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Abstract

In this article our objective is to evaluate the performance of different
measures of associations for hypothesis testing purposes. We have consid-
ered different measures of association (including some commonly used) in this
study, one of which is parametric and others are non-parametric including
three proposed modifications. Performance of these tests are compared un-
der different symmetric, skewed and contaminated probability distributions
that include Normal, Cauchy, Uniform, Laplace, Lognormal, Exponential,
Weibull, Gamma, t, Chi-square, Half Normal, Mixed Weibull and Mixed
Normal. Performances of these tests are measured in terms of power. We
have suggested appropriate tests which may perform better under different
situations based on their efficiency grading(s). It is expected that researchers
will find these results useful in decision making.

Key words: Measures of association, Non-Normality, Non-Parametric meth-
ods, Normality, Parametric methods, Power.

Resumen

En este articulo el objetivo es evaluar el desempeño de diferentes medi-
das de asociación para pruebas de hipótesis. Se consideran diferentes medi-
das, algunas paramétricas y otras no paramétricas, así como tres modifica-
ciones propuestas por los autores. El desempeño de estas pruebas se evalúa
considerando distribuciones simétricas, sesgadas y contaminadas incluyendo
la distribución normal, Cauchy, uniforme, Laplace, lognormal, exponencial,
Weibull, Gamma, t, Chi-cuadrado, medio normal, Weibull mezclada y nor-
mal mezclada. El desempeño se evalúa en términos de la potencia de los
tests. Se sugieren tests apropiados que tienen un mejor desempeño bajo
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diferentes niveles de eficiencia. Se espera que los investigadores encuentren
estos resultados útiles en la toma de decisiones.

Palabras clave: medidas de asociación, no normalidad, métodos no paramétri-
cos, métodos paramétricos, potencia.

1. Introduction

It is indispensable to apply statistical tests in almost all the observational and
experimental studies in the fields of agriculture, business, biology, engineering etc.
These tests help the researchers to reach at the valid conclusions of their studies.
There are number of statistical testing methods in literature meant for different
objectives, for example some are designed for association dispersion, proportion
and location parameter(s). Each method has a specific objective with a particular
frame of application. When more than one method qualifies for a given situation,
then choosing the most suitable one is of great importance and needs extreme
caution. This mostly depends on the properties of the competing methods for
that particular situation. From a statistical viewpoint, power is considered as an
appropriate criterion of selecting the finest method out of many possible ones. In
this paper our concern is with the methods developed for measuring and testing the
association between the variables of interest defined on a some population(s). For
the sake of simplicity we restrict ourselves with the environment of two correlated
variables i.e. the case of bivariate population(s).

The general procedural framework can be laid down as follows: Let we have two
correlated random variables of interest X and Y defined on a bivariate population
with their association parameter denoted by ρ. To test the hypothesis H0 : ρ = 0
(i.e. no association) vs. H1 : ρ 6= 0, we have a number of statistical methods
available depending upon the assumption(s) regarding the parent distribution(s).
In parametric environment the usual Pearson correlation coefficient is the most
frequent choice (cf. Daniel 1990) while in non parametric environment we have
many options. To refer the most common of these: Spearman rank correlation
coefficient introduced by Spearman (1904); Kendall’s tau coefficient proposed by
Kendall (1938); a modified form of Spearman rank correlation coefficient which
is known as modified rank correlation coefficient proposed by Zimmerman (1994);
three Gini’s coefficients based measures of association given by Yitzhaki (2003)
(two of which are asymmetrical measures and one is symmetrical). We shall re-
fer all the aforementioned measures with the help of notations given in Table 1
throughout this chapter.

This study is planned to investigate the performance of different measures of
association under different distributional environments. The association measures
covered in the study include some existing and some proposed modifications and
performance is measured in terms of power under different probability models.
The organization of the rest of the article is as: Section 2 provides description
of different existing measures of association; Section 3 proposes some modified
measures of association; Section 4 deals with performance evaluations of these
measures; Section 5 offers a comparative analysis of these measures; Section 6
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includes an illustrative example; Section 7 provides summary and conclusions of
the study.

