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Abstract

In a growing number of quality control applications, the quality of a
product or process is best characterized and summarized by a functional
relationship between a response variable and one or more explanatory vari-
ables. Profile monitoring is used to understand and to check the stability of
this relationship over time. In some applications with compositional data,
the relationship can be characterized by a Dirichlet regression model. We
evaluate five T 2 control charts for monitoring these profiles in Phase I. A
real example from production of concrete is given.
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Resumen

En un gran número de aplicaciones la calidad de un producto o proceso
está mejor representada por una relación funcional entre una variable de
respuesta y una o más variables explicatorias. El monitoreo de perfiles per-
mite entender y chequear la estabilidad de esta relación funcional a través
del tiempo. En algunas aplicaciones con datos composicionales, la relación
puede ser representada por un modelo de regresión Dirichlet. En este artículo
nosotros evaluamos cinco cartas de control T 2 para monitorear estos perfiles
en Fase I. Un ejemplo real asociado a la producción de concreto es presen-
tado.
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1. Introduction

In most of the statistical process control (SPC) applications, the quality of
a process or product is represented by the distribution of a univariate or multi-
variate quality characteristic. However, in other applications, process quality is
better characterized by a relationship between a response variable and one or more
explanatory variables. This relationship is usually known as a profile. In these
situations, the focus of the SPC lies on the parameters of the profile monitoring
rather than on the monitoring of the univariate or multivariate characteristics.
Such profiles can be represented using linear or nonlinear models. Some discus-
sion of the general issues involving profile monitoring can be found in Woodall,
Spitzner, Montgomery & Gupta (2004), Woodall (2007), Noorossana, Saghaei &
Amiri (2012) and Qiu (2013). Profile practical applications have been reported
by many researchers, including Stover & Brill (1998), Kang & Albin (2000), Mah-
moud & Woodall (2004), Wang & Tsung (2005) and Kusiak, Zheng & Song (2009).
Several control chart approaches for monitoring simple linear profiles have been
developed by Kang & Albin (2000), Kim, Mahmoud &Woodall (2003), Zou, Zhang
& Wang (2006), Zou, Zhou, Wang & Tsung (2007), Mahmoud, Parker, Woodall &
Hawkins (2007), Soleimani, Narvand & Raissi (2013), Zhang, He, Zhang &Woodall
(2013), Yeh & Zerehsaz (2013) and Amiri, Zou & Doroudyan (2014). Proposals for
monitoring multivariate linear profiles (simple and/or multiple) have been devel-
oped by Mahmoud (2008), Noorossana, Eyvazian & Vaghefi (2010), Noorossana,
Eyvazian, Amiri & Mahmoud (2010), Eyvazian, Noorossana, Saghaei & Amiri
(2011) and Zou, Ning & Tsung (2012).

The linear regression model is commonly used for monitoring profiles. However,
it is not appropriate for situations where the response is restricted to the interval
(0, 1) since it may yield fitted values in the variable of interest that exceed its lower
and upper bounds. Ferrari & Cribari-Neto (2004) proposed a regression model that
is tailored for situations where the dependent variable Y is measured continuously
on the standard unit interval, i.e. 0 < Y < 1. The proposed model is based on
the assumption that the response is Beta distributed. The Beta distribution is
very flexible for modeling proportions since its density can have quite different
shapes depending on the values of the two parameters that index the distribution.
Vasconcellos & Cribari-Neto (2005) proposed a class of regression models where the
response is Beta distributed and the two parameters that index this distribution are
related to covariates and regression parameters. However, the proposed regression
models are restricted to the univariate case and cannot be applied in many practical
situations where data consist of multivariate positive observations summing to
one, that is, the study of compositional data, see Aitchison (1986) and Aitchison
(2003). Melo, Vasconcellos & Lemonte (2009) proposed a particular structure
for compositional data regression, based on the Dirichlet distribution, which is a
generalization of the Beta distribution for the simplex sample space. A profile
application in a concrete manufacturing plant, which after a preliminary study
was found to fit appropriately this structure motivated this paper.

