

Sample
size

Percentages of
influential

observations
eCi

C∗
i C̆i eSi

n=50 10% 51 70 72 80
20% 46 44 68 84

n=100 10% 49 66 75 91
20% 45 23 65 92

n=250 10% 52 52 71 98
20% 44 19 62 98eCi: Cook’s distance for bβββ; C∗

i : Cook’s distance for Òm; C̆i: Cook’s distance for by; eSi:
Adjusted Pena’s measure.

Table 4: The correct determination rate of both intermediate leverages (X’s outliers)
and outliers (Y ’s outliers).

Correct determination of measures (in percentages)

Sample
size

Percentages of
influential

observations
eCi

C∗
i C̆i eSi

n=50 10% 40 48 81 82
20% 32 34 70 86

n=100 10% 32 39 77 86
20% 23 27 66 89

n=250 10% 20 31 73 94
20% 14 17 63 96eCi: Cook’s distance for bβββ; C∗

i : Cook’s distance for Òm; C̆i: Cook’s distance for by; eSi:
Adjusted Pena’s measure.
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Table 5: The Correct Determination Rate of low outliers.

Correct determination of measures (in percentages)

Sample
size

Percentages of
influential

observations
eCi

C∗
i C̆i eSi

n=50 10% 51 38 51 21
20% 28 18 33 22

n=100 10% 39 43 47 13
20% 25 19 30 4

n=250 10% 33 29 43 13
20% 23 12 31 1eCi: Cook’s distance for bβββ; C∗

i : Cook’s distance for Òm; C̆i: Cook’s distance for by; eSi:
Adjusted Pena’s measure.

6. Conclusions

In this paper, we derived Pena’s measure formula for semiparametric regression.
The numerical examples and simulation study show that the proposed Pena’s
measure eSi performs very effectively in the identification of high leverage outliers
and intermediate-leverage outliers in large data sets that are not clearly detected
by adjusted Cook’s distances for semiparametric regression model.�
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Abstract

We introduce the censored bimodal symmetric-asymmetric alpha-power
models to adjust censored data with bimodality and high levels of skewness
and kurtosis. The moments corresponding are computed, the maximum like-
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information matrix is derived. We show the appropriateness of the proposed
models through two applications with censored real data related to HIV-1
RNA measurement.
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1. Introduction

In epidemiological studies where biomarkers are the main outcomes, it is com-
mon to have detection limits below which it is not possible to determine the specific
values. For instance, in highly active antiretroviral therapy (HAART), the number
of viral load measurements in patients with HIV has a lower detection limit when
using ultrasensitive tests.

The quantitative measurements in people with HIV may be highly left cen-
sored with a high percentage below the detection limit, depending on the method
used for each measurement. For example, in Bucaramanga City, Colombia, the
viral load measurements are conducted by different laboratories, and the HIV-1
RNA quantification is performed by three different methods: Versant bDNA 3.0 R©

(Bayer), LCx HIV R© (Abbott) and Amplicor HIV Monitor v1.5 R© (Roche), all of
which have a detection limit of 50 copies per mL. In order to model the percent-
age of individuals below the detection limit, an asymmetric bimodal model may
be necessary for this type of variable.

The analysis of viral load, HIV-RNA, (scale log10) is used to measure the
effectiveness of HAART therapy which suppresses HIV-1 RNA to undetectable
levels, thereby reducing the morbidity and mortality rates of HIV. Li, Chu, Gal-
lant, Hoover, Mack, Chmiel & Muñoz (2006) found that log10(HIV-1 RNA) has
two modal values in its distribution, corresponding to the optimal and suboptimal
response to HAART, and it can be modeled with a mixture of two normal dis-
tributions in the presence of left censoring. In other cases, the bimodal behavior
is also considered as the variable has a high (or low) degree of asymmetry and
kurtosis in at least some partial distributions that compose the bimodal behavior.

In general a random variable Y , which has a part of its probability at discrete
points and the rest spread over several intervals, has a mixture distribution.

When data are censored, the observed variable Y is a mixture of a continuous
latent process Y ∗ and a selection mechanism (censoring or truncation) modeling in
binary form. This idea was popularized by Tobin (1958) and the resulting model
is known as the Tobit model, which is defined in terms of the latent variable
Yi = Y ∗i I(Y ∗i > c), for some constant c, where I(·) is the indicator function and
Y ∗ has a certain distribution, e.g., normal Tobin (1958) or Student-t of Arellano-
Valle, Castro, González-Farías & Muñoz-Gajardo (2012) or generalized normal of
Martínez-Flórez, Bolfarine & Gómez (2013).

Until the last two decades of the twentieth century, the inferential processes
assumed the normality of the data under study. This assumption is unrealistic for
many variables, and the inferential processes are inadequate. In these situations
many authors choose to transform the variables in order to attain data symmetry
or normality. This transformation leads to unsatisfactory results because the in-
terpretation of results becomes cumbersome. The data becomes more difficult to
interpret when there are several variables with different types of transformations.
In view of these deficiencies, more flexible models have been developed that are
able to accommodate different degrees of asymmetry and kurtosis. Previous work
in this area include Azzalini (1985), Henze (1986), Durrans (1992), Fernández &
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Steel (1998), Mudholkar & Hutson (2000), Pewsey (2000), Eugene, Lee & Famoye
(2002), Jones (2004), Gómez, Venegas & Bolfarine (2007) and Arnold, Gómez &
Salinas (2009).

For bimodal data, extensions for asymmetric cases have been studied by Kim
(2005), Gómez et al. (2007) and Arnold et al. (2009), among others. Kim (2005)
introduces the bimodal skew-normal called the two-pieces skew-normal model. An
asymmetric extension of this model was presented by Arnold et al. (2009) who
defined the extended two-pieces skew-normal model. Gómez, Elal-Olivero, Salinas
& Bolfarine (2009) also studied a bimodal skew-normal model for certain values
of the shape parameter, and this distribution is called skew-flexible-normal. Other
works in this area have been published by Elal-Olivero, Gómez & Quintana (2009)
and Bolfarine, Gómez & Rivas (2011).

In this paper, we present a new distribution for adjusted censored data with
bimodality and high levels of skewness and kurtosis. The paper is structured as
follows. In Section 2, we introduce the censored bimodal symmetric alpha-power
distribution, moments, estimation and inference for model parameters. In Sec-
tion 4, we introduce the censored bimodal asymmetric alpha-power distribution,
moments, estimation and inference for model parameters; we derive the informa-
tion matrix and discuss likelihood ratio tests for some hypotheses of interest. In
Section 6, the appropriateness of this model is illustrated using two applications
involving real data. Finally, some concluding remarks are presented in Section 7.

2. Censored bimodal symmetric alpha-power model

Based on the works by Durrans (1992) and Kim (2005), Bolfarine, Martínez-
Flórez & Salinas (2012) introduced the bimodal symmetric alpha-power model,
whose probability density is

ϕ(z;α) = αcαf(z) {F (|z|)}α−1 , −∞ < z <∞ (1)

where α ∈ R+, F is an absolutely continuous density function with density function
f = dF symmetric around zero and cα = 2α−1

2α−1 is the normalizing constant. We
use the notation Z ∼ BSP (α).

Now, consider a random variable Y ∗ ∼ BSP (α) where (Y ∗1 , Y
∗
2 , . . . , Y

∗
n ) is a

random sample of size n and point of censorship equal to c. Values of Y ∗ greater
than the constant c are mapped to themselves, whereas values of Y ∗ less than or
equal to the constant c are mapped to c. Then, without loss of generality for c = 0,
the observed value is Yi = DiY

∗
i , i = 1, 2, . . . , n, where Di = I(Y ∗i > 0). Here

we have a random sample that is left censored. We say that Y follows a censored
BSP distribution. We denote this variable by Y ∼ CBSP (α). The generalization
to right censoring or when the point of censorship is different from zero is trivial.

For a random variable Y ∼ CBSP (α) with α ∈ R+, the location-scale exten-
sion is defined as the distribution of the random variable X = ξ + ηY for ξ ∈ R
and η > 0. We use the notation X ∼ CBSP (ξ, η, α).
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From equation (1), when f = φ and F = Φ are the standard normal density
and cumulative distribution functions, respectively, we obtain the bimodal power-
normal density function and use the notation Z ∼ BPN(α). Similarly, we obtain
the censored bimodal power-normal density function Y ∼ CBPN(α) and the
location-scale extension X ∼ CBPN(ξ, η, α). The density function of the random
variable Y ∼ CBPN(α) is symmetric and unimodal for 0 < α ≤ 1 and bimodal
for α > 1. Figure 1 depicts plots for the random variable Y ∼ CBPN with a
point of censorship c 6= 0 and two values of α.
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Figure 1: Densities of CBPN(0, 1, α) censored at the left (grey color): (a) α = 1.75
and (b) α = 0.75.

The moments of the random variable CBSP are given as functions of the in-
complete moments of the alpha-power model which are defined as

µr(x) =

∫ ∞
x

αzrf(z) {F (z)}α−1dz, r = 0, 1, 2, . . . ,

The r-th moment of the random variable X ∼ CBSP (ξ, η, α) is then given by

E(Xr) = cα

r∑
k=0

(
r

k

)
ξr−kηkµk(0)

3. Inference to CBSP Model

The contribution of the censored and uncensored observations to the log-
likelihood function is as follows: if Yi = 0, then P(Yi = 0) = P(Xi ≤ 0) =

cα

[
1−

{
F
(
ξ
η

)}α]
, and for the non-nulls Yi’s we have that they are distributed

as the respective Xi’s.
Assume that n independent and identically distributed observations x1, x2, . . .,

xn are available from BSP (ξ, η, α). We denote by
∑

0 the sum over the censored
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observations and by
∑

1 the sum over uncensored observations. The log-likelihood
function of (ξ, η, α) based on x = (x1, x2, . . . , xn) is given by

`(ξ, η, α;x) =
∑
0

(
log(cα) + log

[
1−

{
F

(
ξ

η

)}α])
+
∑
1

[log(α) + log(cα)− log(η) + log(f(zi)) + (α− 1) log(F (|zi|))]

where zi = xi−ξ
η . Hence, assuming that f ′ exists, the score function defined as

the first derivative of the log-likelihood function, with respect to all parameters is
given by:

U(ξ) = −α
η

∑
0

{
F
(
ξ
η

)}α−1
f
(
ξ
η

)
1−

{
F
(
ξ
η

)}α − 1

η

∑
1

{
f ′(zi)

f(zi)
+ (α− 1)sgn(zi)

f(|zi|)
F (|zi|)

}

U(η) =
αξ

η2

∑
0

{
F
(
ξ
η

)}α−1
f
(
ξ
η

)
1−

{
F
(
ξ
η

)}α − 1

η

∑
1

{
1 + zi

f ′(zi)

f(zi)
+ (α− 1)|zi|

f(|zi|)
F (|zi|)

}

and

U(α) =
∑
0

− log(2)

2α − 1
−

{
F
(
ξ
η

)}α
log
[
F
(
ξ
η

)]
1−

{
F
(
ξ
η

)}α


+
∑
1

{
1

α
− log 2

2α − 1
+ log[F (|zi|)]

}

The score equations are obtained by equating the derivatives presented above to
zero. The maximum likelihood estimators are the solutions of the score equations,
and clearly depend on the functions f and F . Model parameters are estimated
using iterative algorithms that can be implemented in any statistical package. The
elements of the observed information matrix are given in Appendix.

4. Censored Bimodal Asymmetric Alpha-Power
model

The CBPN model is an alternative when data are censored and have a bimodal
and symmetrical distribution; however, in case that the asymmetrical distributions
are not adequate, we introduce another model for censored data whose distribution
function is bimodal and asymmetric. The following lemma given by Azzalini (1985)
will be essential to achieve this model.
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Lemma 1. Let f0 be a probability density function symmetric about zero and G
be a distribution function such that G′ exists and is a probability density func-
tion symmetric about zero. Then fZ(z;β) = 2f0(z)G(βz) is a probability density
function for z, β ∈ R.

Based on this lemma and given that the density function of a random variable
BSP (α) is symmetric about zero, then for G, which is a distribution function such
that G′ is a probability density function symmetric about zero, then

ϕ(z;α, β) = 2αcαf(z) {F (|z|)}α−1G(βz), −∞ < z <∞ (2)

is a probability density function, such that α ∈ R+ and β ∈ R. The parameter β
controls asymmetric behavior. We denote by Z ∼ BAsP (α, β).

The location-scale extension for a random variable Z ∼ BAsP (α, β) is defined
as the distribution of the random variable X = ξ+ηZ, where ξ ∈ R is the location
parameter and η > 0 for the scale parameter. We denote by X ∼ BAsP (θ) where
θ = (ξ, η, α, β). Thus, redefining the random variable latent Yi = XiI(Xi > 0) we
obtain a censored random variable, which we denote by Y ∼ CBAsP (θ).

When F = G = Φ in equation (2) naturally follows the censored bimodal
asymmetric alpha-power normal model, which we denote by CBAsN(θ), this dis-
tribution is bimodal for α > 1 and unimodal for 0 < α ≤ 1, while the parameter
β controls asymmetric behavior.

Figure 2 depicts plots for the random variable Y ∼ CBAsN(θ) with point of
censorship c 6= 0 and two values of β.
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Figure 2: Density of CBAsN(0, 1, 1.75, β) censored at the left (grey color). (a) β = 0.25
and (b) β = −0.45.

5. Inference to CBAsN Model

Let Y1, Y2, . . . , Yn be a random sample of size n obtained from the CBAsN(θ)
distribution with unknown parameter vector θ. The contribution of the i-th
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observation to the likelihood is given by P(Y = 0) = P(X ≤ 0) = αcαAc(θ)
where Ac(θ) =

∫∞
ξ
η
φ(z){Φ(z)}α−1{1− Φ(βz)}dz.

The log-likelihood function of θ based on y = (y1, y2, . . . , yn) is given by

`(θ;y) =
∑
1

[log(2αcα)− log(η) + log(φ(zi)) + (α− 1) log(Φ(|zi|)) + log(Φ(βzi))]

+
∑
0

[log(αcα) + logAc(θ)]

where zi = yi−ξ
η . The first derivatives of the log-likelihood function with respect

to the parameters are given by:

U(ξ) = −n0rc(θ)

ηAc(θ)
− 1

η

∑
1

{
−zi + (α− 1)sgn(zi)

φ(|zi|)
Φ(|zi|)

+ β
φ(βzi)

Φ(βzi)

}
U(η) =

n0rc(θ)ξ

η2Ac(θ)
− 1

η

∑
1

{
1− z2i + (α− 1)|zi|

φ(|zi|)
Φ(|zi|)

+ βzi
φ(βzi)

Φ(βzi)

}
U(α) = n

{
1

α
− log 2

2α − 1

}
+
n0Bc(θ)

Ac(θ)
+
∑
1

{log[Φ(|zi|)]}

and

U(β) =
n0Dc(θ)

Ac(θ)
+
∑
1

zi
φ(βzi)

Φ(βzi)

where

Bc(θ) =

∫ ∞
ξ
η

φ(z){Φ(z)}α−1 log(Φ(z)){1− Φ(βz)}dz,

rc(θ) = φ

(
ξ

η

){
Φ

(
ξ

η

)}α−1{
1− Φ

(
βξ

η

)}
,

Dc(θ) =

∫ ∞
ξ
η

zφ(z){Φ(z)}α−1{1− Φ(βz)}dz

The maximum likelihood estimate θ̂ = (ξ̂, η̂, α̂, β̂) of θ is obtained by setting
U(ξ) = U(η) = U(α) = U(β) = 0 and solving these equations numerically using
iterative techniques. The elements of the observed information matrix are given
in Appendix.

6. Illustrations

In this section we illustrate the usefulness of the proposed models by fitting
a CBAsP distribution to some data sets. We use two real data sets to compare
the fit of this model with censored normal (CN), censored skew-normal (CSN)
and censored bimodal skew-normal (CBSN) distributions and with the parent
distribution itself.
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6.1. HIV-1 RNA Data Obtained from the Secretariat
of Health of Bucaramanga City

The database was provided by Secretariat of Health, Department of Santander,
Colombia, and corresponds to persons who are reported to the SIVIGILA system.
This database maintains the absolute confidentiality of patient identification and
contains the age, gender, date of admission to the SIVIGILA system, presence or
absence of HAART treatment, CD-4 count and HIV-1 RNA plasma levels (viral
load) of some patients. The database corresponds to 1275 persons infected with
HIV, and who have been officially reported to the Surveillance and Epidemiology
Service of Bucaramanga City. Tests used for the diagnosis of HIV infection in
a particular person require a high degree of both sensitivity and specificity. In
Colombia, this is achieved using an algorithm combining two tests for HIV anti-
bodies. If antibodies are detected by an initial test based on the ELISA method,
then a second test using the Western blot procedure is performed. The combina-
tion of these two methods is highly accurate. Patients are at different stages of
treatment, 681 patients in the sample have had HAART therapy since 2007 and
HIV-1 RNA plasma level (viral load) measurement, and there were 206 women
and 475 men.