Table 1: Notations.
rP The usual Pearson Product Moment Correlation Coefficient (cf. Daniel 1990)

proposed by Karl Pearson
rS Spearman Rank Correlation Coefficient (cf. Spearman 1904)
rM Modified Rank Correlation Coefficient (cf. Zimmerman 1994)
rg1 Gini Correlation Coefficient between X and Y (asymmetric) (cf. Yitzhaki 2003)
rg2 Gini Correlation Coefficient between Y and X (asymmetric) (cf. Yitzhaki 2003)
rg3 Gini Correlation Coefficient between X and Y or between Y and X (symmetric)

(cf. Yitzhaki 2003)
τ Kendall’s Tau (cf. Kendall 1938)

2. Measures of Association

In order to define and describe the above mentioned measures, let we have
two dependent random samples in the form of pairs (x1, y1), (x2, y2), . . . , (xn, yn)
drawn from a bivariate population (with the association parameter ρ) under all the
assumptions needed for a valid application of all the association measures under
consideration. The description of the above mentioned measures along with their
main features and their respective test statistics are provided below:

Pearson Product Moment Correlation Coefficient (rP ): It is a measure
of the relative strength of the linear relationship between two numerical variables
of interest X and Y . The mathematical definition for this measure (denoted by
rP ) is given as:

rP =
cov(X,Y )

SD(X)SD(Y )
(1)

where cov(X,Y ) refers to the covariance between X and Y ; SD(X) and SD(Y )
are the standard deviations of X and Y respectively.

The value of rP ranges from −1 to +1 implying perfect negative and positive
correlation respectively. A value of zero for rP means that there is no linear
correlation between X and Y . It requires the data on at least interval scale of
measurement. It is a symmetric measure that is invariant of the changes in location
and scale. Geometrically it is defined as the cosine of the angle between the
two regression lines (Y on X and X on Y ). It is not robust to the presence of
outliers in the data. To test the statistical significance of rP we may use the
usual t-test (under normality) and even under non-normality t-test may be a safe
approximation.

Spearman Rank Correlation Coefficient (rS): It is defined as the Pearson
product moment correlation coefficient between the ranked information of X and
Y rather than their raw scores. The mathematical definition for this measure
(denoted by rS) is given as:

rS = 1−
6
∑n

i=1D
2
i

n(n2 − 1)
(2)
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where n is the sample size;
∑n

i=1D
2
i is the sum of the squares of the differences

between the ranks of two samples after ranking the samples individually. It is a
non-parametric measure that lies between −1 to +1 (both inclusive) referring to
perfect negative and positive correlations respectively. The sign of rS indicates
the direction of relationship between the actual variables of interest. A value of
zero for rS means that there is no interdependency between the original variables.
It requires the data on at least ordinal scale. Using normal approximation, the
statistical significance of rS may tested using the usual t-test. Modified Rank Cor-
relation Coefficient (rM ): It is a modified version of Spearman rank correlation
coefficient based on transformations of X and Y into standard scores and then us-
ing the concept of ranking.The mathematical definition for this measure (denoted
by rM ) is given as:

rM = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(3)

where d is the difference between the ranks assigned transforming the values of X
and Y separately into standard scores, assigning the ranks to standard scores col-
lectively and then make separate groups of the ranks according to their respective
random samples. Now defines the difference between the ranks and

∑n
i=1 d

2
i in (3)

is the sum of the squares of the differences between the ranks.
It is also a non-parametric measure that may take zero value for no corre-

lation, positive value and negative values for negative and positive correlations
respectively, as in the above case. A value of −1 refers to the perfect correlations
among the variables of interest.