Compositional data are frequently encountered in industries such as the chem-
ical, pharmaceutical, textil, plastic, concrete, steel, asphalt, among other. Sev-
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eral statistical methods for monitoring processes characterized by compositional
data have been studied. See for example, Sullivan & Woodall (1996), Boyles
(1997), Yang, Cline, Lytton & Little (2004) and Vives-Mestres, Daunis-i Estadella
& Martín-Fernández (2013). However, there are not methods for monitoring these
processes when the random vectors associated to the compositional data present
a functional relationship with a set of explanatory variables.

In this paper, the control charting mechanisms discussed by Williams, Woodall
& Birch (2007) and Yeh, Huwang & Li (2009) are extended for monitoring func-
tional relationships in Phase I characterized by a Dirichlet regression model using
a regression structure that allows the modeling of relationships between random
vectors with Dirichlet distribution and a set of explanatory variables.

The structure of this paper is outlined as follows: In Section 2, we show the
Dirichlet regression model for compositional data and the estimation of the model
parameters. Five T 2 control charts approaches used for monitoring linear profiles
in Phase I with compositional data are presented in Section 3. In Section 4, the
performance of the proposed approaches is evaluated through simulation studies.
A real example is given in Section 5. In the last section we conclude the paper.

2. Dirichlet Regression

Compositional data are used to indicate how parts contribute to the whole. In
most cases they are recorded as closed data, i.e. data summing to a constant, such
as 100%. Compositional data occupy a restricted space where variables can vary
only from 0 to 100, or any other given constant. Such a restricted space is known
formally as a simplex, see Pawlowsky-Glahn & Egozcue (2006).

Let c be a positive number. The p-dimensional closed simplex in Rn and
(p− 1)-dimensional open simplex in Rp−1 are defined by

Tp(c) =

(y1, . . . , yp)
t : yj > 0, 1 ≤ j ≤ p,

p∑
j=1

yj = c


and

Vp−1(c) =

(y1, . . . , yp−1)t : yj > 0, 1 ≤ j ≤ p− 1,

p−1∑
j=1

yj < c


respectively, where the superscript t means the function transpose. Furthermore,
let Tp = Tp(1) and Vp−1 = Vp−1(1).

A random vector Y = (Y1, . . . , Yp)
t ∈ Tp is said to have a Dirichlet distribution

if the density function of Y−p = (Y1, . . . , Yp−1)t is

f (Y−p|a) =

Γ

(
p∑
j=1

aj

)
p∏
j=1

Γ (aj)

p∏
j=1

y
aj−1
j , (y1, . . . , yp−1) ∈ Vp−1, (1)
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where a = (a1, . . . , ap)
t and aj > 0, j = 1 . . . p. We will write Y ∼ Dirichletp(a1,

. . . , ap), see Ng, Tian & Tang (2011).
When all aj → 0, the distribution becomes noninformative. When p = 2,

the Dirichlet distribution Dirichlet2(a1, a2) reduces to the Beta(a1, a2) distribu-
tion. The marginal distributions of the components of Y, Yj , j = 1, 2, . . . , p, are
distributed as Beta(aj , φ − aj), where φ =

∑p
j=1 aj . In this sense, the Dirich-

let distribution can be seen as a multivariate extension of the Beta distribution.
Therefore, we have

E(Yj) =
aj
φ
, j = 1, . . . , p (2)

V ar(Yj) =
aj(φ− aj)
φ2(φ+ 1)

, j = 1, . . . , p (3)

Cov(Yj , Yl) = − ajal
φ2(φ+ 1)

< 0, j 6= l; j, l = 1, . . . , p (4)

The Dirichlet distribution is widely used to model data in the form of pro-
portions, where each observation is a vector of positive numbers summing to one.
It allows great flexibility of modeling, provided by the appropriate choice of its
parameters. See Ng et al. (2011) and Melo et al. (2009).

Gueorguieva, Rosenheck & Zelterman (2008) described a Dirichlet multivariate
regression method which is useful for modeling data representing components as
a percentage of a total. They described each log(aj) as a separate linear function
of covariates and regression coefficients. That is, for each component j = 1, . . . , p
they used a log-link with

log aij = βtjXi (5)

for covariates Xi recorded on the ith individual (i = 1, . . . , n) and regression
coefficients βj to be estimated using maximum likelihood. These estimates are
denoted β̂j . The estimates âj = {âij} of aj = {aij} are defined by

âij = exp(β̂
t

jXi)

Gueorguieva et al. (2008) refer to the {aj} as meta − parameters because they
combine the effects of the covariates Xi using regression parameters {βj}.