Because the measurements were performed at different laboratories, the HIV-
1 RNA quantification could be performed by three different methods: Versant
bDNA 3.0 R© (Bayer), LCx HIV R© (Abbott) and Amplicor HIV Monitor v1.5 R©

(Roche), all of which have a detection limit of 50 copies per mL. Descriptive
statistics for log10(HIV-1 RNA) observations above the detection limit of 475 men
in the example are mean=1.7350 and variance=1.7397. The skewness=0.5258 and
kurtosis=2.1346 correspond to sample values above log10(50). These statistics
show that the data have a high positive bias and a low kurtosis compared to the
normal model, which is an indication that the censored normal model is not an
alternative to adjusting for viral loads. In addition to these characteristics, the
histogram of Figure 3 shows that the behavior of the log10(HIV-1 RNA) variable
is bimodal, and therefore the censored bimodal skew-normal model can be used to
adjust log10(HIV-1 RNA) data. Furthermore, we adjust the censored normal (CN),
censored skew-normal (CSN), censored bimodal symmetric skew-normal (CBPN)
and censored bimodal asymmetric skew-normal (CBAsPN) models.

As can be seen in Figure 3-(a), the CSN model can accommodate to some
degree the asymmetry that occurs in the observations, but it fails to explain the
bimodality of the variable if it is adjusted for the CBPN and CBAsPN models.

To compare between the models considered above, we use the Akaike Infor-
mation Criterion (AIC; Akaike 1974) and Bayesian Information Criterion (BIC;
Schwarz 1978). Table 1 shows maximum likelihood estimates for the four adjusted
models. According to the AIC and BIC criterions, the CBAsPN is a better fit for
log10(HIV-1 RNA) data.

A parametric test to prove the bimodality hypothesis is given by H0 : α =
1 versusH1 : α 6= 1, which compares the CSN model with the CBAsPNmodel using
the likelihood ratio statistics based on the ratio Λ1 = LCSN (ξ̂, η̂, β̂)/LCBAsPN (ξ̂, η̂,
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α̂, β̂). Substituting the estimated values, we obtain −2 log(Λ1) = −2(−414.79 +
405.05) = 19.48 which, when compared with the 95% critical value of χ2

1 = 3.84,
indicate that the null hypotheses is clearly rejected. Then, the CBAsPN model is
a good alternative for modeling log10(HIV-1 RNA) data.

Table 1: Maximum likelihood parameter estimates (Standard derivation in brackets)
for CN, CSN, CBPN and CBAsPN models.

Model CN CSN CBPN CBAsPN
ξ̂ 0.477(0.137) 1.689(1.147) 0.431(0.186) 1.692(0.085)
η̂ 1.978(0.121) 2.362(0.767) 2.139(0.226) 1.549(0.120)
α̂ 0.396(0.576) 4.007(0.629)
β̂ –0.861 (1.013) –0.595(0.100)

AIC 833.615 835.587 834.337 818.108
BIC 854.268 848.076 846.826 834.761

Additionally, we carry out the parametric test: H0 : (α, β) = (1, 0) versusH1 :
(α, β) 6= (1, 0), which compares the CN model with the CBAsPN model. Using
the statistic likelihood of ratio, Λ2 = LCN (ξ̂, η̂)/LCBAsPN (ξ̂, η̂, α̂, β̂) leading to
−2 log(Λ2) = −2(−414.81 + 405.05) = 19.52, which is greater than the value of
the chi-square with a 5% significance, χ2

1 = 3.84. This confirms that the best
model to fit log10(HIV-1 RNA) data is the CBAsPN model. We can also observe
that to some degree, the model adjusts the bimodality, but cannot adjust the
asymmetry present in the observations of the viral load.
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Figure 3: (a) Histogram for log10(HIV-1 RNA): CBAsPN (solid line), CBPN (dashed
line), CSN (dotted line) and CN (dashed line with points), (b) CBAsPN
(solid line) CMN (dashed line).

Another model widely applied in such situations is the mixture model of two
normal distributions (see Teck-Onn, Bakri, Morad & Hamid (2002), Chu, Moulton,
Mack, Passaro, Barroso & Muñoz (2005), Li et al. (2006), Schneider, Margolick,
Jacobson, Reddy, Martinez-Maza & Muñoz (2012), among others). The normal
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mixture model is given by

ρ(x;µ1, σ1, µ2, σ2, p) = pf1(x, µ1, σ1) + (1− p)f2(x;µ2, σ2)

where fj is a normal distribution with parameters (µj , σj), j = 1, 2 and 0 < p < 1.
For data with detection limits, we denote them using the CMN(µ1, σ1, µ2, σ2, p)
model. Now we compare the CBAsPN with CMN(µ1, σ1, µ2, σ2, p).

The estimated model is CMN(1.48, 0.90, 4.48, 0.92, 0.71) with AIC=819.9 and
BIC=840.7. This model has AIC and BIC greater than that of the CBAsPN
model, so the CBAsPN model fits the data log10(HIV-1 RNA) better than the
CMN model. Figure 3-(b) shows the estimated CBAsPN and CMN models. Fur-
thermore, we studied the goodness of fit of the CBAsPN model getting the QQ-plot
and cumulative distribution function from the MLE’s.

The QQ-plot and the cumulative distribution function obtained from the esti-
mated model are given in Figure 4(a)-(b): these show the good fit obtained in the
estimated model. The total censored data corresponds to 39.92% of the sample
under study, and the estimated percentage with the CBAsPN model is 39.50%,
while in the CBPN model, it is 40.43%, which confirms the good fit of the CBAsPN
model.
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Figure 4: (a) QQ-plot men, (b) cumulative distribution function for men and (c) QQ-
plot women.

These results indicate that the CBAsPN model is a suitable option for ad-
justing this type of information. In the case of HIV-infected women (n = 106)
under HAART, 33.96% are below the detection limit. The estimated model was
CBAsPN(1.6306, 1.8201, 2.8874, –0.5936), which estimated 32.95% of women be-
low the detection limit. The QQ-plot given in Figure 4-(c) illustrates the good
behavior of the CBAsPN model.

6.2. HIV-1 RNA Measuring by COBAS TaqMan

Plasma HIV-1 RNA was measured in 306 samples which were collected from
273 men in highly active antiretroviral therapy, with both Roche COBAS TaqMan
(whose detection limit is 20 copies per mL) and Roche Amplicor (whose detection
limit is 50 copies per mL) assays. See Schneider et al. (2012) for details.
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The data used in this paper to illustrate the model are measurements made with
the Roche TaqMan assay with log10(HIV-1 RNA). The non-censored information
has a mean y = 1.3235 and variance s2 = 1.5849. Quantities

√
b1 = 0.7012 and

b2 = 2.0054 correspond to sample asymmetry and kurtosis coefficients for values
above log10(20), respectively. These statistics show that the data displays a high
positive bias and a low kurtosis over the normal model. Figure 5 shows that the
behavior of the variable under study is bimodal. Therefore, a censored bimodal
asymmetric power-normal model may be used to adjust the log10(HIV-1 RNA)
data. We adjusted the CSN and CBAsPN models.

Table 2 shows maximum likelihood estimates of the proposed model. According
to the AIC criterion, the model that best fits the log10(HIV-1 RNA) data is the
CBAsPN normal model. The CSN model fails to capture the bimodality of the
log10(HIV-1 RNA) data.

Table 2: Maximum likelihood parameter estimates (with (SD)) for CSN and CBAsPN
models.

Model ξ̂ η̂ α̂ β̂ AIC
CSN 4.355(0.379) 11.121(1.371) –9.637(3.274) 685.373

CBAsPN 1.531(0.090) 1.729(0.174) 6.400(0.901) –1.175(0.148) 585.669

We can see that the estimate of α in the CSN model is significantly different
from zero, which verifies the high degree of asymmetry present in the observations.
Figure 5 shows that the CSN model adjusts to some extent the asymmetry present
in the observations, but fails to explain the natural bimodality of the variable under
study.

Again, we can prove the bimodality hypothesis H0 : α = 1 versusH1 : α 6= 1.
Then, using the statistic likelihood of ratios, Λ3 = LCSN (ξ̂, η̂, β̂)/LCBAsPN (ξ̂, η̂, α̂,

β̂) and substituting the estimated values, we obtain −2 log(Λ3) = −2(−339.69 +
288.83) = 101.72, which is greater than the value of the chi-square with 5% signi-
ficance, χ2

1 = 3.84. Then the CBAsPN model is a good alternative for modelling
log10(HIV-1 RNA) data.
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Figure 5: (a) Histogram for log10(HIV-1 RNA), models: CBAsPN (solid line), CSN
(dotted line) and CMN (dashed line), (b) QQ-plot and (c) cumulative distri-
bution function for uncensored values.
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We also obtained the estimate for the CMN(0.577, 0.903, 4.15, 0.706, 0.897)
model with AIC=585.27 (see Figure 5-(a)). There is no statistical difference be-
tween the AIC of the two models, and therefore, the two models have a similar fit.
However, the CBAsPN model has fewer parameters, and is therefore less suitable
than the CMN model.

Figure 5-(b)-(c) illustrate the QQ-plot and cumulative distribution function
from the estimated model for uncensored data: these show the good fit of the
estimated model. The total censored data corresponds to 70.58% of the study
population, and the percentage estimated with the CBAsPN model is 70.69%,
while with the CMN model, it is 70.74%, which illustrates the good fit of the
CBAsPN model.

7. Concluding Remarks

We proposed two new distributions called the censored bimodal symmetric
alpha-power and censored bimodal asymmetric alpha-power distributions. These
distributions can adjust the skewness and bimodality of censored data. The inclu-
sion of a new parameter can explain the asymmetric and bimodal behavior of an
extended family of distributions, allowing a more flexible model than the censored
normal, censored skew-normal models and censored mixture normal. The param-
eter estimation is approached by the maximum likelihood ratio and the observed
information matrix is derived. Two real applications using data from HIV-infected
persons illustrate the usefulness of the new models. The first application compares
the censored normal, censored skew-normal and censored mixture normal with the
two proposed models. The second application compares the censored skew-normal
model and censored mixture normal with the CBAsPN model. The results show
that the CBAsPN model fits much better to the viral load. The usefulness of the
new models is tested with the likelihood ratio statistics and formal goodness-of-
fit tests. The CBAsPN model has the potential to attract wider applications for
censored data.
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Appendix

Appendix A. Observed Information Matrix for
CBSP Model

As is well known, the elements of the observed information matrix are computed
as minus the second partial derivatives with respect to all parameters and are
denoted by jξξ, jξη, . . . , jαα. Assuming that f ′′ exists and making wi = f(|zi|)

F (|zi|) ,

si = f ′(|zi|)
F (|zi|) , ti = f ′′(zi)

f(zi)
, vi = f ′(zi)

f(zi)
, wc =

f( ξη )
F( ξη )

, sc =
f ′( ξη )
F( ξη )

,

pc =
{F( ξη )}α

1−{F( ξη )}α , qc =
f( ξη )

1−{F( ξη )}α and uc = log
(
F
(
ξ
η

))
.
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The elements of the observed information matrix are given by

jξξ =
αn0pc
η2

[
αpcw

2
c + (α− 1)w2

c + sc
]

+
1

η2

∑
1

{
(v2i − ti) + (α− 1)

[
w2
i − si

]}
jηξ = −αn0

η3
[
w2
c (αξ(pc + 1)− ξ) + ηwc + αξsc

]
+

1

η2

∑
1

{
(vi + ti − v2i ) + (α− 1)

[
sgn(zi)|zi|w2

i − sgn(zi)|zi|si − sgn(zi)wi
]}

jηη =
αξn0
η4

[
w2
c (αξ(pc + 1)− ξ) + 2ηwc + αξsc

]
− 1

η2

∑
1

{
1 +

1

η2
[
2zivi + z2i ti − z2i v2i

]
+ (α− 1)

[
2|zi|wi + z2i si − z2iw2

i

]}
jαξ = −n0pcwc

η
[αuc(1 + pc) + 1]− 1

η

∑
1

sgn(zi)wi,

jαη =
n0pcwcξ

η2
[αuc(1 + pc) + 1] +

1

η

∑
1

|zi|wi

and

jαα = n
[
α−2 − 2α(2α − 1)−2(log 2)2

]
+ n0pcu

2
c(1 + pc)

The elements of the expected (Fisher information matrix) are computed as n−1
times the expectation of the corresponding elements of the observed information
matrix. This matrix clearly depends on the function f , and it is important in the
sense that the asymptotic distribution of the maximum likelihood estimators is
asymptotically normal with the asymptotic variance as the inverse of the Fisher
information matrix.

Appendix B. Observed Information Matrix for
CBAsN Model

Similarly, as done before, it follows that the elements of the observed informa-
tion matrix are given by

jξξ =
n0rc(θ)

η2Ac(θ)

{
rc(θ)

Ac(θ)
− ξ

η
+ (α− 1)wc

}
− β

ηn0Ac(θ)
φ

(
ξ

η

)
φ

(
βξ

η

)
{

Φ

(
ξ

η

)}α−1
+

1

η2

∑
1

{
1 + (α− 1)

[
w2
i − sgn(zi)ziwi

]
+ β2

[
βziw1i + w2

1i

]}
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jηξ = − n0rc(θ)

η2A2
c(θ)

[
Ac(θ) +

ξ

η
rc(θ)

]
− n0ξEc(θ)

η2Ac(θ)
+

1

η2

∑
1

β
[
β2z2iw1i + βziw

2
1i

− w1i

]
,+

1

η2

∑
1

{
2zi + (α− 1)

[
−ziw2

i − sgn(zi)z
2
iwi + sgn(zi)wi

]}

jβξ = −n0ξ
η2

φ
(
ξ
η

)
φ
(
βξ
η

){
Φ
(
ξ
η

)}α−1
Ac(θ)

− n0
η

rc(θBc(θ))

A2
c(θ)

+
1

η2

∑
1

{
ηw1i − β

[
βz2iw1i + ziw

2
1i

]}
jαξ = −n0rc(θ)

η A2
c(θ)

[
Bc(θ)−Ac(θ) log

(
Φ

(
ξ

η

))]
− 1

η

∑
1

sgn(zi)wi

jηη =
n0rc(θ)

ξη4Ac(θ)

[
2η − ξ

(
ξ

η
− (α− 1)wc

)
+ ξ

rc(θ)

Ac(θ)

]
− n0βξ

2

η4Ac(θ)
φ

(
ξ

η

)
φ

(
βξ

η

){
Φ

(
ξ

η

)}α−1
+

1

η2

∑
1

{
−1 + 3z2i + (α− 1)

[
−2|zi|wi + z2iw

2
i + |zi|3wi

]
− βηziw1i

}
+
β

η2

∑
1

[
β2z3iw1i + βz2iw

2
1i − 2ziw1i

]
jβη =

n0ξ

η3Ac(θ)

[
ηrc(θ)Dc(θ) + ξφ

(
ξ

η

)
φ

(
βξ

η

){
Φ

(
ξ

η

)}α−1]

+
1

η

∑
1

[ziw1i − β2z3iw1i − βz2iw2
1i]

jαη =
n0ξrc(θ)

η2A2
c(θ)

[
Bc(θ)−Ac(θ) log

(
Φ

(
ξ

η

))]
+

1

η

∑
1

|zi|wi

jββ =
n0

A2
c(θ)

[
D2
c (θ)−Ac(θ)Mc(θ)

]
+
∑
1

[βz3iwi + z2iw
2
1i]

jαβ =
n0

A2
c(θ)

[Bc(θ)Dc(θ)−Ac(θ)Hc(θ)]

jαα = n
[
α−2 − 2α(2α − 1)−2(log 2)2

]
+

n0
A2
c(θ)

[
B2
c (θ)−Ac(θ)Nc(θ)

]
where w1i = φ(βzi)/Φ(βzi),

Ec(θ) =
rc(θ)

η2
[−ξ + (α− 1)ηwc]−

β

η
φ

(
ξ

η

)
φ

(
βξ

η

){
Φ

(
ξ

η

)}α−1
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Hc(θ) = −
∫ ∞
ξ
η

zφ(z){Φ(z)}α−1 log(Φ(z))φ(βz) dz

Mc(θ) = β

∫ ∞
ξ
η

z3φ(z){Φ(z)}α−1φ(βz) dz

Nc(θ) =

∫ ∞
ξ
η

φ(z){Φ(z)}α−1 log2(Φ(z)){1− Φ(βz)} dz

The elements of the expected information matrix are computed numerically
and depend on the functions φ and Φ. The MLE distribution is asymptotically
normal with the variance as the inverse of the Fisher information matrix.
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Resumen

La técnica de conteo de ítems (ICT, por sus siglas en inglés) es útil para
estimar la proporción de personas que poseen atributos que pueden tener
algún grado de estigmatización mediante el uso de un método de preguntas
indirectas. Una ICT mejorada ha sido propuesta recientemente en la liter-
atura bajo la inferencia clásica (la cual no requiere dos submuestras y libre
de la necesidad de encontrartamaños de muestra óptimos para cada una de
ellas como sucede en la ICT usual). Esta ICT mejorada se desempeña mejor
que la ICT usual y que el método de Respuesta Aleatorizada (RR, por sus si-
glas en inglés) de Warner. Este artículo extiende su estudio bajo una visión
Bayesiana usando diferentes a priori con el fin de derivar distribuciones,
medias y varianzas a posteriori.Las medias y varianzas a posteriori son com-
paradas con el fin de estudiar cuál a priori es más útil en mejorar la técnica
de conteo de ítems. Se observa que a priori simples y Beta elicitadas son
las mejores escogencias (en términos dela varianza mínima) dependiendo del
tamaño de muestra, el número de ítems y la suma de la respuesta. También,
la estimación bayesiana proporciona estimadores relativamente más precisas
que la estimación ML.

Palabras clave: atributos sensitivos, estimación Bayesiana, información a
priori, preguntas indirectas, proporción poblacional, protección de la privaci-
dad, técnica de conteo de ítems, técnica de respuesta aleatorizada.