Gini Correlation Coefficient (Asymmetric and Symmetric): These
correlation measures are based on the covariance measures between the original
variables X and Y and their cumulative distribution functions FX(X) and FY (Y ).
We consider here three measures of association based on Gini’s coefficients (two
of which are asymmetrical measures and one is symmetrical). These measures of
association, denoted by rg1, rg2 and rg3, are defined as:

rg1 =
cov(X,FY (Y ))

cov(X,FX(X))
(4)

rg2 =
cov(Y, FX(X))

cov(Y, FY (Y ))
(5)

rg3 =
GXrg1 +GY rg2

GX +GY
(6)

where cov(X,FY (Y )) is the covariance between X and cumulative distribution
function of Y ; cov(Y, FX(X)) is the covariance between X and its cumulative
distribution function; cov(Y, FX(X)) is the covariance between Y and cumulative
distribution function of X; cov(Y, FY (Y )) is the covariance between Y and its cu-
mulative distribution function; GX = 4cov(X,FX(X)) and GY = 4cov(Y, FY (Y )).

In the above mentioned measures given in (4)-(6), rg1 and rg2 are the asymmet-
ric Gini correlation coefficients while rg3 is the symmetric Gini correlation coeffi-
cient. Here are some properties of Gini correlation coefficients (cf. Yitzhaki 2003):
The Gini coefficient is bounded, such that +1 ≥ rgjs ≥ −1(j, s = X,Y ). If X
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and Y are independent then; rg1 = rg2 = 0; rg2 is not sensitive to a monotonic
transformation of Y . In general, rgjs need not be equal to rgsj and they may even
have different signs. If the random variables Zj and Zs are exchangeable up to a
linear transformation, then rgjs = rgsj .

Kendall’s Tau (τ): It is a measure of the association between two measured
variables of interests X and Y . It is defined as the rank correlation based on the
similarity orderings of the data with ranked setup. The mathematical definition
for this measure (denoted by τ) is given as:

τ =
S

n(n−1)
2

(7)

where n is the size of sample and S is defined as the difference between the number
of pairs in natural and reverse natural orders. We may define S more precisely as
arranging the observations (Xi, Yi) (where i = 1, 2, . . . , n) in a column according
to the magnitude of the X ′s, with the smallest X first, the second smallest second
and so on. Then we say that the X ′s are in natural order. Now in equation (7),
S is equal to P − Q, where P is the number of pairs in natural order and Q is
number of pairs in reverse order of random variable Y .

This measure is non-parametric being free from the parent distribution. It takes
values between +1 and −1 (both inclusive). A value equal to zero indicates no
correlation, +1 means perfect positive and −1 means perfect negative correlation.
It requires the data on at least ordinal scale. Under independence its mean is zero
and variance 2(2n+ 5)/9n(n− 1).

3. Proposed Modifications

Taking the motivations from the aforementioned measures as given in equation
(1)-(7) we suggest here three modified proposals to measure association. In order
to define rM in equation (3), Zimmerman (1994) used mean as an estimate of
the location parameter to convert the variables into standard scores. Mean as a
measure of location is able to produce reliable results when data is normal or at
least symmetrical because it is highly affected by the presence of outliers as well
as due to the departure from normality. It means that the sample mean is not a
robust estimator and hence cannot give trustworthy outcomes. To overcome this
problem, we may use median and trimmed mean as alternative measures. The
reason being that in case of non-normal distributions and/or when outliers are
present in the data median and trimmed mean exhibit robust behavior and hence
the results based on them are expected to become more reliable than mean.

Based on the above discussion we now suggest here three modifications/propo-
sals to measure the association. These three proposals are modified forms of
Spearman rank correlation coefficient, namely i) trimmed mean rank correlation
by using standard deviation about trimmed mean; ii) median rank correlation
by using standard deviation about median; iii) median rank correlation by using
mean deviation about median. These three proposals are based on Spearman
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rank correlation coefficient in which we shall transform the variables into standard
scores (like in Zimmerman (1994) using the measures given in (i)-(iii) above. We
shall refer the three proposed modifications with the help of notations given in
Table 2 throughout this chapter.