Melo et al. (2009) proposed a generalization of this model. The proposed model
is defined by establishing relationships between the parameters that index the
Dirichlet distribution and linear predictors on the explanatory variables. They as-
sume a set of independent vector observations Y1, . . . ,Yn, where
Yi = (Yi1, . . . , Yip) with Yi1 + · · · + Yip = 1, for each i. They suppose that
Yi ∼ Dirichletp(ai1, . . . , aip) with

aij = gj(β1jxi1 + · · ·+ βkjxik) (6)

where each function gj : R → (0,∞) is three times differentiable, injective and
known, xi1, . . . , xik are the values corresponding to the ith observation for k ex-
planatory variables and β1j , . . . , βkj are k unknown parameters corresponding to
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the jth component. The model, therefore, has kp unknown parameters, which can
be estimated through maximum likelihood (See Melo et al. 2009).

The covariates of this regression model affect the vector mean, the variance
covariance structure of the distribution of the observations and the higher-order
moments. The functions gj play a similar role to the link functions of generalized
linear models, in the sense that they specifically define how the parameters of the
distribution of interest are linked to linear combinations of the covariates. The
coefficients of this linear combination are unknown. The regression parameters
are identifiable if the link functions are injective and the covariates are linearly
independent (See Melo et al. 2009).

In the Dirichlet regression model, if p = 2 we have the Beta regression model
described in Vasconcellos & Cribari-Neto (2005), Gueorguieva et al. (2008) and
Melo et al. (2009).

The regression coefficients can be estimated using maximum likelihood. Let
B the k × p matrix with the βhj ’s, h = 1, 2 . . . , k and j = 1, 2, . . . , p. The log-
likelihood function is given by

l(B) =

n∑
i=1

log[Γ(φi)]−
p∑
j=1

log[Γ(aij)] +

p∑
j=1

aij log(Yij)

 (7)

where φi = ai1 + · · ·+ aip for each i = 1, 2, . . . , n.

If B̂ is the maximum likelihood estimator for B, under some regularity con-
ditions,

√
nvec(B̂ − B)

a∼ Nkp(0,K(B)
−1

), when n is large, with a∼ denoting
asymptotically distributed, Nkp representing a kp-variate normal distribution and
K(B) representing the kp×kp information matrix for the vector version of B (See
Melo et al. 2009). The matrix K(B) can be obtained as

K(B) =
(
Ip
⊗

X
)t

L
(
Ip
⊗

X
)

(8)

where
⊗

represents the Kronecker product, L is an np × np matrix defined in
partitioned form as

L =

L11 · · · L1p

...
. . .

...
Lp1 · · · Lpp

 (9)

where each Lcd, with c = 1, 2, . . . , p and d = 1, 2, . . . , p, is a diagonal matrix having
ith element in the diagonal given by

l
(cd)
i =

{
−g′c(ηic)2[ψ′(φi)− ψ′(aic)], c = d

−g′c(ηic)g′d(ηid)ψ′(φi), c 6= d
(10)

where φi = ai1 + · · · + aip, for each i = 1, 2, . . . , n, ηij = β1jXi1 + · · · + βkjXik

with i = 1, 2, . . . , n, j = 1, 2, . . . , p, g′ is the first-order derivative of g with respect
to its argument and ψ (digamma function) is the first derivative of the log of the
gamma function.
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3. Profile Monitoring Control Charts

In this section, we propose and study five Hotelling T 2 control charts for moni-
toring linear profiles with compositional data using the Dirichlet regression model
described in the previous section. The study is limited for Phase I. We consider
the same charts analyzed by Yeh et al. (2009) in their study for profile monitoring
in binary responses: T 2 based on the sample mean vector and covariance ma-
trix (T 2

Usual), T
2 based on the sample average and successive differences estimator

(T 2
SD) proposed by Sullivan & Woodall (1996), T 2 based on the sample average

and intra−profile pooling (T 2
Int) Williams et al. (2007), T 2 based on the Minimum

Volume Ellipsoid (T 2
MVE) and T

2 based on the Minimum Covariance Determinant
(T 2
MCD) studied by Vargas (2003) and Jensen, Birch & Woodall (2007).