1. Introduction

Survey techniques are now being utilized in almost every branch of physical
and social sciences. These branches include medical, sociology, economics, agricul-
ture, information technology, business, marketing, quality inspection, psychology,
human behavior and many others. In surveys relating to these fields, especially,
sociology, psychology, economics, people do not report their true status when the
study question is sensitive in nature. Collection of trustworthy (truthful) data
mainly depends upon the sensitivity of the study question, survey method, pri-
vacy (confidentiality) and cooperation of the respondents. The cooperation from
the respondents will be low if the study question is sensitive and direct questioning
method is applied. Consequently, the inferences made through direct questioning
run the risk of response bias, non response (refusal) bias or both. An ingenious
method pioneered by Warner (1965) was suggested in anticipation of reducing
these biases and to provide more confidentiality to respondents.

The technique proposed by Warner (1965) is known as Randomized Response
Technique (RRT ). A comprehensive review of developments on Randomized Re-
sponse (RR) techniques is given by Tracy & Mangat (1996) and Chaudhri &
Mukerjee (1998). Some of the recent developments, among others, include Gupta,
Gupta & Singh (2002), Ryu, Kim, Heo & Park (2005-2006), Bar-Lev, Bobovitch &
Boukai (2004), Arnab & Dorffner (2006), Huang (2010), Hussain & Shabbir (2010),
Barabesi & Marcheselli (2010) and Chaudhuri (2011). A number of applications
of RRT can be found in the literature, for instance, Liu & chow. L. P. (1976),
Reinmuth & Guerts (1975), Guerts (1980), Larkins, Hume & Garcha (1997), etc.
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Although these studies were seen to be fruitful in the sense of estimation of the
parameters, there are some applied difficulties associated with RRT as reported
by Guerts (1980) and Larkins et al. (1997). Guerts (1980) found that RRT could
have some limitations such the requirement of increased sample sizes in order to
have confidence intervals as good as obtained through the direct questioning tech-
nique. More time is needed to administer and explain the procedure to the survey
respondents. He further argued that, compilation of the results in the form of
tables is somewhat protracted.

Larkins et al. (1997) were of the view that RRT was not suitable in the estima-
tion of population proportion of tax payers/non-payers. Dalton & Metzger (1992)
found that RRT might not be efficient in a mailed or telephonic survey. Similarly,
Hubbard, Casper & Lesser (1989) argued that the major problem for RRT is to
choose a randomization device to apply as a best one in specified circumstances
and the very decisive feature of an RRT is about the respondent’s acceptance of
the technique. More recently, Chaudhuri & Christofides (2007) criticized RRT ar-
guing that it is burdened with the respondent’s ability to understand and handling
of the device and also it asks respondents to report the information which may be
useless or tricky. An intelligent interviewee may fear that his/her response can be
traced back to his/her true status if he/she does not understand the mathematical
logic behind the randomization device. Owing to these difficulties and limitations
associated with RRTs, alternative techniques have been suggested. Some of these
include the Item Count Technique by Droitcour, Casper, Hubbard, Parsley, Viss-
cher & Ezzati (1991), the Three Card Method by Droitcour, Larson & Scheuren
(2001) and the Nominative Technique by Miller (1985). These alternatives were
suggested to avoid evasive answers on sensitive questions particularly concerning
private issues, communally unexpected behaviors or illegitimate acts. Chaudhuri
& Christofides (2007) also supplemented such an idea.

If some prior information is available about the mean of the study variable it
may be used together with sample information. One of the methods using the prior
knowledge is the Bayesian method of estimation where prior knowledge is used in
the form of prior distribution. It has been established through many studies that
when prior information is more informative the Bayesian estimation provides the
more precise estimators.

In this paper, we plan to do a a Bayesian analysis of a recent item count tech-
nique by Hussain, Shah & Shabbir (2012) and provide the Bayesian estimators
assuming that prior information is available through the past studies, past experi-
ence or simply through intelligent guess. Specifically, we will consider some prior
distributions and compare the Bayesian estimator in case of each prior distribu-
tion used in this study. These comparisons will be in anticipation of finding the
more suitable prior. The paper is organized as: Section 2 discusses the recent
technique by Hussain et al. (2012); Section 3 provides Bayesian estimation using
different priors; Section 4 presents a comparative analysis, concluding remarks are
furnished in Section 5.
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2. A Recent Item Count Technique

Hussain et al. (2012) proposed an improved item count technique based on sin-
gle sample of size n in a classical framework showing an improvement over the usual
ICT and the novel method of Randomized Response (RR) technique of Warner
(1965). The said technique does not require two subsamples and consequently
finding optimum subsample sizes is not needed. This study extends the scope of
their study in a Bayesian framework and investigates the choice of a suitable prior
to update the item count technique.

In the improved ICT of Hussain et al. (2012), each respondent is provided a
list of g items and asked to report the number of items applicable to him/her,
where each item is a combination of an unrelated item say Fj and a sensitive
characteristic say S. The ith respondent is asked to count 1, if he /she possess at
least one of the characteristics Fj and S, and count 0 otherwise and finally report
the total count. So, for a single respondent his/her response may be 0 to g. The
response 1 for a single question or item means the respondent belongs either to non
sensitive characteristic, sensitive characteristic or to both. Now the probability of
1 for jth item is given by:

P (1) = θj = θFj
+ π − πθFj

(1)

where θFj
denotes the proportion of jth innocuous characteristic andπ denotes pop-

ulation proportion of individuals possessing a sensitive characteristic. Let Yi be
the response of ith respondent, then it can be written as: Yi=

∑g
j=1 αj , where αj

is a Bernoulli random variable taking values 1 and 0 with probabilities θj and
(1− θj) respectively. The unbiased moment (and ML) estimator for proportion of
people bearing sensitive behavior is given as:

π̂M =

ȳ − g∑
j=1

θFj

g − g∑
j=1

θFj

−1

(2)

with variance given by:

V ar(π̂M ) =
π(1− π)

n
+

(1− π)

n(g −
∑g
j=1 θFj

)2
{
g∑
j=1

θFj (1−
g∑
j=1

θFj )+2

g∑
j<k

θFjθFk
} (3)

In order to have Yi as a binomial random variable we take θj = θ (or equivalently
θFj

= θF ) for all j = 1, 2, . . . , g such that θFj
= 1

g . In this case variance of ML
estimator turns out to be

V ar(π̂M ) =
π(1− π)

n
+

(1− π)

ng(g − 1)
(4)

Now we develop Bayesian estimation of population proportion through the
above mentioned item count technique of Hussain et al. (2012) by assuming that
θj = θ for all j = 1, 2, . . . , g. We use different prior distributions for deriving
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posterior distributions in order to find which posterior distribution gives high pos-
terior probability for higher estimates of π. Prior distributions used here are Beta
distribution with known hyper parameters, Non-informative Uniform distribution,
Non-informative Haldane distribution, Mixture of Beta distributions and a Beta
distribution with elicited hyperparameters. The posterior distribution using den-
sity kernel is defined as:

P (π|y) ∝ L(y, π)P (π) (5)

where L (y, π) is the likelihood function and P (π) is the prior distribution. Since
αj is the Bernoulli random variable with parameter θj = θ the response variable
Yi is a binomial random variable with parameter g and θ. Thus the likelihood
function becomes:

L (y, π) =

n∏
i=1

{(
g

yi

)
θyi (1− θ)g−yi

}
(6)

where θ = θF +π (1− θF ) Substituting θ = θF +π (1− θF ) in above equation and
taking d = θF

(1−θF ) , we get

L (y, π) = (1− θF )
ng

{
n∏
i=1

(
g

yi

)}
(d+ π)

nȳ

(1− π)
ng−nȳ (7)

3. Bayesian Estimation using Different Priors

In this section, we derive the Bayesian estimators of π assuming different prior
distributions mentioned above in Section 2.

3.1. Beta Prior

Suppose the prior distribution of πis given by:

P (π) =
1

B (a, b)
πa−1 (1− π)

b−1
, 0 < π < 1 (8)

where B (a, b) =
∫ 1

0
πa−1 (1− π)

b−1
dπ is a complete Beta function.

Thus, using (7) and (8) in (5) the posterior distribution of π is derived as:

P (π| y) ∝ (1− θF )
ng

{
n∏
i=1

(
g

yi

)}
(d+ π)

nȳ
(1− π)

ng−nȳ
{
πa−1 (1− π)

b−1
}

P (π| y) ∝ (1− θF )
ng

{
n∏
i=1

(
g

yi

)} nȳ∑
i=0

(
nȳ

i

)
dnȳ−iπa+i−1 (1− π)

b+ng−nȳ−1
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Now we find the normalizing constant say k. As we know that for posterior distri-
bution we must have

k (1− θF )
ng

{
n∏
i=1

(
g

yi

)} nȳ∑
i=0

(
nȳ

i

)
dnȳ−i

∫ 1

0

πa+i−1 (1− π)
b+ng−nȳ−1

dπ = 1

This gives

k =

[
(1− θF )

ng

{
n∏
i=1

(
g

yi

)} nȳ∑
i=0

(
nȳ

i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

]−1

Thus, the posterior distribution of πis given by:

P (π|y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iπa+i−1 (1− π)

b+ng−nȳ−1

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

(9)

Now the Bayesian estimator (posterior mean) is given by:

E (π|y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−i

∫ 1

0
πa+i+1−1 (1− π)

b+ng−nȳ−1
dπ

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

E (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i+ 1, b+ ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

(10)

While, the posterior variance is given as:

V ar (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i+ 2, b+ ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

−


nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i+ 1, b+ ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)


2

(11)

3.2. Non-informative Uniform Prior

The non-informative uniform prior distribution is given as:

P (π) ∝ 1. (12)
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Using (12) and (7) in (5), the posterior distribution is derived as:

P (π|y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iπi+1−1 (1− π)

ng−nȳ+1−1

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ + 1)

. (13)

Under the non-informative prior, the posterior mean and variance are given by:

E (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 2, ng − nȳ + 1)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ + 1)

(14)

V ar (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 3, ng − nȳ + 1)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ + 1)

−


nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 2, ng − nȳ + 1)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iBeta (i+ 1, ng − nȳ + 1)


2

(15)

3.3. Non-informative Haldane Prior

Another non-informative prior used here is the Haldane prior (Zellner 1996)
which has the probability distribution defines as:

P (π) ∝ 1

p (1− p)
(16)

It is also defined as B (0, 0). Thus the posterior distribution is give as:

P (π| y) =

nȳ∑
i=1

(
nȳ
i

)
dnȳ−iπi−1 (1− π)

ng−nȳ−1

nȳ∑
i=1

(
nȳ
i

)
dnȳ−iB (i, ng − nȳ)

(17)

Posterior mean and variance are, now, given as:

E (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i, ng − nȳ)

(18)
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V ar (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iBeta (i+ 2, ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iBeta (i, ng − nȳ)

−


nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i, ng − nȳ)


2

(19)

3.4. Mixture of Beta Priors

We assume that prior information come as a mixture of different Beta distri-
butions. The mixture of Beta distributions with H components is given as:

P (π) =

H∑
h=1

Wh

B(ah,bh)
πah−1(1− π)bh−1 (20)

whereWh are the weights such that
H∑
h=1

Wh = 1, andah bh are the hyper-parameters

of hthcomponent Beta distribution.
The posterior distribution, now, is given by:

P (π| y) =

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
d

nȳ−i

πah+i−1 (1− π)
bh+ng−nȳ−1

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB(ah + i, bh + ng − nȳ)

(21)

Posterior mean and variance, under the assumption of a mixture of Beta distribu-
tions, are given as:

(π| y) =

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
d

nȳ−i

B (ah + i+ 1, bh + ng − nȳ)

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (ah + i, bh + ng − nȳ)

(22)

V ar (π| y) =

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
d

nȳ−i

B (ah + i+ 2, bh + ng − nȳ)

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (ah + i, bh + ng − nȳ)

−


H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
d

nȳ−i

B (ah + i+ 1, bh + ng − nȳ)

H∑
h=1

wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (ah + i, bh + ng − nȳ)


2

(23)
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3.5. Beta Prior with Elicited Hyperparameters

There are many methods for eliciting parameters of prior distributions. The
method we have used for eliciting the hyperparameters is the method of prior
predictive distribution (Aslam 2003, cf.). We first derived the prior predictive
distribution and then by using “SAS” we elicited the hyperparameters. Then we
have derived Posterior mean and Posterior variance.
The prior predictive distribution is given as:

P (y) =

(
g
y

)
(1− θF )

g
y∑
i=0

(
y
i

)
B (a+ i, b+ g − y)

B (a, b)
(24)

We solved this equation further for different values of g and y and then by using
“SAS” we elicited the hyperparameters a and b. For every g we have different
values of a and b. Although according to our calculations, for different values
of g and y, we got same value for a, but b changed accordingly. The derived
expressions for posterior distribution, posterior mean, and posterior variance are
same as we have derived for posterior distribution using Beta prior with known
hyperparameters, but the numerical values obtained for hyperparameters are now
different.

4. Comparative Analysis

In this section, we provide a comparative analysis of posterior means and poste-
rior variances obtained through different prior distributions assumed in this study.
We should mention that under the squared error loss function posterior mean is
taken as Bayesian estimator while posterior variance is taken as the measure of
precision. Also, under Uniform and Haldane prior distributions, posterior distri-
butions are not defined for ng = nȳ. If ng < nȳ, posterior distributions under
all the priors considered here are not defined. That is why, some entries in the
Tables 3 and 4 are not given. For different values of sum of responses, nȳ, number
of items g and sample size n, we have computed posterior means and variances
under different prior distributions and results are displayed in Tables 1-12 given
below.

We compare ML estimator and proposed Bayesian estimators in terms of vari-
ablity. To compare proposed Bayesian estimators with ML estimator, we se-
lected g = 7 and θF = 1

g ' 0.143 and computed variance of ML estimator for
n = 20, 30, 40 and 50. The variances of ML estimator for the different values of π
are presented in Table 13.

From Tables 1-12 it is observed that when nȳ, n and g are small, posterior
means are larger under mixture and elicited Beta prior distributions compare to
posterior means under other prior distributions considered here. For a fixed g,
posterior distribution using elicited Beta prior produces larger means than the
others with the increase in nȳ. As n increases posterior means under all priors
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Table 1: Posterior means for nȳ = 30, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.2793 0.2666 0.2187 0.3083 0.2990
30 0.1403 0.0659 0.0391 0.1453 0.1023
40 0.0849 0.0264 0.0177 0.0818 0.0480
50 0.0588 0.0154 0.0114 0.0541 0.0293

Table 2: Posterior means for nȳ = 50, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.6188 0.7553 0.7484 0.6525 0.7608
30 0.3299 0.3439 0.3238 0.3546 0.3608
40 0.1865 0.1395 0.0970 0.1974 0.1683
50 0.1136 0.0507 0.0283 0.1140 0.0786

Table 3: Posterior means for nȳ = 60, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.8074 - - 0.8613 0.9987
30 0.4549 0.5079 0.4967 0.4800 0.5179
40 0.2687 0.2599 0.2383 0.2867 0.2771
50 0.1636 0.1144 0.0755 0.1705 0.1411

Table 4: Posterior means for nȳ = 90, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 - - - - -
30 0.8609 - - 0.9058 0.9991
40 0.5691 0.6300 0.6243 0.5880 0.6349
50 0.3864 0.4069 0.3978 0.4035 0.4152

Table 5: Posterior means for nȳ = 30, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.1288 0.0905 0.0657 0.1306 0.1079
30 0.0646 0.0250 0.0141 0.0612 0.0399
40 0.0387 0.0108 0.0069 0.0349 0.0198
50 0.0266 0.0064 0.0046 0.0232 0.0123

Table 6: Posterior means for nȳ = 50, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.2599 0.2551 0.2460 0.2701 0.2639
30 0.1381 0.1152 0.1026 0.1401 0.1254
40 0.0797 0.0108 0.0293 0.0778 0.0602
50 0.0495 0.0189 0.0101 0.0462 0.0301
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Table 7: Posterior means for nȳ = 30, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.5519 0.5862 0.5824 0.5637 0.5899
30 0.3319 0.3364 0.3316 0.3401 0.3411
40 0.2173 0.2110 0.2058 0.2219 0.2160
50 0.1478 0.1357 0.1298 0.1495 0.1411

Table 8: Posterior means for nȳ = 30, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0052 0.0086 0.0106 0.0057 0.0078
30 0.0023 0.0023 0.0014 0.0027 0.0028
40 0.0011 0.0005 0.0003 0.0012 0.0009
50 0.0006 0.0002 0.0001 0.0006 0.0004

Table 9: Posterior means for nȳ = 50, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0052 0.0052 0.0052 0.0050 0.0047
30 0.0043 0.0059 0.0065 0.0044 0.0056
40 0.0027 0.0039 0.0042 0.0030 0.0036
50 0.0015 0.0014 0.0008 0.0017 0.0016

Table 10: Posterior variances for nȳ = 30, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0013 0.0015 0.0017 0.0014 0.0015
30 0.0005 0.0004 0.0002 0.0005 0.0005
40 0.0002 0.00009 0.00005 0.0002 0.0001
50 0.0001 0.00004 0.00002 0.0001 0.00007

Table 11: Posterior variances for nȳ = 50, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0019 0.0021 0.0022 0.0020 0.0022
30 0.0010 0.0012 0.00129 0.0010 0.0011
40 0.0005 0.0006 0.0005 0.00057 0.0006
50 0.0003 0.0002 0.0001 0.0003 0.0003

Table 12: Posterior variances for nȳ = 90, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0020 0.0022 0.0022 0.0020 0.0022
30 0.0014 0.0015 0.0016 0.0014 0.0015
40 0.0010 0.0010 0.0010 0.0010 0.0010
50 0.0006 0.0007 0.0007 0.0007 0.0007
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Table 13: Variances of ML estimator for different values of π, n, θF = 1
g
and g = 7.