Table 2: Notations Table for the Proposed Modifications.
rT Trimmed Rank Correlation Coefficient
rMM Median Rank Correlation Coefficient by using Mean Deviation about Median
rMS Median Rank Correlation Coefficient by using Standard Deviation about Median

Keeping intact the descriptions of equation (1)-(7) we now provide the expla-
nation of the three proposed modified measures. Before that we defined here few
terms used in the definitions of rT , rMM and rMS . These terms include Stan-
dard Deviation by using Trimmed Mean (denoted by SD1(X) and SD1(Y ) for X
and Y respectively), Mean Deviation about Median (denoted by MDM(X) and
MDM(Y ) for X and Y respectively) and Standard Deviation by using Median
(denoted by SD2(X) and SD2(Y ) for X and Y respectively). These terms are
defined as under:

SD1(X) =

√∑n
i=1(Xi − X̄t)2

n− 1
and SD1(Y ) =

√∑n
i=1(Yi − Ȳt)2
n− 1

(8)

In equation (8), Xt and Y t are the trimmed means of X and Y respectively.

MDM(X) =

∑n
i=1 |Xi − X̃|

n
and MDM(Y ) =

∑n
i=1 |Yi − Ỹ |

n
(9)

In equation (9), X̃ and Ỹ are the medians of X and Y respectively.

SD2(X) =

√∑n
i=1(Xi − X̃t)2

n− 1
and SD2(Y ) =

√∑n
i=1(Yi − Ỹt)2
n− 1

(10)

In equation (10), all the terms are as defined earlier.
Based on the above definitions we are now able to define rT , rM and rMS as

under:

rT = 1−
6
∑n

i=1 d
2
i,T

n(n2 − 1)
(11)

For equation (11); first we separately transform the values of random variables X
and Y into standard scores by using their respective trimmed means and standard
deviation about trimmed means of their respective random sample from (X,Y ),
assign the ranks to standard scores collectively and then separate the ranks ac-
cording to their random samples. Now in equation (11),

∑n
i=1 d

2
i,T is the sum of

the squares of the differences between the ranks. It is to be mentioned that we
have trimmed 2 values from each sample, so the percentages of trimming in our
computations are 33%, 25%, 20%, 17%, 13%, 10% and 7% of samples 6, 8, 10, 12,
16, 20 and 30 respectively.

rM = 1−
6
∑n

i=1 d
2
i,MS

n(n2 − 1)
(12)
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For equation (12); first we separately transform the values of random variables
X and Y into standard scores by using their respective medians and standard
deviation about medians of their respective random variables fromX and Y , assign
the ranks to standard scores collectively and then separate the ranks according to
their random samples. Now in equation (12)

∑n
i=1 d

2
i,MS is the sum of the squares

of the differences between the ranks.

rMM = 1−
6
∑n

i=1 d
2
i,MM

n(n2 − 1)
(13)

For equation (13); first we separately transform the values of random variables X
and Y into standard scores by using their respective medians and mean deviation
about medians of the respective random sample from (X,Y ), assign the ranks
to standard scores collectively and then separate the ranks according to their
random samples. Now in equation (13),

∑n
i=1 d

2
i,MM is the sum of the squares of

the differences between the ranks.

All the existing measures given in equation (1)-(7) and the proposed mod-
ifications given in equation (11)-(13) are nonparametric except the one given in
equation (1). The existing measures as given equation (1)-(7) have many attractive
properties in their own independent capacities (e.g. see Spearman 1904, Kendall
1938, Zimmerman 1994, Gauthier 2001, Yitzhaki 2003, Mudelsee 2003, Walker
2003, Maturi & Elsayigh 2010). But it is hard to find articles in the existing lit-
erature which compare the performance of these measures simultaneously under
different distributional environments. The same is one of the motivations of this
study. Additionally we plan to investigate the performances (in terms of power) of
our proposed modifications under different probability models and also compare
them with the existing counter parts. Although there are some other tests avail-
able to serve the purpose but the reason to choose these ten out of many is their
novelty.