We assume that when the process is in control, the matrix of model parameters
is B0. In Phase I control, m independent samples are taken. In each sample r,
r = 1, . . . ,m, there are a set of nr independent vector observations Y1r, . . . ,Ynr r,
where Yir = (Yir1, . . . , Yirp) with Yir1 + · · · + Yirp = 1, for each i = 1, . . . , nr.
We suppose that Yir ∼ Dirichletp(ai1, . . . , aip). We assume that the relationship
between the parameters that index the Dirichlet distribution and k explanatory
variables (X1, . . . , Xk) given in equation (6) is gj = exp(·).

For any given sample r, r = 1, 2, . . . ,m, B̂r is the maximum likelihood estima-
tor of B. Let β̂r = vec(B̂r) = (β̂11r , β̂21r , . . . , β̂k1r , β̂12r , β̂22r , . . . , β̂k2r , . . . , β̂1pr ,

β̂2pr , . . . , β̂kpr ) β̂r is a multivariate random vector, where each β̂sjr represents
the estimator of the parameter corresponding to the explanatory variable Xs,
s = 1, . . . , k, applied on the j components of Yir.

The Hotelling’s T 2 statistic measures the Mahalanobis distance of the corre-
sponding vector from the sample mean vector. The general form of the statistic
is

T 2
r = (β̂r − β0)tΣ−10 (β̂r − β0)

where β0 is the expected value of β̂r when the process is in control, and Σ0 is the
in-control covariance matrix of β̂r.

In Phase I control, β0 and Σ0 both need to be estimated and the performance
of the control chart depends on the types of estimates being used. The T 2 statistics
for the proposed control charts are calculated by:

T 2
Usual,r = (β̂r − β)tS−1Usual(β̂r − β) (11)

where β = 1
m

∑m
r=1 β̂r and SUsual = 1

m−1
∑m
r=1(β̂r − β)(β̂r − β)t

T 2
SD,r = (β̂r − β)tS−1SD(β̂r − β) (12)

where SSD = 1
2(m−1)

∑m−1
r=1 (β̂r+1 − β̂r)(β̂r+1 − β̂r)t

T 2
Int,r = (β̂r − β)tS−1Int(β̂r − β) (13)
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where SInt = 1
m

∑m
r=1 v̂ar(β̂r), which is calculated using the observed information

matrix,
T 2
MVE,r = (β̂r − β̂MVE)tS−1MVE(β̂r − β̂MVE), (14)

where β̂MVE and SMVE are estimates of β0 and Σ0, respectively, based on the
MVE method (See Rousseeuw & Van Zomeren 1990), and

T 2
MCD,r = (β̂r − β̂MCD)tS−1MCD(β̂r − β̂MCD), (15)

where β̂MCD and SMCD are estimates of β0 and Σ0, respectively, based on the
MCD method (See Rousseeuw & Van Zomeren 1990).

Although β̂r is distributed asymptotically normal we do not know its sampling
distribution. Therefore, we used simulations to approximate the upper control
limit (UCL). For simplicity we consider that the number of components is p =
2, 3, 4, 5 and 8. For a chart given we generated m independent samples. For each
sample we generated a set of n independent vector observations Y1, . . . ,Yn, where
Yi ∼ Dirichletp(ai1, ai2, . . . , aip), i = 1 . . . , n. The parameters of the Dirichlet
distribution, aij with j = 1, 2, . . . , p, are described by aij = exp(β0j +β1jXi) with
β01 = 2, β11 = 3, β02 = 1, β12 = 4, β03 = 3, β13 = −2, β04 = 0, β14 = 2,
β05 = −0.1, β15 = 2.5, β06 = 1, β16 = 2, β07 = 3, β17 = 2, β08 = 1 and β18 = 2.5.
The values of the regressor variable (X) can be random but we have assumed
that X takes fixed values, X = 0.1, 0.2, . . . , 0.9. For the m samples generated we
calculate the maximum T 2, denoted by T 2

max. This process was then repeated
10,000 times which resulted in 10,000 T 2

max values. The 95th quantile of these
T 2
max values was then taken as an estimate of the UCL for that chart.
For each of the proposed charts, we ran the simulations for m = 30, 60 and

90 samples with a prespecified type I error probability α = 0.05. The UCLs
obtained are shown in Table 1. We used the R language to run the simulations, in
particular we used the DirichletReg-package written by Maier (2011) to calculate
the estimates of βr. We also used the functions cov.mve and cov.mcd from the
MASS-package to calculate β̂MVE and SMVE in equation (14), and β̂MCD and
SMCD in equation (15).