π

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20 0.005 0.008 0.011 0.012 0.013 0.012 0.010 0.008 0.004
30 0.003 0.005 0.007 0.008 0.008 0.008 0.007 0.005 0.003
40 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.004 0.002
50 0.002 0.003 0.004 0.005 0.005 0.005 0.004 0.003 0.001

decrease rapidly and posterior means using mixture and simple Beta prior distri-
butions turn out to be larger for a relatively smaller nȳ. The reason being their
dependence upon the data and hyperparameters (see Tables 1-3 and 5-7). From
Tables 1-7, it is also observed that as nȳ increases, posterior means under all the
priors considered here become larger. The reason being they mainly depend on the
magnitude of nȳ. For a given g and larger n, if we observe the maximum nȳ, poste-
rior distribution using elicited Beta prior yields larger means than those provided
by the other prior. We also observed that as g increases, posterior means under
all prior distributions decrease. Comparatively, posterior mean using a mixture
of Beta priors and Beta distributions with assumed hyperparameters have larger
means than the others. However, posterior mean increases under Uniform, Hel-
dane and mixture priors, as nȳ increases. for larger n, they are still smaller than
posterior means using mixture and simple Beta priors. It is also observed that for
increased nȳ, posterior mean using elicited Beta prior is larger but for using large
value of n it is smaller than posterior mean using simple Beta and mixture priors
(see Tables 5-7).

Tables 8 and 9 show that for smaller nȳ and g posterior variances using Beta
prior with assumed hyperparameters and mixture prior are relatively smaller than
the posterior variances under other priors. For fixed values of nȳ and g, as n in-
creases the posterior variance with Haldane and Uniform priors remaining smaller
than that obtained under other priors.The posterior variance under Haldane and
Uniform priors depend only on the nȳ. As nȳ, increases for given n, posterior
variance under elicited Beta prior remains smaller than the posterior variance ob-
tained under other priors. As it is largely affected by nȳ, for larger n and for fixed
nȳ and g, posterior variance under mixture and simple Beta priors remains smaller
than the posterior variances obtained under other priors.

It is also observed that for larger g, posterior distributions using Beta prior
with assumed hyperparameters and mixture prior have the smaller variances as
compared to the others. But, again, for larger n, posterior distributions using
Haldane, Uniform and elicited Beta prior have smaller variances than other two.
But as nȳ is increased posterior distributions under elicited Beta, Uniform and
mixture prior have smaller variances than the other two (see Tables 10-12). From
expression (4), it is obvious that variance of ML estimator does not depend upon
nȳ. Thus comparison of ML estimator and proposed Bayesian estimators can be
made using Tables 10-13. From Tables 10-13, it is observed that when g = 0.7,
nȳ = 30, 60, 90 and θF = 0.143, posterior variances under each prior are smaller
than variance of ML estimator over the whole range of π. It shows a better
performance of the proposed Bayesian estimation.
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5. A Real Application of Proposed Methodology

A survey was designed to collect the data from the students at Quaid-i-Azam
University Islamabad. Visiting websites containing adult contents was taken as
the sensitive characteristic of interest. Finding unrelated characteristics with equal
known proportions among the students was observed to be difficult. Alterna-
tively, we took three boxes containing red and white cards with equal proportion
(θF = 0.33) of red cards in each box (that is, we took g = 3). A simple random
sample of 50 students was selected from the university. Each student was asked
to randomly draw a card form each box and count 1 if he/she have ever visited a
website containing adult material or if the card selected from the jth (j = 1, 2, 3)
box is a red card. Each respondent, then, was asked to report his/her total count
(which may be any value from 0− 3). The actual data (Yi, i = 1, 2, . . . , 50) gath-
ered from the sample students are given in table 13 below. Thus, we have nȳ = 90.
To obtain the Bayesian estimates of proportion of students who have ever visited a
website containing adult material we considered five different prior distributions:
(a) simple Beta prior with hyper-parameters a = 5, b = 10, (b) noninformative
uniform prior, (c) Haldane prior, (d) a mixture prior of 4 Beta distributions with
hyperparameters; (i) a = 1, b = 2, (ii) a = 2, b = 4, (iii) a = 3, b = 6, (iv)
a = 4, b = 8., (e) Beta prior with hyperparameters (a = 2, b = 0.0540) elicited
from the data. Findings of the survey are summarized in Table 14.

Table 14: Actual data obtained from 50 students using θF = 0.33 and g = 3
Student 1 2 3 4 5 6 7 8 9 10
Response 2 2 2 3 2 1 2 2 3 3
Student 11 12 13 14 15 16 17 18 19 20
Response 3 1 0 2 2 2 2 2 1 2
Student 21 22 23 24 25 26 27 28 29 30
Response 2 2 3 1 0 0 3 2 1 1
Student 31 32 33 34 35 36 37 38 39 40
Response 2 2 3 2 1 3 1 1 2 2
Student 41 42 43 44 45 46 47 48 49 50
Response 2 0 2 3 1 1 3 1 2 2

Table 15: Summary of the survey results
Estimates Simple Beta Uniform Haldane Mixture priors Beta prior
Proportion 0.386 0.406 0.397 0.4035 0.4152
Variance 0.0030 0.0035 0.0036 0.0030 0.0034
95% C.I 0.278-0.492 0.293-0.523 0.284-0.523 0.284-0.507 0.292-0.522

From table 15, it is observed that the simple Beta prior with assumed known
hyperparametrs and mixture prior of Beta distributions yielded relatively more
precise estimators with narrower 95% confidence intervals.
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6. Concluding Remarks

This study investigates a recent item count technique in a Bayesian framework
using different priors in order to study which prior is more helpful in updating the
item count technique. We have compared the posterior means and variances in or-
der to check which posterior performs better than other under different conditions.
In case of large values of g and n, in general, we have observed that if large sum of
responses, nȳ, are observed, posterior distribution with elicited Beta prior comes
up as the most suitable choice. However the sum of response, nȳ, is not large then
posterior distribution with simple beta prior a more suitable choice. Compared to
ML estimator, in terms of precision, the proposed Bayesian estimators under each
prior distribution (considered in this study) perform relatively better.[

Recibido: octubre de 2012 — Aceptado: agosto de 2013
]
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Abstract

In this paper distinct prior distributions are derived in a Bayesian in-
ference of the two-parameters Gamma distribution. Noniformative priors,
such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based
on the copula approach are investigated. We show that the maximal data
information prior provides in an improper posterior density and that the
different choices of the parameter of interest lead to different reference pri-
ors in this case. Based on the simulated data sets, the Bayesian estimates
and credible intervals for the unknown parameters are computed and the
performance of the prior distributions are evaluated. The Bayesian analysis
is conducted using the Markov Chain Monte Carlo (MCMC) methods to
generate samples from the posterior distributions under the above priors.

Key words: Gamma distribution, noninformative prior, copula, conjugate,
Jeffreys prior, reference, MDIP, orthogonal, MCMC.

Resumen

En este artículo diferentes distribuciones a priori son derivadas en una in-
ferencia Bayesiana de la distribución Gamma de dos parámetros. A prioris no
informativas tales como las de Jeffrey, de referencia, MDIP, Tibshirani y una
priori innovativa basada en la alternativa por cópulas son investigadas. Se
muestra que una a priori de información de datos maximales conlleva a una a
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posteriori impropia y que las diferentes escogencias del parámetro de interés
permiten diferentes a prioris de referencia en este caso. Datos simulados per-
miten calcular las estimaciones Bayesianas e intervalos de credibilidad para
los parámetros desconocidos así como la evaluación del desempeño de las
distribuciones a priori evaluadas. El análisis Bayesiano se desarrolla usando
métodos MCMC (Markov Chain Monte Carlo) para generar las muestras de
la distribución a posteriori bajo las a priori consideradas.

Palabras clave: a prioris de Jeffrey, a prioris no informativas, conjugada,
cópulas, distribución Gamma, MCMC, MDIP, ortogonal, referencia.

1. Introduction

The Gamma distribution is widely used in reliability analysis and life testing
(see for example, Lawless 1982) and it is a good alternative to the popular Weibull
distribution. It is a flexible distribution that commonly offers a good fit to any
variable such as in environmental, meteorology, climatology, and other physical
situations.

Let X be representing the lifetime of a component with a Gamma distribution,
denoted by Γ(α, β) and given by

f(x | α, β) =
βα

Γ(α)
xα−1 exp{−βx}, for all x > 0 (1)

where α > 0 and β > 0 are unknown shape and scale parameters, respectively.
There are many papers considering Bayesian inference for the estimation of

the Gamma parameters. Son & Oh (2006) assume vague priors for the param-
eters to the estimation of parameters using Gibbs sampling. Apolloni & Bassis
(2099) compute the joint probability distribution of the parameters without as-
suming any prior. They propose a numerical algorithm based on an approximate
analytical expression of the probability distribution. Pradhan & Kundu (2011)
assume that the scale parameter has a Gamma prior and the shape parameter
has any log-concave prior and they are independently distributed. However, most
of these papers have in common the use of proper priors and the assumption of
independence a priori of the parameters. Although this is not a problem and
have been much used in the literature we, would like to propose a noninformative
prior for the Gamma parameters which incorporates the dependence structure of
parameters. Some of priors proposed in the literature are Jeffreys (1967), MDIP
(Zellner 1977, Zellner 1984, Zellner 1990, Tibshirani 1989), and reference prior
(Bernardo 1979). Moala (2010) provides a comparison of these priors to estimate
the Weibull parameters.

Therefore, the main aim of this paper is to present different noninformative
priors for a Bayesian estimation of the two-parameter Gamma distribution. We
also propose a bivariate prior distribution derived from copula functions (see for
example, Nelsen 1999, Trivedi & Zimmer 2005a, Trivedi & Zimmer 2005b) in order
to construct a prior distribution to capture the dependence structure between the
parameters α and β.
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We investigate the performance of the prior distributions through a simulation
study using a small data set. Accurate inference for the parameters of the Gamma
is obtained using MCMC (Markov Chain Monte Carlo) methods.

2. Maximum Likelihood Estimation

Let X1, . . ., Xn be a complete sample from (1) then the likelihood function is

L(α, β | x) =
βnα

[Γ(α)]n
( n∏
i=1

xα−1
i

)
exp
{
−β

n∑
i=1

xi

}
(2)

for α > 0 and β > 0.
Considering ∂

∂α log L and ∂
∂β log L equal to 0 and after some algebric manip-

ulations we get the likelihood equations given by

β̂ =
α̂

X
and log α̂− ψ(α̂) = log

(
X
∼
X

)
(3)

where ψ(k) = ∂
∂k log Γ(k)= Γ

′
(k)

Γ(k) (see Lawless 1982) is the diGamma function,

X =
∑n

i=1 xi

n and X =
(∏n

i=1 xi

)1/n

. The solutions for these equations provide

the maximum likelihood estimators α̂ and β̂ for the parameters of the Gamma
distribution (1). As closed form solution is not possible to evaluate (3), numerical
techniques must used. The Fisher information matrix is given by

I(α, β) =

[
ψ ′(α) − 1

β

− 1
β

α
β2

]
(4)

where ψ ′(α) is the derivative of ψ(α) called as triGamma function.
For large samples, approximated confidence intervals can be constructed for

the parameters α and β through normal marginal distributions given by

α̂ ∼ N(α, σ2
1) and β̂ ∼ N(0, σ2

2), for n→∞ (5)

where σ2
1 = vâr(α̂) = α̂

α̂ψ ’(α̂)−1 and σ2
2 = vâr(β̂) = β̂2ψ ’(α̂)

α̂ψ ’(α̂)−1 . In this case, the
approximated 100(1−Γ)% confidence intervals for each parameter α and β are
given by

α̂− zΓ
2
σ1 < α < α̂+ zΓ

2
σ1 and β̂ − zΓ

2
σ2 < β < β̂ + zΓ

2
σ2 (6)

respectively.
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3. Jeffrey’s Prior

A well-known weak prior to represent a situation with little information about
the parameters was proposed by Jeffreys (1967). This prior denoted by πJ(α, β)
is derived from the Fisher information matrix I(α, λ) given in (4) as

πJ(α, β) ∝
√
det I(α, β) (7)

Jeffrey’s prior is widely used due to its invariance property under one-to-one
transformations of parameters although there has been an ongoing discussion
about whether the multivariate form prior is appropriate.

Thus, from (4) and (7) the Jeffreys prior for (α, β) parameters is given by:

πJ(α, β) ∝
√
αψ ′(α)− 1

β
(8)

4. Maximal Data Information Prior (MDIP)

It is of interest that the data gives more information about the parameter than
the information on the prior density; otherwise, there would not be justification
for the realization of the experiment. Thus, we wish a prior distribution π(φ) that
provides a gain in the information supplied by data in which the largest possible
relative to the prior information of the parameter, that is, which maximize the
information on the data. With this idea Zellner (1977), Zellner (1984), Zellner
(1990) and Min & Zellner (1993) derived a prior which maximize the average
information in the data density relative to that one in the prior. Let

H(φ) =

∫
Rx

f(x | φ)lnf(x | φ)dx, x ∈ Rx (9)

be the negative entropy of f(x | φ), the measure of the information in f(x | φ)
and Rx the range of density f(x | φ). Thus, the following functional criterion is
employed in the MDIP approach:

G[π(φ)] =

∫ b

a
H(φ)π(φ)dφ−

∫ b

a
π(φ) ln π(φ)dφ (10)

which is the prior average information in the data density minus the information in
the prior density. G[π(φ)] is maximized by selection of π(φ) subject to

∫ b
a π(φ)dφ =

1. The solution is then a proper prior given by

π(φ) = k exp
{
H(φ)

}
a ≤ φ ≤ b (11)

where k−1 =
∫ b
a exp

{
H(φ)

}
dφ is the normalizing constant.

Therefore, the MDIP is a prior that leads to an emphasis on the information
in the data density or likelihood function. That is, its information is weak in
comparison with data information.
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Zellner (1977), Zellner (1984), Zellner (1990) shows several interesting proper-
ties of MDIP and additional conditions that can also be imposed to the approach
reflection given initial information. However, the MDIP has restrictive invariance
properties.

Theorem 1. Suppose that we do not have much prior information available about
α and β. Under this condition, the prior distribution MDIP, denoted by πZ(α, β),
for the parameters (α, β) of the Gamma density (1) is given by:

πZ(α, β) ∝ β

Γ(α)
exp
{

(α− 1)ψ(α)− α
}

(12)

Proof . Firstly, we have to evaluate the measure information H(α, β) for the
Gamma density which is given by

H(α, β) =

∫ ∞
0

ln
( βα

Γ(α)
xα−1 exp{−βx}

)
f(x | α, β) dx (13)

and after some algebra, the result is

H(α, β) = α ln β − ln Γ(α) + (α− 1)

∫ ∞
0

ln(x)f(x | α, β) dx− βE(X) (14)

with E(X) = α
β .

Since the integral functions
∫∞

0
uα−1e−u du = Γ(α) and∫∞

0
uα−1 log(u)e−u du = Γ′(α), the function (14) envolving these integrals can be

expressed as
H(α, β) = − ln Γ(α) + ln β + (α− 1)ψ(α)− α (15)

Therefore, the MDIP prior for the parameters α and β is given by

πZ(α, β) ∝ β

Γ(α)
exp
{

(α− 1)ψ(α)− α
}

(16)

However, the corresponding joint posterior density is not proper, but surpris-
ingly, the prior density given by

πZ(α, β) ∝ β

Γ(α)
exp
{

(α− 1)
ψ(α)
Γ(α)

− α
}

(17)

yields a proper posteriory density. Thus, we will use (17) as MDIP prior in the
numerical illustration in Section 8.

5. Reference Prior

Another well-known class of noninformative priors is the reference prior, first
described by Bernardo (1979) and further developed by Berger & Bernardo (1992).
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The idea is to derive a prior π(φ) that maximizes the expected posterior infor-
mation about the parameters provided by independent replications of an experi-
ment relative to the information in the prior. A natural measure of the expected
information about φ provided by data x is given by

I(φ) = Ex[K(p(φ | x), π(φ))] (18)

where
K(p(φ | x), π(φ)) =

∫
Φ

p(φ | x) log
p(φ | x)
π(φ)

dφ (19)

is the Kullback-Leibler distance. So, the reference prior is defined as the prior
π(φ) that maximizes the expected Kullback-Leibler distance between the posterior
distribution p(φ | x) and the prior distribution π(φ), taken over the experimental
data.

The prior density π(φ) which maximizes the functional (19) is found through
calculus of variation and, the solution is not explicit. However, when the poste-
rior p(φ | x) is asymptotically normal, this approach leads to Jeffreys prior for
a single parameter situation. If on the other hand, we are interested in one of
the parameters, being the remaining parameters nuisances, the situation is quite
different, and the appropriated reference prior is not a multivariate Jeffrey prior.
Bernardo (1979) argues that when nuisance parameters are present the reference
prior should depend on which parameter(s) are considered to be of primary inter-
est. The reference prior in this case is derived as follows. We will present here
the two-parameters case in details. For the multiparameter case, see Berger &
Bernardo (1992).