There are different ways to use the information (such as ratio, interval, ordinal
and count) and each test has its own strategy to exploit this information. The tests
considered here cover almost all of these common approaches. Although the results
for the usual ones may be readily available but their comparisons in a broader frame
will provide useful and interesting results. Actually the main objective of this study
is to investigate the performance of these different methods/measures and see
which of these have optimal efficiency under different distributional environments
of the parent populations following line of action of Munir, Asghar & Riaz (2011).

This investigation would help us to grade the performance of these different
methods for measuring and testing the association parameter under different par-
ent situations. Consequently practitioners may take benefit out of it by picking
up the most appropriate measure(s) to reach at the correct decision in a given
situation. Practitioners generally prefer statistical measure(s) or method(s) which
has higher power and they use it for their research proposals (cf. Mahoney &
Magel 1996), so the findings of this research would be of great value for them for
their future studies.
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4. Performance Evaluations

Power is an important measure for the performance of a testing procedure.
It is the probability of rejecting H0 when it is false and it is the probability
that a statistical measure(s)/procedure(s) will lead to a correct decision. In this
section we intend to evaluate the power of the ten association measures under
consideration in this study and find out which of them have relatively higher
power(s) than the others under different parent situations. To calculate the power
of different methods of measuring and testing the association under study we have
followed the following procedure for power evaluations.

Let X and Y be the two correlated random variables referring to the two inter
dependent characteristics of interest from where we have a random sample of n
pairs in the form of (x1, y1), (x2, y2),. . . ,(xn, yn) from a bivariate population. To
get the desire level of correlation between X and Y the steps are listed as:

• Let X and Y be independent random variables and Y be a transformed
random variable defined as: Y = a(X) + b(W );

• The correlation between X and Y is given as: rXY = a√
a2+b2

, where a and
b are unknown constants;

• The expression for a in the form of b and rXY may be written as a = b(rXY )√
1−r2XY

,

• If b=1 then we have: a = rXY√
1−r2XY

, and by putting the desire level of corre-

lation in this equation we get the value of a;

• For the above mentioned values of a and b we can now obtain the variables
X and Y having our desired correlation level.

Hypotheses and Testing Procedures: For our study purposes we state the
null and alternative hypotheses as: H0 : ρ = 0 versus H1 i.e. ρ > 0. This is a
one sided version of the hypothesis that may be easily defined for two sided case.
It is supposed that the samples are drawn under all the assumptions needed for a
valid application of all the methods related with the association measures of this
study. We compute the values of our test statistics for association measures by
using all the ten methods for different choices of ρ (on positive side only because of
right sided alternative hypothesis) and calculate their chances of rejecting H0 by
comparing them with their corresponding critical values. These probabilities under
H0 refer to the significance level while under H1 this will be power of the test. It
is to be mentioned that to test the aforementioned H0 vs. H1, we have converted
all the coefficients of association (except Kendall’s tau) into the following statistic:

ta =
ra
√
n− 2√

1− r2a
(14)

where in equation (14), ta is the statistic of student t-distribution with n − 2
degrees of freedom (i.e. tn−2); ra is the correlation coefficient calculated by any of
the association methods of this study.
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Distributional Models: In order to cover the commonly used practical mod-
els of parent distributions, we have considered (in bivariate setup) Normal, Uni-
form, Laplace, Lognormal, Exponential, Weibull, Gamma, Half Normal, Mixed
Weibull, and Mixed Normal distributions as some representative parent distribu-
tions for our study. We also include Gamma, Exponential and Weibull distribu-
tions with outliers (contamination) in our study. For the choices of the distribu-
tions of X and Y , we have the following particular parameter selections to create
bivariate environments: N(0, 1) for Normal; U(0, 1) for Uniform; L(0.5, 3) for
Laplace; LN(0, 1) for Lognormal; Exp(0.5) for Exponential; W (1, 2) for Weibull;
G(1, 2) for Gamma; HN(0, 1) for Half Normal;W (0.5, 3) with probability 0.95 and
W (1, 2) with probability 0.05 for Mixed Weibull; N(0, 1) with probability 0.95 and
N(0, 400) with probability 0.05 for Mixed Normal; G(0.5, 3) with 5% outliers from
G(4, 10) for contaminated Gamma; W (1, 2) with 5% outliers from W (50, 100) for
contaminated Wiebull; exp(0.5) with 5% outliers from Exp(4) for contaminated
Exponential.