If a process is modeled using the multivariate normal regression, the response
variables can take any real value, (Noorossana, Eyvazian, Amiri & Mahmoud
2010). However, this assumption is not met here, because the response variables
for compositional data are always positive and range only from 0 to 100, or any
other constant. Therefore, the use of the multivariate normal regression in this
kind of processes can produce invalid results. For more details see Aitchison (2003)
and Pawlowsky-Glahn & Egozcue (2006).

4. The Performance Evaluation

In this section we compare the performance of the proposed methods for Phase
I, monitoring of compositional data, through linear regression profiles in terms of
the overall probability of a signal under step and drift shift and outliers. The
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Table 1: Values of simulated UCL for the proposed control charts with α = 0.05
Number Total
of components samples T 2

Usual T 2
SD T 2

Int T 2
MV E T 2

MCD

(p) (m)
30 20.941 24.610 87.627 212.263 246.696

2 60 35.680 37.925 117.805 154.041 164.521
90 47.359 48.993 139.634 163.259 162.749
30 19.505 26.127 56.683 161.556 362.290

3 60 30.644 34.035 75.480 102.306 124.628
90 38.699 41.184 87.004 96.878 103.855
30 19.905 30.427 49.128 186.489 799.903

4 60 28.324 32.960 58.086 87.104 139.786
90 32.124 35.336 60.897 70.180 81.265
30 20.815 37.366 47.412 253.064 1820.518

5 60 28.870 35.098 55.731 95.451 204.833
90 32.973 37.308 60.638 72.088 92.750
30 24.550 74.952 54.258 710.379 11972.690

8 60 33.487 47.861 61.769 175.620 521.925
90 38.155 46.609 65.442 103.688 187.424

signal probability is defined as the probability that at least one sample, of a total
of m samples, is considered to be out of control. When the process is out of
control, a large signal probability indicates better ability of a control chart to
detect the out-of-control process. However, when the process is in control, a large
signal probability actually works against a control chart since it gives a higher
false alarm rate (See Yeh et al. 2009).

We have that
√
nvec(B̂−B)

a∼ Nkp(0,K(B)
−1

). Following equations (6), (8),
(9) and (10), the information matrix K(B) depends on the unknown parameters of
the regression and of the values assigned to the regressor variable. For simplicity,
we consider that p = 2. So, for β0 = c(2, 3, 1, 4) and X = 0.1, 0.2, . . . , 0.9 we have
that

Σ0 = K(B)
−1

=


σ2
β01

σβ01β11
σβ01β02

σβ01β12

σβ11β01
σ2
β11

σβ11β02
σβ11β12

σβ02β01
σβ02β11

σ2
β02

σβ02β12

σβ12β01
σβ12β11

σβ12β02
σ2
β12



=


1.0322 −1.6290 0.9807 −1.5621

−1.6290 3.2702 −1.5615 3.1763

0.9807 −1.5615 1.0041 −1.5926

−1.5621 3.1763 −1.5926 3.2218


Let ∆ = (δ1σβ01 , δ2σβ11 , δ3σβ02 , δ4σβ12), where δj = 0, 1, 2, 3, j = 1, 2, 3, 4. If

βr changes from β0 to β1 = β0 + ∆, with ∆ 6= 0, the process is out-of-control.
The level of shifts in βr is described by the non-centrality parameter (ncp). The
non-centrality parameter measures the severity of a shift to the out-of-control
vector β1 from the in-control vector β0 and is defined by ncp = ∆tΣ−10 ∆ =
(β1 − β0)tΣ−10 (β1 − β0) (See Vargas (2003) and Yeh et al. (2009)).
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The out-of-control signal probabilities were calculated based on 5,000 simula-
tions, as the percentage of times the T 2

max exceeds the corresponding UCL.
For step shift or sustained shift, we generate a shift in the vector of parameters

of the regressions, β, from β0 to β1. The shift starts from the sample l, for
l = [m ∗ k] + 1, where [x] denotes the largest integer which is less or equal than
x and k = 1

4 ,
1
2 and 3

4 . So, for k = 1
2 the first half of the samples is in-control,

while the second half is in the out-of-control state. The signal probabilities for
each control chart, when m = 30, were calculated through simulation.