Let θ = (θ1, θ2) be the whole parameter, θ1 being the parameter of interest
and θ2 the nuisance parameter. The algorithm is as follows:

Step 1: Determine π2(θ2 | θ1), the conditional reference prior for θ2 assuming
that θ1 is known, is given by,

π2(θ2 | θ1) =
√

I22(θ1, θ2) (20)

where I22(θ1, θ2) is the (2,2)-entry of the Fisher Information Matrix.
Step 2: Normalize π2(θ2 | θ1).
If π2(θ2 | θ1) is improper, choose a sequence of subsets Ω1 ⊆ Ω2 ⊆ . . . → Ω on

which π2(θ2 | θ1) is proper. Define the normalizing constant and the proper prior
pm(θ2 | θ1) respectively as

cm(θ1) =
1∫

Ωm
π2(θ2 | θ1)dθ2

(21)

and
pm(θ2 | θ1) = cm(θ1)π2(θ2 | θ1)1Ωm

(θ2), (22)

Step 3: Find the marginal reference prior πm(θ1) for θ1the reference prior for
the experiment found by marginalizing out with respect to pm(θ2 | θ1). We obtain

πm(θ1) ∝ exp
{ 1

2

∫
Ωm

pm(θ2 | θ1)log

∥∥∥∥det I(θ1, θ2)
I22(θ1, θ2)

∥∥∥∥ dθ2

}
(23)
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Step 4: Compute the reference prior πθ1(θ1, θ2) when θ1 is the parameter of
interest

πθ1(θ1, θ2) = lim
m→∞

(
cm(θ1)πm(θ1)

cm(θ∗1) πm(θ∗1)

)
π(θ2 | θ1) (24)

where θ∗1 is any fixed point with positive density for all πm.
We will derive the reference prior for the parameters of the Gamma distribution

given in (1), where α will be considered as the parameter of interest and β the
nuisance parameter.

Theorem 2. The reference prior for the parameters of the Gamma distribution
given in (1), where α will be considered as the parameter of interest and β the
nuisance parameter, is given by:

πα(α, β) =
1

β

√
αψ′(α)− 1

α
(25)

If β is the parameter of interest and α the nuisance, thus the prior is

πβ(α, β) ∝
√
ψ′(α)
β

(26)

Proof . By the approach proposed by Berger & Bernardo (1992), we find the
reference prior for the nuisance parameter β, conditionally on the parameter of
interest α, given by

π(β | α) =
√

Iββ(α, β) ∝
1

β
(27)

where Iββ(α, β) is the (2,2)-entry of the Fisher Information Matrix given in (4).

As in Moala (2010), a natural sequence of compact sets for (α, β) is (l1n, l2n)×
(q1n, q2n), so that l1i, q1i → 0 and l2i, q2i → ∞ when i → ∞. Therefore, the
normalizing constant is given by,

ci(α) =
1∫ q2i

q1i
1
βdβ

=
1

log q2i − log q1i
. (28)

Now from (23), the marginal reference prior for α is given by

πi(α) = exp
{1

2

∫ q2i

q1i

ci(α)
1
β

log

∥∥∥∥∥∥
αψ′(α)−1

β2

α
β2

∥∥∥∥∥∥ dβ
}

(29)

which after some mathematical arrangement, we have

πi(α) =

√
αψ′(α)− 1

α
exp
{1

2
ci(α)

∫ q2i

q1i

1

β
dβ
}

(30)

Therefore, the resulting marginal reference prior for α is given by

πi(α) ∝
√
αψ′(α)− 1

α
(31)
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and the global reference prior for (α, β) with parameter of interest α is given by,

πα(α, β) = lim
i→∞

(
ci(α)πi(α)

ci(α∗) πi(α∗)

)
π(β |α) ∝ 1

β

√
αψ′(α)− 1

α
(32)

considering α∗ = 1

Similarly we obtain the reference prior considering β as the parameter of in-
terest and α as nuisance. In this case, the prior is

πβ(α, β) ∝
√
ψ′(α)
β

(33)

6. Tibishirani’s Prior

Given a vector parameter φ, Tibshirani (1989) developed an alternative method
to derive a noninformative prior π(δ) for the parameter of interest δ = t(φ) so that
the credible interval for δ has coverage error O(n−1) in the frequentist sense. This
means that the difference between the posterior and frequentist confidence interval
should be small. To achieve that, Tibshirani (1989) proposed to reparametrize the
model in terms of the orthogonal parameters (δ, λ) (see Cox & Reid 1987) where
δ is the parameter of interest and λ is the orthogonal nuisance parameter. In this
way, the approach specifies the weak prior to be any prior of the form

π(δ, λ) = g(λ)
√
Iδδ(δ, λ) (34)

where g(λ)> 0 is an arbitrary function and Iδδ(δ, λ) is the “delta” entry of the
Fisher Information Matrix.

Theorem 3. The Tibishirani’s prior distribution πT (α, β) for the parameters (α,
β) of the Gamma distribution given in (1) by considering α as the parameter of
interest and β the nuisance parameter is given by:

πT (α, β) ∝ 1

β

√
αψ′(α)− 1

α
(35)

Proof . For the Gamma model (1), we will propose an orthogonal reparametriza-
tion (δ, λ) where δ = α is the parameter of interest and λ is the nuisance parameter
to be evaluated. The orthogonal parameter λ is obtained by solving the differential
equation:

Iββ
∂β

∂α
= −Iαβ (36)

From (4) and (36) we have
α

β2

∂β

∂α
=

1

β
(37)
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Separating the variables, (37) becomes the following,

1

β
∂β =

1

α
∂α (38)

Integrating both sides we get,

log β = log α+ h(λ) (39)

where h(λ) is an arbitrary function of λ.
By chosing h(λ) = log λ, we obtained the solution to (36), the nuisance param-

eter λ orthogonal to δ,

λ =
β

α
(40)

Thus, the information matrix for the orthogonal parameters is given by

I(δ,λ) =

[
ψ′(δ)− 1

δ 0

0 δ
λ2

]
(41)

From (34) and (41), the corresponding prior for (δ, λ) is given by

πδ(δ, λ) ∝ g(λ)

√
δψ′(δ)− 1

δ
(42)

where g(λ) is an arbitrary function.
Due to a lack of uniqueness in the choice of the orthogonal parametrization,

then the class of orthogonal parameters is of the form g(λ), where g(·) is any
reparametrization. This non-uniqueness is reflected by the function g(·) corre-
sponding to (26). One possibility, in the single nuisance parameter case, is to
require that (δ, λ) also satisfies Stein’s condition (see Tibshirani 1989) for λ with
p taken as the nuisance parameter. Under this condition we obtain

πλ(δ, λ) ∝ g∗(δ)
√
δ

λ
(43)

Now, requiring g(λ)
√

δψ′(δ)−1
δ = g∗(δ)

√
δ
λ we have that

πT (δ, λ) ∝ 1

λ

√
δψ′(δ)− 1

δ
(44)

Thus, from (40), the prior expressed in terms of the (α, β) parametrization is
given by

πT (α, β) ∝ 1

β

√
αψ′(α)− 1

α
(45)

Note that this prior coincides with reference prior (25) considering α as the
parameter of interest.
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7. Copula Prior

In this section we derive a bivariate prior distribution from copula functions
(see for example, Nelsen 1999, Trivedi & Zimmer 2005a, Trivedi & Zimmer 2005b)
in order to construct a prior distribution to capture the dependence structure
between the parameters α and β. Copulas can be used to correlate two or more
random variables and they provide great flexibility to fit known marginal densities.

A special case is given by the Farlie-Gumbel-Morgenstern copula which is suit-
able to model weak dependences (see Morgenstern 1956) with corresponding bi-
variate prior distribution for α and β given ρ,

π(α, β | ρ) = f1(α)f2(β) + ρf1(α)f2(β)[1− 2F1(α)][1− 2F2(β)], (46)

where f1(α) and f2(β) are the marginal densities for the random quantities α and
β; F1(α) and F2(β) are the corresponding marginal distribution functions for α
and β, and −1 ≤ ρ ≤ 1.

Observe that if ρ = 0, we have independence between α and β.

Different choices could be considered as marginal distributions for α and β as
Gamma, exponential, Weibull or uniform distributions.

In this paper, we will assume Gamma marginal distribution Γ(a1, b1) and Γ(a2,
b2) for α and β, respectively, with known hyperparameters a1 , a2, b1 and b2. Thus,

π(α, β | a1 , a2, b1, b2, ρ) ∝ αa1−1βa2−1 exp
{
−b1α− b2β

}
×[

1 + ρ
(

1− 2I(a1, b1α)
)(

1− 2I(a1, b1α)
)] (47)

where I(k, x) = 1
Γ(k)

∫ x
0
uk−1e−udu is the incomplete Gamma function.

Assuming the prior (47), the joint posterior distribution for α, β and ρ is given
by,

p(α, β, ρ | x) ∝ βnα

[Γ(α)]n
( n∏
i=1

xα−1
i

)
exp
{
−β

n∑
i=1

xi

}
π(α, β | a1 , a2, b1, b2, ρ)π(ρ) (48)

where π(ρ) is a prior distribution for ρ.

In general, many different priors can be used for ρ; one possibility is to consider
an uniform prior distribution for ρ over the interval [−1, 1].
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8. Numerical Illustration

8.1. Simulation Study

In this section, we investigate the performance of the proposed prior distribu-
tions through a simulation study with samples of size n = 5, n = 10 and n = 30
generated from the Gamma distribution with parameters α = 2 and β = 3.

As we do not have an analytic form for marginal posterior distributions we need
to appeal to the MCMC algorithm to obtain the marginal posterior distributions
and hence to extract characteristics of parameters such as Bayes estimators and
credible intervals. The chain is run for 10,000 iterations with a burn-in period of
1,000. Details of the implementation of the MCMC algorithm used in this paper
are given below.

i) choose starting values α0 and β0.

ii) at step i + 1, we draw a new value αi+1 conditional on the current αi from
the Gamma distribution Γ(αi/c, c);

iii) the candidate αi+1 will be accepted with a probability given by the Metropo-
lis ratio

u(αi , αi+1) = min

{
1 ,

Γ(αi/c, c)p
(
αi+1, βi | x

)
Γ(αi+1/c, c)p

(
αi, βi | x

) }

iv) sample the new value βi+1 from the Gamma distribution Γ(βi/d, d);

v) the candidate βi+1 will be accepted with a probability given by the Metropo-
lis ratio

u(βi , βi+1) = min

{
1 ,

Γ(βi/d, d)p
(
αi+1, βi+1 | x

)
Γ(βi+1/d, d)p

(
αi+1, βi | x

) }

The proposal distribution parameters c and d were chosen to obtain a good
mixing of the chains and the convergence of the MCMC samples of parameters
are assessed using the criteria given by Raftery and Lewis (1992). More details of
MCMC in oder to construct these chains see, for example, Smith & Roberts (1993),
Gelfand & Smith (1990), Gilks, Clayton, Spiegelhalter, Best, McNiel, Sharples &
Kirby (1993).

We examine the performance of the priors by computing point estimates for
parameters α and β based on 1,000 simulated samples and then we averaged the
estimates of the parameters, obtain the variances and the coverage probability of
95% confidence intervals. Table 1 shows the point estimates for α and its respective
variances given between parenthesis. Table 2 shows the same summaries for β.

The results of our numerical studies show that there is little difference between
the point estimates for both parameters α and β. However, the MDIP prior pro-
duces a much smaller variance than using the other assumed priors. The uniform
prior and MLE estimate produce bad estimations with large variances showing
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Table 1: Summaries for parameter α.
α = 2 Jeffreys MDIP Tibshirani Reference Copula Uniform MLE
n = 5 2.2529 2.1894 2.3666 2.3602 2.0909 3.3191 3.2850

(2.1640) (0.5112) (3.0297) (2.4756) (2.1987) (3.1577) (7.5372)
n = 10 2.5227 2.2253 2.4138 2.4761 2.3068 2.9769 2.7013

(1.3638) (0.3855) (1.3849) (1.3301) (1.2052) (1.4658) (1.8308)
n = 30 2.1259 2.1744 2.0606 2.1079 2.0369 2.2504 2.2253

(0.2712) (0.1910) (0.2651) (0.2728) (0.2571) (0.2829) (0.3138)

Table 2: Summaries for parameter β.
β = 3 Jeffreys MDIP Tibshirani Reference Copula Uniform MLE
n = 5 2.9136 3.2680 3.2161 3.1058 2.7486 4.3419 5.2673

(4.2292) (1.6890) (6.1384) (4.7787) (4.2447) (5.6351) (23.1881)
n = 10 3.8577 3.7727 3.6705 3.7649 3.6112 4.5186 4.2960

(3.8086) (1.5872) (3.8110) (3.6667) (3.5599) (3.7803) (5.4296)
n = 30 3.2328 3.4255 3.1475 3.1798 3.0805 3.4633 3.4005

(0.7950) (0.6292) (0.7861) (0.7856) (0.7453) (0.8335) (0.9163)

that, despite being widely used in the literature, they are not suitable for the
Gamma distribution. As expected, the performance of these priors improves when
the sample size increases.

Frequentist property of coverage probabilities for the parameters α and β have
also been studied to compare the priors and MLE. Table 3 summarizes the sim-
ulated coverage probabilities of 95% confidence intervals. For the three sample
sizes considered here, the intervals of MDIP prior produce an over-coverage for
small sample sizes while, the intervals of uniform prior and MLE seem to have
an under-coverage for some cases. Coverage probabilities are very close to the
nominal value when n increases.

Table 3: Frequentist coverage probability of the 95% confidence intervals for α and β.
α = 2 Jeffreys MDIP Tibshirani Reference Copula Uniform MLE
n = 5 96.30% 99.60% 97.20% 96.10% 95.30% 95.70% 95.60%
n = 10 96.40% 99.50% 94.90% 95.00% 95.80% 90.60% 95.30%
n = 30 96.10% 96.20% 98.10% 95.80% 96.80% 95.50% 95.00%
β = 3 Jeffreys MDIP Tibshirani Reference Copula Uniform MLE
n = 5 96.60% 99.60% 97.50% 97.00% 96.30% 99.90% 94.30%
n = 10 98.10% 98.00% 96.00% 96.70% 97.80% 93.90% 95.70%
n = 30 97.30% 95.80% 96.90% 96.10% 97.40% 94.90% 96.80%

8.2. Rainfall Data Example

Data in Table 4 represent the average monthly rainfall obtained from the In-
formation System for Management of Water Resources of the State of São Paulo,
including a period of 56 years from 1947 to 2003, by considering the month of
November.
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Let us assume a Gamma distribution with density (1) to analyse the data.

Table 4: Historical rainfall averages over last 56 years in State of São Paulo.
0.2,3.5,2.8,3.7,8.7,6.9,7.4,0.8,4.8,2.5,2.9,3.1,4.0,5.0,3.8,3.5,5.4,3.3,2.9,
1.7,7.3,2.9,4.6,1.1,1.4,3.9,6.2,4.1,10.8,3.8,7.3,1.8,6.7,3.5,3.2,5.2,2.8,5.2,
5.4,2.2,9.9,2.1,4.7,5.5,2.6,4.1,5.4,5.5,2.1,1.9,8.8,1.3,24.1,5.4,6.2,2.9

Table 5 presents the posterior means assuming the different prior distributions
and maximum likelihood estimates (MLE) for the parameters α and β.

Table 5: Posterior means for parameters α and β of rainfall data.
Uniform Jeffreys Ref-β MDIP Tibshirani Copula MLE

α 2.493 2.387 2.393 2.659 2.357 2.380 2.395
β 0.543 0.516 0.517 0.641 0.510 0.515 0.518

From Table 5, we observe similar inference results assuming the different prior
distributions for α and β, except for MDIP prior as observed in the simulation
study introduced in the example presented in section 8.1.

The 95% posterior credible intervals obtained using the different priors for the
parameters are displayed in Table 6. The MLE intervals for the parameters α and
β are given respectively by (1.56; 3.22) and (0.31; 0.72).
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Figure 1: Histogram and fitted Gamma distribution for rainfall data.

Table 6: 95% posterior intervals for the parameters α and β of rainfall data.
Uniform Jeffreys Ref-β MDIP Tibshirani Copula

α (1.71; 3.43) (1.63; 3.29) (1.64; 3.28) (1.91; 3.52) (1.60; 3.25) (1.60; 3.34)
β (0.35; 0.76) (0.33; 0.73) (0.34; 0.73) (0.44; 0.87) (0.33; 0.73) (0.32; 0.75)
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Figure 2 shows the marginal posterior densities for both parameters α and
β. We can see that the MDIP prior leads to a posterior slightly more sharply
peaked for both parameters, while the other priors are quite similar, agreeing with
simulated data with sample size n = 30.

To determine the appropriate prior distribution to be used with the rainfall
data fitted by the Gamma distribution, some selection criteria can be examined.
These include information-based criteria (AIC, BIC and DIC) given in the Table
7 for each prior distribution.
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Figure 2: Plot of marginal posterior densities for the parameters α and β of rainfall
data.

Table 7: Information-based model selection criteria (AIC, BIC and DIC) for rainfall
data.

Prior AIC BIC DIC
Jeffreys 272.213 268.162 267.827
MDIP 272.247 268.196 267.502
Ref-β 272.212 268.162 267.922
Tibshirani 272.219 268.169 268.068
Copula 272.222 268.171 268.197
Uniform 272.266 268.215 267.935

From the results of Table 7 and Figure 2 we observe that the choice of the
prior distributions for parameters α and β has a negligible effect on the posterior
distribution, surely due to the large amount of data in this study.
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8.3. Reliability Data Example

In this example, we consider a lifetime data set related to an electrical insulator
subjected to constant stress and strain introduced by Lawless (1982). The dataset
does not have censored values and represent the lifetime (in minutes) to failure:
0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 16.03, 4.85, 2.78,
4.67, 1.31, 12.06, 36.71 and 72.89. Let us denote this data as “Lawless data”. We
assume a Gamma distribution with density (1) to analyse the data.