Computational Details of Experimentation: We have computed powers
of the ten methods of measuring and testing the association by fixing the sig-
nificance level at α using a simulation code developed in MINITAB. The critical
values at a given α are obtained from the table of tn−2 for all the measures given
in Equation ((1)-(7) and (11)-(13)) and their corresponding test statistics given
in Equation (14), except for Kendall’s coefficient given in Equation (7). For the
Kendall’s tau coefficient (τ) we have used the true critical values as given in Daniel
(1990). The reason being that for all other cases the approximation given in Equa-
tion (14) is able to work fairly good but for the Kendall’s tau coefficient it is not
the case (as we here observed in our computations). The change in shape of the
parent distribution demands an adjustment in the corresponding critical values.
This we have done by our simulation algorithm for these ten methods to achieve
the desired value of α. For different choices of ρ = 0, 0.25, 0.5 and 0.75 powers are
obtained with the help of our simulation code in MINITAB at α significance level.

We have considered thirteen representative bivariate environments mentioned
above for n = 6, 8, 10, 12, 16, 20, 30 at varying values of α. For these choices of n, α
we have run our MINITAB simulation code (developed for the ten methods under
investigation here) 10,000 times for power computations. The resulting power
values are given in the tables given in Appendix-A for all the thirteen probability
distributions and the ten methods under study for some selective choices from the
above mentioned values of n at α = 0.05. For the sake of brevity we omit the
results at other choices of α like 0.01 and 0.005.

5. Comparative Analysis

This section presents a comparative analysis of the existing and proposed as-
sociation measures. For ease in discussion and comparisons, the power values
mentioned above are also displayed graphically in the form of power curves for all
the aforementioned thirteen probability distributions by taking particular sample
sizes and ten methods of association for some selective cases. These graphs are
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shown in Figures 1-13 where different values of ρ = 0, 0.25, 0.5 and 0.75 are taken
on horizontal axis and the powers on vertical axis. Each figure is for a different
parent distribution with different sample sizes and contains the power curves of
all the ten methods. Labeling of the power curves in these figures is according to
the notations given in Tables 1 and 2.

It is advocated from the above power analysis (cf. Table A1-A13 and Figures
1-13) that:

• With an increase in the value of n and/or ρ, power efficiency of all the
association measures improves for all distributions.

• In general, Pearson correlation coefficient is superior to the Spearman rank
correlation, Kendall’s tau, modified rank correlation coefficient and proposed
methods in normal distribution. However in some cases of normal distribu-
tion Gini correlation coefficients work better than the Pearson correlation
coefficient.

• In non-normal distributions and in the case of outliers (contamination) the
Pearson correlation coefficient grant a smaller amount of power than Spear-
man rank correlation, modified rank correlation coefficient and proposed
methods except half normal, uniform, mixed normal and Laplace distribu-
tions. But Gini correlation coefficients rg1 and rg2 in general remain better
in terms of power than Pearson correlation coefficient.

• Among the three Gini correlation coefficients rg1 performs better than rg2
and rg3.

• The proposed three modifications grant improved power than the Spearman
correlation coefficient, in general, for all the distributional environments.
But in contaminated distributions the median rank correlation coefficient
by using mean deviation about median works better than modified rank
correlation coefficient for all sample sizes.