Table 2: Signal probabilities when the intercept and the slope of the profile correspond-
ing to the second component have not changed.

ncp δ1 δ2 δ3 δ4 T 2
Usual T 2

SD T 2
Int T 2

MV E T 2
MCD

0 0 0 0 0 0.0492 0.0494 0.0464 0.0452 0.0488
175.0568 1 0 0 0 0.0114 0.8052 0.8966 0.0312 0.0346
700.2274 2 0 0 0 0.0134 0.8976 1 0.0264 0.032
1575.512 3 0 0 0 0.0146 0.9078 1 0.0294 0.0328
297.7102 0 1 0 0 0.0086 0.843 0.9912 0.0234 0.031
910.8436 1 1 0 0 0.0102 0.8974 1 0.0284 0.031
1874.091 2 1 0 0 0.0092 0.8996 1 0.0256 0.0344
3187.452 3 1 0 0 0.0096 0.9144 1 0.025 0.0336
1190.841 0 2 0 0 0.009 0.9004 1 0.019 0.028
2242.051 1 2 0 0 0.0072 0.9142 1 0.0268 0.0322
3643.375 2 2 0 0 0.0056 0.9124 1 0.0222 0.029
5394.812 3 2 0 0 0.006 0.9058 1 0.03 0.0284
2679.391 0 3 0 0 0.0096 0.907 1 0.026 0.0328
4168.678 1 3 0 0 0.007 0.9064 1 0.0242 0.0294
6008.079 2 3 0 0 0.0046 0.8998 1 0.0256 0.0322
8197.593 3 3 0 0 0.0072 0.9016 1 0.0268 0.0338
6008.079 2 3 0 0 0.006 0.901 1 0.0262 0.033

Table 2 shows the signal probabilities of the five control charts considered for a
step shift occuring in l = [m/2] + 1 when the intercept and the slope of the profile
corresponding to the second component have not changed. When ncp = 0 the
signal probabilities for the T 2

Usual, T
2
SD, T

2
Int, T

2
MVE and T 2

MCD control charts are
close to 0.05. For other values of ncp, the signal probabilities of the T 2

Int control
chart are 1 o very near 1, showing an excellent performance to detect step shifts.

Figures 1 to 5 describe the signal probabilities of the T 2
Usual, T

2
SD, T

2
Int, T

2
MVE

and T 2
MCD control charts for a step shift occurring in three scenarios: the last

three quarters, the second half, and the last quarter of the 30 samples considered.
With exception of the T 2

Int control chart, the location of the step shift affects
the performance of the T 2 control charts considered. For example, the signal
probabilities decrease considerably when the shift stars in the half of the samples.
The effect is greater in the T 2

MVE and T 2
MCD control charts. These charts are

more powerful when the shifts occur at k = 1
4 and k = 3

4 .
For drift shifts, the first sample generated was in control, β1 = β0, and the

process parameter vector started to change from the second sample to β1, where
β1 = β0 + r−1

m−1(∆), with r = 2 . . . ,m and m = 30. Figure 6 shows the signal
probabilities found by simulation for the 256 possible values of ncp. We observe
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Figure 1: Signal probabilities of the T 2
Usual control chart for a step shift occurring in

l = [m ∗ k] + 1, with k = 1
4
(on the left), k = 2

4
(on the middle), and k = 3

4

(on the right), when the number of samples is m = 30.

that the T 2
SD, T

2
Int control charts have a good performance for detecting shifts

with trend.
In the scenario considering the presence of outliers, 5 of them were inserted

randomly in the m samples, with m = 30. They were generated from β1, where
β1 = β0+(∆). Figure 7 presents the signal probabilities calculated by simulations.
T 2
Int, T

2
MVE and T 2

MCD control charts have the best performance for detecting
outliers.