The maximum likelihood estimators and the Bayesian summaries for α and β,
considering the different prior distributions are given in Table 8. Table 9 shows the
95% posterior intervals for α and β. The estimated marginal posterior distributions
for the parameters are shown in Figure 3.
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Figure 3: Plot of marginal posterior densities for the parameters α and β for Lawless
data.

Tables 8 and 9 present the posterior statistics and 95% confidence intervals for
both parameters resulting from the proposed priors. Again the performance of the
MDIP prior clashes from the others.

Table 8: Posterior means for parameters α and β (Lawless data).
Uniform Jeffreys Ref-β MDIP Tibshirani Copula MLE

α 0.779 0.686 0.681 0.789 0.660 0.666 0.690
β 0.058 0.047 0.047 0.063 0.046 0.047 0.048

Table 9: 95% posterior intervals for the parameters α and β (Lawless data).
Uniform Jeffreys Ref-β MDIP Tibshirani Copula

α (0.433, 1.229) (0.371, 1.111) (0.374, 1.087) (0.459, 1.232) (0.350, 1.061) (0.353, 1.080)
β (0.025, 0.105) (0.017, 0.091) (0.018, 0.090) (0.031, 0.108) (0.017, 0.085) (0.017, 0.087)
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Table 10 shows the AIC, BIC and DIC values for all priors under investigation,
with similar results as presented in Table 7 are obtained in this comparison which
shows no differences using the different assumed priors.

Table 10: Information-based model selection criteria (AIC, BIC and DIC) for(Lawless
data.

Prior AIC BIC DIC
Jeffreys 143.125 141.236 141.409
MDIP 143.642 141.753 141.082
Ref-β 143.126 141.237 141.168
Tibshirani 143.148 141.259 141.247
Copula 143.138 141.249 141.471
Uniform 143.401 141.512 141.119

9. Conclusion and Discussion

The large number of noninformative priors can cause difficulties in the choosing
one, especially when these priors does not produce similar results. Thus, in this
paper, we presented a Bayesian analysis using a variety of prior distributions for
the estimation of the parameters of the Gamma distribution.

We have shown that the use of the maximal data information process proposed
by Zellner (1977), Zellner (1984), Zellner (1990) yields an improper posterior dis-
tribution for the parameters α and β. In this way, we proposed a “modified” MDIP
prior analytically similar to the original one but with proper posterior. We also
shown that the reference prior provides nonuniqueness of prior due to the choice
of the parameter of interest, although the simulation shows the same performance.
We have shown that the Tibshirani prior applied to the parameters of the Gamma
distribution is equal to the reference prior when α is the parameter of interest.

Besides, a simulation study to check the impact of the use of different noninfor-
mative priors in the posterior distributions was also carried out. From this study
we can conclude that it is necessary to carefully choose a prior for the parameters
of the Gamma distribution when there is not enough data.

As expected, a moderated large sample size is need to achieve the desirable
accuracy. In this case, the choice of the priors become irrelevant. However, the
disagreement is substantial for small sample sizes.

Our simulation study indicates that the class of priors: Jeffreys, Reference,
Tibshirani and Copula, had the same performance while the Uniform prior had
worse performance. On the other hand , the “modified” MDIP prior produced the
best estimations for α and β. Thus, the simulation study showed that the effect
of the prior distributions can be substantial in the estimation of parameters and
therefore the modified MDIP prior should be the recommended noninformative
prior for the estimation of parameters of the Gamma distribution.[

Recibido: enero de 2013 — Aceptado: septiembre de 2013
]
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Resumen

Classical estimation procedures for the parameters of Weibull distribu-
tion are based on precise data. It is usually assumed that observed data
are precise real numbers. However, some collected data might be imprecise
and are represented in the form of fuzzy numbers. Thus, it is necessary to
generalize classical statistical estimation methods for real numbers to fuzzy
numbers. In this paper, different methods of estimation are discussed for
the parameters of Weibull distribution when the available data are in the
form of fuzzy numbers. They include the maximum likelihood estimation,
Bayesian estimation and method of moments. The estimation procedures
are discussed in details and compared via Monte Carlo simulations in terms
of their average biases and mean squared errors. Finally, a real data set
taken from a light emitting diodes manufacturing process is investigated to
illustrate the applicability of the proposed methods.

Palabras clave: Bayesian estimation, EM algorithm, Fuzzy data analysis,
Maximum likelihood principle.

Abstract

Los procedimientos clásicos de estimación para los parámetros de la dis-
tribución Weibull se encuentran basados en datos precisos. Se asume usual-
mente que los datos observados son números reales precisos. Sin embargo,
algunos datos recolectados podrían ser imprecisos y ser representados en la
forma de números difusos. Por lo tanto, es necesario generalizar los méto-
dos de estimación estadísticos clásicos de números reales a números difusos.
En este artículo, diferentes métodos de estimación son discutidos para los
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parámetros de la distribución Weibull cuando los datos disponibles están
en la forma de números difusos. Estos incluyen la estimación por máxima
verosimilitud, la estimación Bayesiana y el método de momentos. Los pro-
cedimientos de estimación se discuten en detalle y se comparan vía simula-
ciones de Monte Carlo en términos de sesgos promedios y errores cuadráticos
medios.

Key words: algoritmo EM, análisis de datos difusos, estimación Bayesiana,
principio de máxima verosimilitud.

1. Introduction

The Weibull distribution was originally proposed by Waloddi Weibull back in
1937 for estimating machinery lifetime. Nowadays, the Weibull distribution is a
broadly used in statistical model in engineering and life-time data analysis. The
probability density function (pdf) and the cumulative distribution function (cdf)
of a two-parameter Weibull random variable X can be written as

f(x;α, λ) = αλxα−1 exp(−λxα), x > 0 (1)

and
F (x;α, λ) = 1− exp(−λxα), x > 0 (2)

respectively, where λ > 0 is the scale and α > 0 is the shape parameter. Several
authors have addressed inferential issues for the parameters of a Weibull distribu-
tion; among others, Al-Baidhani & Sinclair (1987) compared the generalized least
squares, maximum likelihood, and the two mixed method of estimating the param-
eters of a Weibull distribution. Qiao & Tsokos (1994) introduced an effective iter-
ative procedure for the estimation. Watkins (1994) discussed maximum likelihood
estimation for the two parameter Weibull distribution when the data for analysis
contains both times to failure and censored times in operation. Marks (2005) con-
sidered the estimation of Weibull distribution parameters using the symmetrically
located percentiles from a sample. Helu, Abu-Salih & Alkam (2010) proposed
different methods of estimation for the parameters of Weibull distribution based
on different sampling schemes-namely, simple random sample, ranked set sample,
and modified ranked set sample.

The above inference techniques are limited to precise data. In real world sit-
uations, the data sometimes can not be measured and recorded precisely due to
machine errors, human errors or some unexpected situations. The two types of
such data namely, censored data and truncated data are widely used in prac-
tice. Censored data typically arise when an event of interest, such as a disease
or a failure, is only partially observed, because information is gathered at certain
examination times. Two usual models are random right-censorship and random
interval-censorship. In the first case, the observations are assumed to be of the
form Yi = min(Xi,Wi), i = 1, . . . , n, where the Xi are the (partially observed) sur-
vival times, and the Wi are the censoring times. In this model, both survival and
censoring times are assumed to be random, and mutually independent. Estimat-
ing the parameters of Weibull distribution from such data have been considered
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by several authors. See, for example Ageel (2002), Balakrishnan & Kateri (2008),
Nandi & Dewan (2010), Joarder, Krishna & Kundu (2011), Banerjee & Kundu
(2012), and Lin, Chou & Huang (2012). In the case of so-called random interval
censored data, the event is only known to happen between two random examina-
tion times. The observations are thus of the form (Ui, Vi), i = 1, . . . , n, and it is
only known that Ui ≤ Xi ≤ Vi for all i. Here again it is customary to assume
independence between survival times Xi and censoring interval endpoints. Sta-
tistical analysis of Weibull distribution based on interval censored data has been
discussed by Ng & Wang (2009) and Tan (2009), among others. Truncation is
similar to but distinct from the concept of censoring. When the existence of the
unseen “observation ” is not known for observations that fall outside the particular
range, the data that are observed are said to be truncated. Recently, Balakrishnan
& Mitra (2012) developed the EM algorithm for the estimation of the parameters
of the Weibull distribution based on left truncated and right censored data.

The problem addressed in this paper, is different from censoring and trancation.
We are not concerned with imprecision arising from random inspection times, but
with the situation in which the result of a random experiment is reported from the
observer to the statistician with some imprecision, arising from its limited percep-
tion or recollection of the precise numerical values. For instance, the lifetime of
some shaft may be reported as imprecise quantities such as: “about 1, 000h”, “ap-
proximately 1, 400h”, “almost between 1, 000h and 1, 200h”, “essentially less than
1, 200h”, and so on. The lack of precision of such data can be described using
fuzzy sets. The classical statistical estimation methods are not appropriate to
deal with fuzzy sets. Therefore, the conventional procedures used for estimating
the parameters of Weibull distribution will have to be adapted to the new sit-
uation. The main aim of this paper is to develop the inferential procedures for
the two-parameter Weibull distribution when the available data are in the form of
fuzzy numbers. In Section 2, we review the fundamental notation and basic defi-
nitions of fuzzy set theory. In Section 3, we first introduce a generalized likelihood
function based on fuzzy data. We then discuss the computation of maximum like-
lihood estimates (MLEs) of the parameters α and λ by using the Newton-Raphson
(NR) and Expectation Maximization (EM) algorithms, in Section 4. In Section
5, the Bayes estimates of the unknown parameters are obtained by using the ap-
proximation form of Tierney & Kadane (1986) under the assumption of Gamma
priors. The estimation via method of moments is provided in Section 6. A Monte
Carlo simulation study is presented in Section 7, which provides a comparison of
all estimation procedures developed in this paper and one real data set is analyzed
for illustrative purposes.

2. Basic Definition of Fuzzy Sets

To appreciate the nature of a fuzzy set, let us consider the following hypothetical
example taken from Gertner & Zhu (1996). Consider an experiment characterized
by a probability space S = (X ,BX , Pθ), where (X ,BX ) is a measurable space and
Pθ belongs to a specified family of probability measures {Pθ, θ ∈ Θ} on (X ,BX ).
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Any indicator function IA : X → {0, 1}, defined by

IA(x) =

{
1 x ∈ A,
0 x /∈ A,

characterizes a crisp subset A in X . For example, if X = {xi, i = 1, . . . , n},
represents all trees in a forest stand, then A = {x, x’s age ≤ 40 yr} is its subset. So
if tree x3 is 27 yr old, x3 ∈ A and IA(x3) = 1; and if x239’s age equals 56, x239 /∈ A
and IA(x239) = 0. However, when referring to a “young tree”, the set above
described becomes a fuzzy set. Now relate each tree to its youthfulness by assigning
a value between 1, representing absolutely young, and 0, representing absolutely
not young, as the membership degree describing the subjective uncertainty of a tree
being considered young. For instance, µyoung(x3) = 0.9, since x3 will most likely be
allocated into a younger class, whereas µyoung(x239) = 0.49 for x239 seems neither
very young nor very old compared to other older trees in that stand. Thus, similar
to crisp sets, a fuzzy subset Ã in X is characterized by a membership function
µÃ(x) which associates with each point x in X a real number in the interval [0, 1],
with the value of µÃ(x) at x representing the “grade of membership”of x in Ã. We
hereafter assume that the sample space X is a set in a Euclidean space and BX
is the smallest Borel σ−field on X . A fuzzy event in X is a fuzzy subset Ã of
X , whose membership function µÃ is Borel measurable. Many examples of fuzzy
samples and observations appear in social and natural sciences. These occur when
the linguistic concepts or propositions cannot be precisely defined, or accurate
measurements of variables are not possible or necessary.

Example 1. An investigator is interested in analyzing the amount of an adverse
substance extracted from a special brand of cigarettes. Assume that the investiga-
tor has not a mechanism of measurement which is sufficiently precise to determine
exactly the amount of adverse substance of cigarettes, but rather he can only ap-
proximate them by means of imprecise observations, for instance, “The amount
of adverse substance of cigarette is approximately 30 to 40 milligrams”. A fuzzy
approach lies in expressing the preceding observation as a fuzzy event Ã such as
that defined, for instance, by the membership function (Figure 1).

µÃ(x) =


x−20

10 20 ≤ x ≤ 30,

1 30 ≤ x ≤ 40,
50−x

10 40 ≤ x ≤ 50,

0 otherwise,

The notion of probability was extended to fuzzy events by Zadeh (1968) as
follows.

Definition 1. Let (Rn,A, P ) be a probability space in which A is the σ−field of
Borel sets in Rn and P is a probability measure over Rn. Then, the probability of
a fuzzy event Ã in Rn is defined by:

P (Ã) =

∫
µÃ(x)dP. (3)
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Figure 1: Fuzzy approach of the imprecise observation “approximately 30 to 40 ”.

In particular, assume that P is the probability distribution of a continuous
random variable Y with p.d.f. g(Y ). The conditional density of Y given Ã is
given by

g(y | Ã) =
µÃ(y)g(y)∫
µÃ(u)g(u)du

. (4)

The set consisting of all observable events from the experiment S determines
a fuzzy information system (f.i.s.) associated with it, which is defined as follows.

Definition 2. (Tanaka ?). A fuzzy information system S̃ associated with the
experiment S is a fuzzy partition F = {x̃1, . . . , x̃K} of X , i.e., a set of K fuzzy
events on X satisfying the orthogonality condition

K∑
k=1

µx̃k(x) = 1,

where µx̃k denotes the membership function of x̃k.

We now examine a brief example illustrating the preceding concept:

Example 2. To evaluate the problem of psychological depression in a population,
there is no exact method that can measure and express the exact value for the
severity of the disease in each person and, so measurement results may be reported
by means of the following fuzzy observations: x̃1 = “approximately lower than 20”,
x̃2 =“approximately 25 to 30”, x̃3 = “approximately 35 ”, x̃4 =“approximately 40
to 45”, x̃5 = “approximately 50”, x̃6 = “approximately higher than 55”, which are
characterized by the membership functions

µx̃1
(x) =


1 x ≤ 20,
25−x

5 20 ≤ x ≤ 25,

0 otherwise,

µx̃2
(x) =


x−20

5 20 ≤ x ≤ 25,

1 25 ≤ x ≤ 30,
35−x

5 30 ≤ x ≤ 35,

0 otherwise,
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µx̃3
(x) =


x−30

5 30 ≤ x ≤ 35,
40−x

5 35 ≤ x ≤ 40,

0 otherwise,

µx̃4
(x) =


x−35

5 35 ≤ x ≤ 40,

1 40 ≤ x ≤ 45,
50−x

5 45 ≤ x ≤ 50,

0 otherwise,

µx̃5
(x) =


x−45

5 45 ≤ x ≤ 50,
55−x

5 50 ≤ x ≤ 55,

0 otherwise,

µx̃6
(x) =


x−50

5 50 ≤ x ≤ 55,

1 x ≥ 55,

0 otherwise,

respectively, (see Fig.2). Clearly, a f.i.s. S̃ = {x̃1, ..., x̃7} can be immediately

constructed by defining µx̃7
= 1−

6∑
i=1

µx̃i)

0

1

20 25 30 35 40 45 50 55

x

1
~xµ

2
~xµ

3
~xµ

4
~xµ

5
~xµ

6
~xµ

 i
~xµ

Figure 2: Membership functions of the fuzzy observations x̃1, x̃2, x̃3, x̃4, x̃5 and x̃6.

For more details about the membership functions and probability measures of
fuzzy sets, one can refer to Singpurwalla & Booker (2004).

In order to model imprecise data, a generalization of real numbers is necessary.
These data can be represented by fuzzy numbers. A fuzzy number is a subset,
denoted by x̃, of the set of real numbers (denoted by R) and is characterized
by the so called membership function µx̃(.). Fuzzy numbers satisfy the following
constraints (see Dubois & Prade (1980)):

(1) µx̃ : R −→ [0, 1] is Borel-measurable;
(2) ∃x0 ∈ R : µx̃(x0) = 1;

(3) The so-called λ−cuts (0 < λ ≤ 1), defined as Bλ(x̃) = {x ∈ R : µx̃(x) ≥
λ}, are all closed intervals, i.e., Bλ(x̃) = [aλ, bλ], ∀λ ∈ (0, 1].

With the definition of a fuzzy number given above, an exact (non-fuzzy) number
can be treated as a special case of a fuzzy number. For a non-fuzzy real observation
x0 ∈ R, its corresponding membership function is µx0(x0) = 1.
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Among the various types of fuzzy numbers, the triangular and trapezoidal fuzzy
numbers are most convenient and useful in describing fuzzy data. For triangular
membership functions, the triangular fuzzy number can be defined as x̃ = (a, b, c)
and its membership function is defined by the following expression:

µx̃(x) =


x−a
b−a a ≤ x ≤ b,
c−x
c−b b ≤ x ≤ c,
0 otherwise.

The trapezoidal fuzzy number can be defined as x̃ = (a, b, c, d) with member-
ship function

µx̃(x) =


x−a
b−a a ≤ x ≤ b,
1 b ≤ x ≤ c,
d−x
d−c c ≤ x ≤ d,
0 otherwise.