5. Example of Application

The concrete is a composite material that essentially consists of a mixture
of cement, water and aggregates, which is regularly used in infrastructure and
buildings construction (Li 2011). The aggregates are rock fragments named coarse
aggregate and sand particles called fine aggregate, which be derived from land- or
sea-based deposits, from gravel pits or hard-rock quarries, from sand dunes or river
courses. The aggregate occupies between 70% and 75% of the concrete volume and
affect its strength, durability, workability and cohesiveness. One aspect of interest
in the quality of the aggregate is the particle size distribution known as gradation
(Alexander & Mindess 2005).

In order to obtain the gradation of the aggregate, a series of standard sieves
are nested or stacked, one on top of another, with increasing aperture size from
bottom to top, and through which a aggregate sample is passed from top, usually
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Figure 2: Signal probabilities of the T 2
SD control chart for a step shift occurring in

l = [m ∗ k] + 1, with k = 1
4
(on the left), k = 2

4
(on the middle), and k = 3
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(on the right), when the number of samples is m = 30.
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Figure 3: Signal probabilities of the T 2
Int control chart for a step shift occurring in

l = [m ∗ k] + 1, with k = 1
4
(on the left), k = 2

4
(on the middle), and k = 3

4

(on the right), when the number of samples is m = 30.
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Figure 4: Signal probabilities of the T 2
MV E control chart for a step shift occurring in

l = [m ∗ k] + 1, with k = 1
4
(on the left), k = 2
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(on the right), when the number of samples is m = 30.
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Figure 5: Signal probabilities of the T 2
MCD control chart for a step shift occurring in

l = [m ∗ k] + 1, with k = 1
4
(on the left), k = 2

4
(on the middle), and k = 3

4

(on the right), when the number of samples is m = 30.
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Figure 6: Signal probabilities of drift shifts for five control charts: usual, successive
differences, intra-profile, MVE and MCD.

Figure 7: Signal probabilities of outliers for five control charts: usual, successive differ-
ences, intra-profile, MVE and MCD.
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aided by shaking or vibrating the sieves (Alexander & Mindess 2005, Lyons 2008).
Figure 8 shows a kind of machine used in the gradation process. The sieves labeled
as 200, 100, 50, 30, 16, 8, 4, and P3, have the hole sizes of 0.075 mm, 0.149 mm,
0.297 mm, 0.595 mm, 1.19 mm, 2.38 mm, 4.75 mm and 9.5 mm, respectively.
The gradation results are the percent of aggregate retained on each sieve and the
fineness modulus, which measures the average particle size. This dimensionless
parameter is equal to sum of the percent of aggregate retained on each of sieve
divided by 100. A smaller fineness modulus indicates a finer aggregate and a higher
value represents a courser aggregate.

Figure 8: Series of sieves placed one above the other in order of size with the largest
sieve at the top.

In this work, 217 aggregate samples from a concrete manufacturing plant were
studied. The aggregate samples were daily tested during 31 weeks. The set of
daily observations obtained in a week is named weekly sample, therefore, 31 weekly
samples were considered. The proportion passing through of each sieve and the
fineness modulus were measured in each aggregate sample.

The components j = 1, 2, . . . , 8 are defined by the aggregate size retained
by each sieve. The proportion passing through the sieve j, j = 1, . . . , 8, is the
variable Yj . Each component corresponds to an aggregate with constant size
and the proportion of aggregate passing trough them is identified by the vec-
tor Y = (Y1, Y2, . . . , Y8). Figure 9 shows plots of the marginal frequencies of each
component for the aggregate samples. We observe that Y4, Y5 and Y7 are skewed,
which implies that Y does not have a multivariate normal distribution.