3. Fuzzy Data and the Likelihood Function

Suppose thatX1, . . . , Xn is a random sample of size n fromWeibull distribution
with pdf given by (1). Let X = (X1, . . . , Xn) denotes the corresponding random
vector. If a realization x = (x1, . . . , xn) of X was known exactly, we could obtain
the complete-data likelihood function as

L(α, λ;x) = αnλn exp(−λ
n∑
i=1

xαi )

n∏
i=1

xα−1
i (5)

Now consider the problem where x is not observed precisely and only partial
information about x is available in the form of a fuzzy subset x̃ with the Borel
measurable membership function µx̃(x). In this setting, the fuzzy observation
x̃ can be understood as encoding the observer’s partial knowledge about the re-
alization x of random vector X, and the membership function µx̃ is seen as a
possibility distribution interpreted as a soft constraint on the unknown quantity
x. The fuzzy set x̃ can be considered to be generated by a two-step process:

1. A realization x is drawn from X;

2. The observer encodes his/her partial knowledge of x in the form of a possi-
bility distribution µx̃.

It must be noted that, in this model, only step 1 is considered to be a random
experiment. Step 2 implies gathering information about x and modeling this
information as a possibility distribution.

Example 3. Consider a life-testing experiment in which n identical ball bearings
are placed on test, and we are interested in the lifetime of these ball bearings.
The unknown lifetime xi of ball bearing i may be regarded as a realization of a
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random variable Xi induced by random sampling from a total population of ball
bearings. In practice, however, measuring the lifetime of a ball bearing may not
yield an exact result. A ball bearing may work perfectly over a certain period but
be braking for some time, and finally be unusable at a certain time. Assume that
two intervals are determined for the lifetime of each ball bearing i as follows:

• an interval [ai, di] certainly containing xi;

• an interval [bi, ci] containing highly plausible values for xi.

This information may be encoded as a trapeozoidal fuzzy number x̃i = (ai, bi, ci, di)
with support [ai, di] and core [bi, ci], interpreted as a possibility distribution con-
straining the unknown value xi. Information about x may be represented by the
joint possibility distribution

µx̃(x) = µx̃1
(x1)× ...× µx̃n(xn). (6)

Once x̃ is given, and assuming its membership function to be the Borel mea-
surable, we can compute its probability according to Zadeh’s definition of the
probability of a fuzzy event. By using the expression (3), the observed-data like-
lihood function can then be obtained as

LO(α, λ; x̃) = P (x̃;α, λ) =

∫
f(x;α, λ)µx̃(x)dx. (7)

Since the data vector x is a realization of an independent identically distributed
(i.i.d.) random vector X, and assuming the joint membership function µx̃(x) to
be decomposable as in (6), the likelihood function (7) can be written as:

LO(α, λ; x̃) =

n∏
i=1

∫
αλxα−1 exp(−λxα)µx̃i(x)dx, (8)

and the observed-data log likelihood is

L∗(α, λ; x̃) = logLO(α, λ; x̃)

= n(logα+ log λ) +

n∑
i=1

log

∫
xα−1 exp(−λxα)µx̃i(x)dx. (9)

4. Maximum Likelihood Estimation

The idea behind maximum likelihood parameter estimation is to determine the
parameters that maximize the probability (likelihood) of the sample data. From
a statistical point of view, the method of maximum likelihood is considered to
be more robust and yields estimators with good statistical properties. In other
words, maximum likelihood methods are versatile and apply to most models and
to different types of data. The maximum likelihood estimate of the parameters α
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and λ can be obtained by maximizing the log-likelihood L∗(α, λ; x̃). Equating the
partial derivatives of the log-likelihood (9) with respect to α and λ to zero, the
resulting two equations are:

∂

∂α
L∗(α, λ; x̃) =

n

α
+

n∑
i=1

∫
(xα−1 − λx2α−1) log x exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx
= 0 (10)

and
∂

∂λ
L∗(α, λ; x̃) =

n

λ
−

n∑
i=1

∫
x2α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

= 0. (11)

Since there are no closed form of the solutions to the likelihood equations (10)
and (11), an iterative numerical search can be used to obtain the MLEs. In the
following, we describe the NR method and the EM algorithm to determine the
MLEs of the parameters α and λ.

4.1. NR Algorithm

NR algorithm is a direct approach for estimating the relevant parameters in a
likelihood function. In this algorithm, the solution of the likelihood equation is
obtained through an iterative procedure. Let θ = (α, λ)T be the parameter vector.
Then, at the (h+1)th step of iteration process, the updated parameter is obtained
as

θ(h+1) = θ(h) −
[
∂2L∗(θ; x̃)

∂θ∂θT
|θ=θ(h)

]−1 [
∂L∗(θ; x̃)

∂θ
|θ=θ(h)

]
(12)

where
∂L∗(θ; x̃)

∂θ
=

(
∂L∗(α,λ;x̃)

∂α
∂L∗(α,λ;x̃)

∂λ

)
and

∂2L∗(θ; x̃)

∂θ∂θT
=

(
∂2L∗(α,λ;x̃)

∂α2

∂2L∗(α,λ;x̃)
∂λ∂α

∂2L∗(α,λ;x̃)
∂λ∂α

∂2L∗(α,λ;x̃)
∂λ2

)

The second-order derivatives of the log-likelihood with respect to the parameters,
required for proceeding with the NR method, are obtained as follows.

∂2

∂α2
L∗(α, λ; x̃) = − n

α2

+

n∑
i=1

{
∫

(λ2x3α−1 − λx2α−1)(log x)2 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

+

∫
(xα−1 − 2λx2α−1)(log x)2 exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx
}

−
n∑
i=1

[∫
(xα−1 − λx2α−1) log x exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx

]2
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∂2

∂λ2
L∗(α, λ; x̃) = − n

λ2
+

n∑
i=1

{
∫
x3α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

−[

∫
x2α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

]2},

∂2

∂λ∂α
L∗(α, λ; x̃) = −

n∑
i=1

∫
(2x2α−1 − λx3α−1) log x exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx

+

n∑
i=1

{
∫

(1− λxα)xα−1 log x exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

×
∫
x2α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

}

The iteration process then continues until convergence, i.e., until ‖ θ(h+1)−θ(h) ‖<
ε, for some pre-fixed ε > 0. The maximum likelihood estimate of (α, λ) via NR
algorithm is thereafter refereed as “(α̂NR, λ̂NR)” in this paper.

It should be pointed out that the second-order derivatives of the log-likelihood
are required at every iteration in the NR method. Sometimes the calculation of the
derivatives based on fuzzy data can be rather tedious. Another viable alternative
to the NR algorithm is the well-known EM algorithm. In the following, we discuss
how that can be used to determine the MLEs in this case.

4.2. EM Algorithm

The EM algorithm is a broadly applicable approach to the iterative computa-
tion of maximum likelihood estimates and useful in a variety of incomplete-data
problems. Since the observed fuzzy data x̃ can be seen as an incomplete specifi-
cation of a complete data vector x, the EM algorithm is applicable to obtain the
maximum likelihood estimates of the unknown parameters. In the following, we
use the fuzzy EM algorithm (see Denoeux (2011)) to determine the MLEs of α
and λ.
From the Eq. (5), the log-likelihood function for the complete data vector x
becomes:

logL(α, λ;x) = n logα+ n log λ+ (α− 1)

n∑
i=1

log xi − λ
n∑
i=1

xαi (13)

Taking the derivative with respect to α and λ, respectively, on (13), the following
likelihood equations are obtained:

n

λ
=

n∑
i=1

xαi (14)

and
n

α
= λ

n∑
i=1

xαi log xi −
n∑
i=1

log xi (15)
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Therefore the EM algorithm is given by the following iterative process:

1. Given starting values of α and λ, say α(0) and λ(0) and set h = 0.
2. In the (h+ 1)th iteration,

• The E-step requires to compute the following conditional expectations using
the expression (4):

E1i = Eα(h),λ(h)(Xα | x̃i) =

∫
x2α(h)−1 exp

(
−λ(h)xα

(h)
)
µx̃i(x)dx∫

xα(h)−1 exp
(
−λ(h)xα(h)

)
µx̃i(x)dx

E2i = Eα(h),λ(h)(logX | x̃i) =

∫
xα

(h)−1 log x exp
(
−λ(h)xα

(h)
)
µx̃i(x)dx∫

xα(h)−1 exp
(
−λ(h)xα(h)

)
µx̃i(x)dx

E3i = Eα(h),λ(h)(Xα logX | x̃i)

=

∫
x2α(h)−1 log x exp

(
−λ(h)xα

(h)
)
µx̃i(x)dx∫

xα(h)−1 exp
(
−λ(h)xα(h)

)
µx̃i(x)dx

and the likelihood equations (14) and (15) are replaced by

n

λ
=

n∑
i=1

E1i, (16)

and
n

α
= λ

n∑
i=1

[E3i − E2i] . (17)

• The M-step requires to solve the Eqs. (16) and (17), and obtain the next
values, λ(h+1) and α(h+1), of λ and α, respectively, as follows:

λ(h+1) =
n

n∑
i=1

E1i

α(h+1) =

{
1

n
λ(h+1)

n∑
i=1

[E3i − E2i]

}−1

3. Checking convergence, if the convergence occurs then the current α(h+1) and
λ(h+1) are the maximum likelihood estimates of α and λ via EM algorithm; oth-
erwise, set h = h+ 1 and go to Step 2.
The maximum likelihood estimate of (α, λ) via EM algorithm is thereafter refereed
as “(α̂EM , λ̂EM )” in this paper.
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5. Bayesian Estimation

In recent decades, the Bayes viewpoint, as a powerful and valid alternative
to traditional statistical perspectives, has received frequent attention for statis-
tical inference. In this section, we consider the Bayesian estimation under the
assumptions that α and λ have independent gamma priors with the pdfs

π1(α) =
dc

Γ(c)
αc−1 exp(−αd), α > 0 (18)

and

π2(λ) =
ba

Γ(a)
λa−1 exp(−λb), λ > 0 (19)

with the parameters α ∼ Gamma(c, d) and λ ∼ Gamma(a, b). Based on the above
priors, the joint posterior density function of α and λ given the data can be written
as follows:

π(α, λ | x̃) =
π1(α)π2(λ)`(α, λ; x̃)

∞∫
0

∞∫
0

π1(α)π2(λ)`(α, λ; x̃)dαdλ

(20)

where

`(α, λ; x̃) = α(n+c−1)λ(n+a−1) exp(−αd) exp(−λb)
n∏
i=1

∫
xα−1 exp (−λxα)µx̃i(x)dx

is the likelihood function based on the fuzzy sample x̃. Then, under a squared
error loss function, the Bayes estimate of any function of α and λ, say g(α, λ), is

E(g(α, λ) | x̃) =

∞∫
0

∞∫
0

g(α, λ)π1(α)π2(λ)`(α, λ; x̃)dαdλ

∞∫
0

∞∫
0

π1(α)π2(λ)`(α, λ; x̃)dαdλ

=

∞∫
0

∞∫
0

g(α, λ)eQ(α,λ)dαdλ

∞∫
0

∞∫
0

eQ(α,λ)dαdλ

(21)

where Q(α, λ) = ln[π1(α)π2(λ)] + ln `(α, λ; x̃) ≡ ρ(α, λ) + L(α, λ). Note that Eq.
(21) cannot be obtained analytically; therefore, in the following we adopt Tierney
and Kadane’s approximation for computing the Bayes estimates.

Setting H(α, λ) = Q(α, λ)/n and H∗(α, λ) = [ln g(α, λ) +Q(α, λ)] /n, the ex-
pression in (21) can be reexpressed as

E(g(α, λ) | x̃) =

∫∞
0

∫∞
0
enH

∗(α,λ)dαdλ∫∞
0

∫∞
0
enH(α,λ)dαdλ

(22)
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Following Tierney & Kadane (1986), Eq. (22) can be approximated as the
following form:

ĝBT (α, λ) =

[
det Σ∗

det Σ

]1/2

exp
{
n
[
H∗(ᾱ∗, λ̄∗)−H(ᾱ, λ̄)

]}
(23)

where (ᾱ∗, λ̄∗) and (ᾱ, λ̄) maximizeH∗(α, λ) andH(α, λ), respectively, and Σ∗ and
Σ are the negatives of the inverse Hessians of H∗(α, λ) and H(α, λ) at (ᾱ∗, λ̄∗)
and (ᾱ, λ̄), respectively.

In our case, we have

H(α, λ) =
1

n
{k + (n+ c− 1) logα+ (n+ a− 1) log λ− αd

−λb+

n∑
i=1

log

∫
xα−1 exp (−λxα)µx̃i(x)dx}.

where k is a constant; therefore, (ᾱ, λ̄) can be obtained by solving the following
two equations

∂

∂α
H(α, λ) =

1

n
{n+ c− 1

α
− d

+

n∑
i=1

∫
(xα−1 − λx2α−1) log x exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx
}

∂

∂λ
H(α, λ) =

1

n

{
n+ a− 1

λ
− b−

n∑
i=1

∫
x2α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

}
and, from the second derivatives of H(α, λ), the determinant of the negative of
the inverse Hessian of H(α, λ) at (ᾱ, λ̄) is given by

det Σ = (H11H22 −H2
12)−1

where

H11 =
1

n
{−n+ c− 1

ᾱ2

+

n∑
i=1

(

∫
(λ̄2x3ᾱ−1 − λ̄x2ᾱ−1)(log x)2 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

+

∫
(xᾱ−1 − 2λ̄x2ᾱ−1)(log x)2 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

)

−
n∑
i=1

[

∫
(xᾱ−1 − λ̄x2ᾱ−1) log x exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

]2 }

H22 =
1

n
{−n+ a− 1

λ̄2
+

n∑
i=1

(

∫
x3ᾱ−1 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

−[

∫
x2ᾱ−1 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

]2)}
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H12 =
1

n
{−

n∑
i=1

∫
(2x2ᾱ−1 − λ̄x3ᾱ−1) log x exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

+

n∑
i=1

(

∫
(1− λ̄xᾱ)xᾱ−1 log x exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

×
∫
x2ᾱ−1 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

)}

Now, following the same arguments with g(α, λ) = α and λ, respectively, in
H∗(α, λ), α̂BT and λ̂BT in Equation (23) can then be obtained in a straightforward
manner.

6. Method of Moments

It is well-known that the kth moment of the Weibull distribution with pdf (1)
is

E(Xk) = λ−
k
αΓ(1 +

k

α
)

where Γ(.) is the complete Gamma function.
By equating the first and the second sample moments to the corresponding

population moments, the following equations can be used to find the estimates of
moment method.

λ−
1
αΓ(1 +

1

α
) =

1

n

n∑
i=1

Eα,λ(X | x̃i) (24)

λ−
2
αΓ(1 +

2

α
) =

1

n

n∑
i=1

Eα,λ(X2 | x̃i) (25)

Since the closed form of the solutions to Eqs. (24) and (25) could not be
obtained, an iterative numerical process to obtain the parameter estimates is de-
scribed as follows:
1. Let the initial estimates of α and λ, say α(0) and λ(0) with h = 0.
2. In the (h+ 1)th iteration, we first compute

Eα(h),λ(h)(Xr | x̃i) =

∫
xα

(h)+r−1 exp
(
−λ(h)xα

(h)
)
µx̃i(x)dx∫

xα(h)−1 exp
(
−λ(h)xα(h)

)
µx̃i(x)dx

, r = 1, 2.

3. Based on equations (24) and (25), solve the following equation for α[
n∑
i=1

Eα(h),λ(h)(X | x̃i)
]2

n

[
n∑
i=1

Eα(h),λ(h)(X2 | x̃i)
] =

[
Γ(1 + 1

α )
]2[

Γ(1 + 2
α )
]
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to obtain the solution as α(h+1).
4. The solution for λ, say λ(h+1), is obtained through the following equation

λ(h+1) =


nΓ(1 + (1/α(h+1)))
n∑
i=1

Eα(h),λ(h)(X | x̃i)


α(h+1)

5. Setting h = h+ 1, repeat steps 2 to 4 until convergence occurs and denote the
method of moment estimates as α̂M and λ̂M .

0

1

0.05 0.25 0.5 0.75 1 1.5 2 3

x

1
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2
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8
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Figure 3: Fuzzy information system used to encode the simulated data.

7. Numerical Experiments

7.1. Simulation

In this section, we present some experimental results, mainly to observe how the
different methods behave for different sample sizes. We obtain the estimates of
the unknown parameters α and λ using the three methods provided in the pre-
ceding sections. The computations are performed using R 2.14.0 (R Development
Core Team (2011)), which is a non-commercial, open source software package for
statistical computing and graphics. First, for different sets of parameter values
namely; (α, λ) = (0.5, 1), (1, 1), (2, 1), and various choices of n, we have generated
i.i.d. random samples, say x, from the Weibull distribution. Each realization of x
was made fuzzy, using the f.i.s. shown in Fig.3, corresponding to the membership
functions

µx̃1
(x) =


1 x ≤ 0.05,
0.25−x

0.2 0.05 ≤ x ≤ 0.25,

0 otherwise,

µx̃2
(x) =


x−0.05

0.2 0.05 ≤ x ≤ 0.25,
0.5−x
0.25 0.25 ≤ x ≤ 0.5,

0 otherwise,
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µx̃3
(x) =


x−0.25

0.25 0.25 ≤ x ≤ 0.5,
0.75−x

0.25 0.5 ≤ x ≤ 0.75,

0 otherwise,

µx̃4
(x) =


x−0.5
0.25 0.5 ≤ x ≤ 0.75,

1−x
0.25 0.75 ≤ x ≤ 1,

0 otherwise,

µx̃5
(x) =


x−0.75

0.25 0.75 ≤ x ≤ 1,
1.5−x

0.5 1 ≤ x ≤ 1.5,

0 otherwise,

µx̃6
(x) =


x−1
0.5 1 ≤ x ≤ 1.5,
2−x
0.5 1.5 ≤ x ≤ 2,

0 otherwise,

µx̃7
(x) =


x−1.5

0.5 1.5 ≤ x ≤ 2,

3− x 2 ≤ x ≤ 3,

0 otherwise,

µx̃8
(x) =


x− 2 2 ≤ x ≤ 3,

1 x ≥ 3,

0 otherwise.