The weekly sample r, r = 1, . . . , 31, contains the daily observations (xir,Yir),
i = 1, . . . , n, with n = 7. The vectors Y1r, . . . ,Ynr are independent and Yir ∼
Dirichlet8(ai1, . . . , ai8). There is a relationship between the fineness modulus and
the proportion of aggregate passing through each sieve. Figures 10 and Figures
11 show these relationships for the components j = 1, 2, 3, 4, 5, 6, 7, 8 associated to
the sieves 200, 100, 50, 30, 16, 8, 4, and P3, respectively. A likelihood ratio test
(LRT) for each sample r, shows that the Dirichlet regression models are significant
at the 10%, so the null hypothesis H0 : β11 = β12 = · · · = β18 = 0 is rejected.
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Figure 9: Observed marginal frequencies Y1, Y2, . . . , Y8 of the individual components of
the aggregate gradings.
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Figure 10: Linear relationship between fineness modulus and the proportion of sand
passing through the sieves No 200, 100, 50 and 30.
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Through simulations we found the upper control limit for each T 2 control chart
proposed in the section (3). The T 2 control chart based on successive differences
suggests that the process does not present step and drift shifts, but the control
chart based on MVE detects the presence of outliers, see Figures 12 and 13.
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Figure 11: Linear relationship between fineness modulus and the proportion of sand
passing through the sieves No 16, 8, 4 and P3.

Although the engineers believed that the process was in-control, the intra-
profile control chart shows a lot of points outside the upper control limit, see
Figure 15. The usual T 2 control chart detects some of these points, see Figure 16.
Figure 17 describes the behaviour of the linear regressions associated with the first
sieve from the sample. This graph shows that the profile is not stable. The other
sieves have a similar behaviour. As a first result of this application, engineers
are reviewing and adjusting the process to ensure that the linear relationship
associated with each sieve is in-control.
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Figure 12: T 2 Control chart based on successive differences for the process of grading
of sand in a mine of a concrete manufacturing plant.

Figure 13: T 2 Control chart based on Minimum Volume Ellipsoid (MVE) for the pro-
cess of grading of sand in a mine of a concrete manufacturing plant.
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MCD for the process of grading of sand in a mine of a concrete manufac-

turing plant.
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Figure 15: T 2 Control chart based on intra-profile pooling for the process of grading of
sand in a mine of a concrete manufacturing plant.
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Figure 16: Usual T 2 control chart for the process of grading of sand in a mine of a
concrete manufacturing plant.
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Figure 17: Linear regressions for the first component of the sand gradation.

6. Conclusions

In this paper the control charting mechanisms discussed by Williams et al.
(2007) and Yeh et al. (2009) have been extended for monitoring compositional
data profiles in Phase I processes, whose response variable follows a Dirichlet
distribution. This methodology allows us monitoring the linear relationship be-
tween the parameters of a Dirichlet distribution and a set of explanatory variables,
and assess the stability of the parameters that characterize the studied regression
model.
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We used five Hotelling’s type T 2 control charts and compared their performance
for detecting step and drift shifts in the process parameters and outliers in the
studied profiles. Simulation procedures suggest that the T 2 control chart called
intra-profile pooling is an excellent tool in order to detect outliers in the profiles and
step and drift shifts in the parameters of the compositional data profile. The intra-
profile pooling T 2 control chart is based on the average of the sample covariance
matrices of the estimates of the parameters β characterizing the profile. The T 2

control chart based on the vector of successive differences of parameter estimates
is a good alternative for detecting step and drift shifts; while the T 2 control charts
based on robust estimates for the mean and covariance matrix, minimum volume
ellipsoid (MVE) and minimum covariance determinant (MCD) methods, are a
good option for detecting outliers.

We presented an example of application with real data of the proposed method-
ology, in order to control the quality of the aggregate gradation in the concrete.
The T 2 control chart based on successive differences suggests that the process is in-
control and does not present step and drift shifts, the control chart based on MVE
detects the presence of some outliers, and the intra-profile and usual T 2 control
charts show that the process is out-control. This methodology can be extended to
other processes with compositional data.

This paper constitutes an initial solution for monitoring compositional data
profiles. It would be worthwhile to study and compare the performance of other
control charts like the change point approach. Since the performance of the T 2

control charts deteriorates when number of parameters increases, it is needed more
research when the number of components in the response variable increase and/or
when the number of covariates increases. Reduction methods for multivariate data
or high dimensional methods need also future research.

When the process is out-of-control is important to identify the causes of the
anomaly in order to apply appropriate remedial measures. A future work can
implement diagnostic aids such as determining the parameters responsible for out-
of-control signal.

Finally, some methods for monitoring Dirichlet regression profiles in Phase II
can be developed.
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