Then the estimates of α and λ for the fuzzy sample were computed using the
maximum likelihood method (via NR and EM algorithms), the moments method
and a Bayesian procedure. For computing the Bayes estimates, we have assumed
that λ and α have Gamma(a, b) and Gamma(c, d) priors respectively. To make the
comparison meaningful, it is assumed that the priors are non-informative, and they
are a = b = c = d = 0. Note that in this case the priors are non-proper also. Press
(2001) suggested to use very small non-negative values of the hyperparameters in
this case, and it will make the priors proper. We have tried a = b = c = d = 0.0001.
The results are not significantly different than the corresponding results obtained
using non-proper priors, and are not reported due to space. From now on, the
estimates of parameters obtained by using NR algorithm, EM algorithm, Bayesian
procedure and moments method will be denoted by NR, EM, BET and MME,
respectively. The average biases (AB) and mean squared errors (MSE) of the
estimates over 5, 000 replications are presented in Tables 1-2.

From the experiments, we found that using the NR or EM algorithm for the
computation of maximum likelihood estimates of α and λ give similar estimation
results, but EM is computationally slower. For small and moderate sample sizes,
the Bayesian procedure gives the most precise parameter estimates as shown by
ABs and MSEs in Tables 1-2. For large sample sizes (n = 100, 200 and 500), the
performance of the MLEs, MMEs and Bayes estimates are almost identical. For
all the methods, it is observed that as the sample size increases, the biases and
MSEs of the estimates decrease as expected.

7.2. Application example

In order to demonstrate the application of proposed methods, let us consider a
case study on the light emitting diodes (LED) manufacturing process that focuses
on the luminous intensities of LED sources. The process distribution has been
justified and has been shown to be fairly close to the Weibull distribution. A
sample of size n = 30 is taken from the stable process. Since the data given by
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Table 1: MSE of the estimates of α and λ for different sample sizes.
n α λ Estimation of α Estimation of λ

NR EM BET MME NR EM BET MME
15 0.5 1 0.0619 0.0620 0.0594 0.0705 0.0870 0.0871 0.0836 0.092

1 1 0.0987 0.0988 0.0830 0.1246 0.1129 0.1130 0.1091 0.1191
2 1 0.1263 0.1264 0.1129 0.1380 0.1465 0.1465 0.1421 0.1483

20 0.5 1 0.0558 0.0559 0.0512 0.0631 0.0727 0.0728 0.0639 0.0792
1 1 0.0942 0.0943 0.0744 0.1193 0.1088 0.1089 0.0966 0.1139
2 1 0.1017 0.1018 0.0922 0.1240 0.1226 0.1227 0.1182 0.1259

30 0.5 1 0.0366 0.0367 0.0341 0.0394 0.0489 0.0489 0.0422 0.0519
1 1 0.0614 0.0614 0.0488 0.0828 0.0691 0.0692 0.0646 0.0707
2 1 0.0721 0.0722 0.0630 0.0895 0.0843 0.0844 0.0819 0.0895

50 0.5 1 0.0285 0.0286 0.0257 0.0335 0.0365 0.0365 0.0342 0.0386
1 1 0.0361 0.0362 0.0331 0.0451 0.0427 0.0427 0.0419 0.0430
2 1 0.0488 0.0489 0.0425 0.0536 0.0572 0.0572 0.0558 0.0587

70 0.5 1 0.0214 0.0215 0.0208 0.0232 0.0305 0.0306 0.0291 0.0318
1 1 0.0282 0.0282 0.0225 0.0346 0.0338 0.0339 0.0328 0.0345
2 1 0.0327 0.0328 0.0311 0.0387 0.0478 0.0478 0.0460 0.0491

100 0.5 1 0.0154 0.0154 0.0152 0.0156 0.0227 0.0228 0.0220 0.0236
1 1 0.0191 0.0192 0.0187 0.0195 0.0284 0.0285 0.0282 0.0289
2 1 0.0270 0.0270 0.0263 0.0271 0.0395 0.0395 0.0390 0.0397

200 0.5 1 0.0104 0.0104 0.0098 0.0109 0.0174 0.0175 0.0168 0.0179
1 1 0.0127 0.0128 0.0120 0.0134 0.0211 0.0211 0.0202 0.0218
2 1 0.0214 0.0214 0.0209 0.0225 0.0356 0.0356 0.0348 0.0360

500 0.5 1 0.0055 0.0055 0.0051 0.0058 0.0118 0.0118 0.0113 0.0122
1 1 0.0086 0.0086 0.0085 0.0088 0.0173 0.0174 0.0161 0.0179
2 1 0.0142 0.0142 0.0139 0.0153 0.0235 0.0235 0.0230 0.0238

luminous intensity of a particular LED inevitably have some degree of imprecision,
the luminous intensities of diodes are reported in the form of lower and upper
bounds as well as a point estimate, which are as follows:

DATA SET:

(2.163, 2.738, 3.068), (5.972, 6.353, 8.150), (1.032, 1.971, 2.642),

(0.628, 0.964, 1.735), (2.995, 3.442, 5.066), (3.766, 5.814, 6.212),

(0.974, 1.839, 2.045), (4.352, 5.206, 5.988), (3.920, 4.762, 6.121),

(1.375, 2.195, 3.086), (0.618, 0.839, 2.217), (4.575, 6.050, 6.734),

(1.027, 1.218, 3.116), (6.279, 8.156, 9.435), (2.821, 3.409, 5.272),

(7.125, 8.470, 9.044), (5.443, 6.231, 7.395), (1.766, 2.190, 2.638),

(7.155, 8.013, 8.352), (0.830, 1.288, 2.541), (3.590, 4.169, 4.899),

(5.965, 7.344, 8.019), (3.177, 3.600, 4.213), (4.634, 5.780, 7.058),

(7.261, 8.325, 8.871), (2.247, 2.990, 4.128), (6.032, 7.746, 8.529),

(4.065, 5.312, 7.480), (5.434, 7.093, 7.655), (1.336, 2.750, 3.284).

In our approach, each triplet is modeled by a triangular fuzzy number x̃i,
and is interpreted as a possibility distribution related to an unknown value xi,
itself a realization of a random variable Xi. For this data, we employ NR and
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Table 2: AB of the estimates of α and λ for different sample sizes.
n α λ Estimation of α Estimation of λ

NR EM BET MME NR EM BET MME
15 0.5 1 0.1272 0.1273 0.0734 0.1533 0.1180 0.1181 0.1092 0.1230

1 1 0.1381 0.1382 -0.0783 0.1698 0.1291 0.1292 0.1262 0.1322
2 1 0.1914 0.1915 0.1527 0.2038 0.1570 0.1571 0.1503 0.1637
20 0.5 1 0.1091 0.1092 -0.0617 0.1326 0.0931 0.0931 0.0865 0.1026

1 1 0.1354 0.1355 -0.0699 0.1633 0.1205 0.1206 0.1177 0.1298
2 1 0.1775 0.1775 0.1344 0.1851 0.1427 0.1428 0.1321 0.1485

30 0.5 1 0.0922 0.0923 0.0591 0.1130 0.0778 0.0779 0.0631 0.0840
1 1 0.1228 0.1228 -0.0621 0.1417 0.1086 0.1087 0.1059 0.1152
2 1 0.1439 0.1439 0.1223 0.1507 0.1162 0.1163 0.1137 0.1218

50 0.5 1 0.0754 0.0755 0.0518 0.0908 0.0620 0.0621 0.0582 0.0685
1 1 0.0917 0.0918 -0.0571 0.1275 0.0927 0.0927 0.0905 0.0996
2 1 0.1254 0.1255 0.1033 0.1445 0.1067 0.1067 0.1013 0.1151

70 0.5 1 0.0628 0.0629 0.0435 0.0711 0.0514 0.0514 0.0507 0.0536
1 1 0.0887 0.0887 0.0494 0.1065 0.0833 0.0834 0.0821 0.0875
2 1 0.1057 0.1058 -0.0932 0.1126 0.0983 0.0983 0.0970 0.0994

100 0.5 1 0.0413 0.0413 0.0408 0.0419 0.0459 0.0459 0.0455 0.0463
1 1 0.0438 0.0438 0.0426 0.0440 0.0648 0.0648 0.0642 0.0655
2 1 0.0906 0.0907 0.0896 0.0918 0.0952 0.0952 0.0948 0.0961

200 0.5 1 0.0287 0.0288 0.0281 0.0290 0.0317 0.0318 0.0314 0.0318
1 1 0.0349 0.0349 0.0345 0.0353 0.0573 0.0573 0.0570 0.0574
2 1 0.0855 0.0856 0.0851 0.0859 0.0736 0.0737 0.0733 0.0738

500 0.5 1 0.0211 0.0212 0.0207 0.0225 0.0244 0.0244 0.0241 0.0245
1 1 0.0267 0.0268 0.0260 0.0271 0.0408 0.0409 0.0404 0.0412
2 1 0.0762 0.0762 0.0758 0.0766 0.0553 0.0554 0.0550 0.0557

EM algorithms to compute the ML estimates. The stopping criterion is based
on the difference between the two consecutive iterates, with a tolerance value
ε = 10−6. The final MLEs are (α̂NR, λ̂NR) = (2.1094, 0.0318) and (α̂EM , λ̂EM ) =
(2.1095, 0.0319). Also, by using the procedure presented in section 6, the moment
estimate of (α, λ) becomes (α̂M , λ̂M ) = (2.1257, 0.0374). For computing the Bayes
estimate, we assume that both α and λ have a Gamma(0.0001, 0.0001) prior.
Therefore, using the Tierney and Kadane’s approximation, the Bayes estimate of
the parameters becomes (α̂BT , λ̂BT ) = (2.1036, 0.0287).

8. Conclusions

Some work has been done in the past on the estimation of Weibull distribu-
tion parameters based on complete and censored samples. But, traditionally it is
assumed that the available data are performed in exact numbers. However, some
collected data might be imprecise and are represented in the form of fuzzy num-
bers. Therefore, we need suitable statistical methodology to handle these data
as well. In this paper, we have discussed different estimation procedures for the
Weibull distribution when the obtained data are fuzzy numbers. They include the
maximum likelihood method (via NR and EM algorithms), a Bayesian procedure
and the method of moments. We have then carried out a simulation study to assess
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the performance of all these procedures. The recommendations of an estimator
based on minimum biases and MSEs are as follows:

i) For small and moderate sample sizes, the performance of the Bayes esti-
mates is generally best followed by the MLEs and then the MMEs. Thus, it
would seem reasonable to recommend the use of the Bayesian procedure for
estimating the unknown parameters α and λ.

ii) For large sample sizes, the three estimation procedures behave in similar
manner.
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Discussion about the Paper “On the Moment Characteristics for the
Univariate Compound Poisson and Bivariate Compound Poisson

Process with Applications”

Masood Anwara

Department of Mathematics, COMSATS Institute of Information Technology,
Islamabad, Pakistan

Dear editor,
I have found some few results that were incorrect in a paper recently published

by Özel (2013). Please find them attached.

1. In Section 2.1, the given common moment generating function (mgf) of Xi,

i = 1, 2, . . . ,MX(u) =
∞∑
j=0

ujpj is actually the probability generating function

(pgf) of Xi. With this definition of MX(u), a recursive formula (on page 62)
for the general moments of {St, t ≥ 0} is incorrect because dr−kMX(u)

dur−k |u=0 6=
E(Xr−k), where E(Xr−k) = ξr−k. Therefore, the common mgf of Xi, i =

1, 2, . . ., should be replaced by MX(eu) =
∞∑
j=0

eujpj and the mgf of {St,≥ 0}

with MSt
(u) = exp(λt[MX(eu)− 1]).

2. In Section 2.1, on page 62, in the first line, “factorial” should be replaced by
“general (raw)”.

3. In Section 2.1, the central moments of {St,≥ 0} obtained in (8) are incorrect
as the first central moment is always equal to zero i.e µ1 = 0. We derive the
corrected version of central moments as follows;

µ1 = 0

µ2 = λtξ2

µ3 = λtξ3

µ4 = 3(λtξ2)
2 + λtξ4

µ5 = 10(λtξ2)(λtξ3) + λtξ5

where ξr = E(xr), r = 1, 2, . . . , n, is the rth general moment of Xi, i =
1, 2, . . ..

4. In Section 2.1, the skewness (10) of St should be considered as√
β1 =

ξ3√
λt(ξ2)3/2

aProfessor. E-mail: masoodanwar@comsats.edu.pk



5. In Section 2.1, the expression for kurtosis (11) is β2 − 3 =
ξ4

λt(ξ2)2
.

6. In Section 2.1, in Equation (14), the statement

(
λt
∞∑
j=1

rjpj

)
should be

replaced by

(
λt
∞∑
j=1

jrpj

)
.

7. In Section 2.1, after Equation (20), “From (21)” should be replaced by “From
(20)” and the expression “ξr” should be changed with “ξ[r]”.

8. In Section 2.3, in Example 1, the four central moments of Neyman type A or
Poisson-Poisson process given in Table 1 (Neyman 1939, Özel & Inal 2012)
should be

µ1 = 0

µ2 = [λt(υ + υ2)]

µ3 = [λt(υ + υ2 + υ3)]

µ4 = [3(λt)2(υ2 + 2υ3 + υ4)] + [λt(υ + 7υ2 + 6υ3 + υ4)]

9. In Section 2.3, in Example 2, the four central moments of Neyman type B or
Poisson-binomial process given in Table 2 (Neyman 1939, Özel & Inal 2012)
are actually

µ1 = 0

µ2 = [λt(mp+m(m− 1)p2)]

µ3 = [λt(mp+ 3m(m− 1)p2 +m(m− 1)(m− 2)p3)]

µ4 = 3[λt(mp+ 3m(m− 1)p2)]2 +
[
λt(mp+ 7m(m− 1)p2)

+ 6m(m− 1)(m− 2)p3 +m(m− 1)(m− 2)(m− 3)p4
]

10. Similarly, in Example 3, the four central moments of Pólya-Aeppli or geo-
metric Poisson process given in Table 3 (Getis 1974, Özel & Inal 2012) are
actually as follows;

µ1 = 0

µ2 = [λt(1− θ)(2− θ)/θ2]
µ3 = [λt(1− θ)(6 + θ(θ − 6))/θ3]

µ4 = 3[λt(1− θ)(2− θ)/θ2]2 + [λt(1− θ)(2− θ)(12 + θ(θ − 12))/θ4]

11. In Section 4, the central moments for the Pólya-Aeppli process presented in
Table 4 for the parameters λ = 9.84, θ = 0.62 and values of t are incorrect.
The Table 1 should be considered for the central moments. Similarly, the
results of skewness and kurtosis computed for the Pólya-Aeppli process in
Table 5 should be replaced with Table 2.



Table 1: The corrected central moments of the Pólya-Aeppli process for the traffic ac-
cidents in Groningen (Meintanis, 1997, Özel & Inal, 2010).

t µ1 µ2 µ3 µ4

0.5 0 6.71 20.90 221.40
1 0 19.45 41.80 1307.58
2 0 38.91 83.61 4887.29
3 0 58.36 125.41 10735.67
4 0 77.82 167.21 18858.52

Table 2: The skewness and kurtosis of Pólya-Aeppli process for the traffic accidents in
Groningen (Meintanis, 1997, Özel & Inal, 2010).

T
√
β1 β2 − 3

0.5 1.20 1.92
1 0.49 0.45
2 0.34 0.23
3 0.28 0.15
4 0.24 0.11

A second dataset illustrates the usage of bivariate compound Poisson pro-
cesses and it comes from earthquakes in Turkey, which is given by Özel
(2011a) y Özel (2011b).
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debe pasar de 200 palabras y su contenido debe destacar el aporte del trabajo
en el tema tratado.

1http://www.ctan.org/tex-archive/systems/win32/miktex/
2http://www.estadistica.unal.edu.co/revista



Palabras clave (Key words) en número entre 3 y 6, con su respectiva traduc-
ción al inglés, siguiendo las recomendaciones del Current Index to Statistics
(CIS)3.

Cuando el art́ıculo se deriva de una tesis o trabajo de grado debe indicarse
e incluirse como una referencia.

Si se deriva de un proyecto de investigación, se debe indicar el t́ıtulo del
proyecto y la entidad que lo patrocina.
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arbitraje por pares especializados en el tema respectivo. El arbitraje es “doble
ciego” (árbitros anónimos para los autores y viceversa). El Comité Editorial de-
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Bécue-Bertau, Mónica Véase Pardo, Campo Eĺıas
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Kadilar, Cem Véase Yadav, Subhash Kumar
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Correspondence Analysis of Contingency Tables with Subpartitions
on Rows and Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-144

Parham, Gholam Ali Véase Pak, Abbas
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