• Kendall’s tau has inferior power than that of the Spearman rank correlation
coefficient, modified rank correlation coefficient and the proposed methods.
In Weibull, Mixed Weibull and Lognormal distributions, Kendall’s tau has
superior amount of power than the Gini mean correlation coefficient rg2. But
for these three distributions, if the sample size is greater than ten Kendall’s
tau has superior power performance than the Pearson correlation coefficient
and Gini mean correlation coefficient rg3. In the outlier cases, if the sample
is moderate then Kendall’s tau is superior to Pearson correlation coefficient
and the two Gini mean correlation coefficients (rg2 and rg3) for moderate
sample sizes.

• From the analysis above, it is pertinent to note that the Gini mean correlation
coefficient rg1 is the best choice for measuring and testing the association
than Spearman rank correlation coefficient, Kendall’s tau, modified rank
correlation coefficient and the proposed methods in normal, non-normal and
contaminated distributions.
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• The powers of rMM , rMS , rT and rM slightly differ from each others in all
the distributional environments. It means that these are close competitors
to each other.

It is to be mentioned that other testing measures may also be evaluated on the
similar lines but we think that the options we have chosen cover the most practical
ones.
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Figure 1: Normal distribution (n = 20).
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Figure 2: Weibull distribution (n = 8).
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Figure 3: Mixed Weibull distribution (n = 8).
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Figure 4: Lognormal distribution (n = 8).
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Figure 5: Exponential distribution (n = 16).
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Figure 6: Gamma distribution (n = 16).

6. Numerical Illustration

Besides the evidence in terms of statistical efficiency it is very useful to test
a technique on some real data for their practical implications. For this purpose
we consider here a data set from Zimmerman (1994) on two variables of scores.
The data set is given in Table 3 which contains eight pair of scores as reported by
Zimmerman (1994).
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Table 3: Eight pairs of Scores.
Pair#

1 2 3 4 5 6 7 8
Scores X 3.02 15.7 9.88 20.53 17.1 18.15 17.52 1.7

Y 43.02 52.84 54.25 57.99 52.35 47.4 55.37 49.52

We state our null hypothesis as: There is no association between the two
variables (i.e. H0 : ρ = 0) versus the alternative hypothesis H1 : ρ > 0. By fixing
the level of significance at α = 0.05, we apply all the ten methods and see what
decisions they grant for the data set given in Table 3. The values of test statistic
and their corresponding decisions are given in Table 4. The critical value used are:
0.571 for Kendall’s tau and 1.94 for all the other tests.

Table 4: Values of the test statistics tjourn and their corresponding decisions.
tP tS tM tT tMS

1.96 1.41 1.95 1.95 1.45
(Reject H0) (Don’t reject H0) (Reject H0) (Reject H0) (Don’t reject H0)

tMM tg1 tg2 tg3 τ

1.4 1.91 1.52 1.74 0.36
(Don’t reject H0) (Don’t reject H0) (Don’t reject H0) (Don’t reject H0) (Don’t reject H0)

It is obvious from the analysis of Table 4 that tP , tM and tT reject H0 while
all others do not reject H0. This is, in general, in accordance in the findings of
Section 3. We may, therefore, sum up that this study will be of great use for the
practitioners and researchers who make use of these measures frequently in their
research projects.
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Figure 7: Exponential distribution with outliers (n = 30).

7. Summary and Conclusions

This study has evaluated the performance of different association measures
including some existing and few newly suggested modifications. One of these
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measures is parametric and the others non-parametric ones. Performance evalua-
tions (in terms of power) and comparisons are carried out under different symmet-
ric, skewed and contaminated probability distributions including Normal, Cauchy,
Uniform, Laplace, Lognormal, Exponential, Weibull, Gamma, t, Chi-square, Half
Normal, Mixed Weibull and Mixed Normal.

Power evaluations of this study revealed that in normal distribution the Pear-
son correlation coefficient is the best choice to measure association. Further we
have observed that the Pearson correlation coefficient and Gini’s correlation coef-
ficients (rg2 and rg3) have superior power performances than the Spearman rank
correlation, The modified rank correlation and the proposed correlation coefficients
for symmetrical and low peaked distributions. But in non-symmetrical and high
peaked distributions the Spearman rank correlation, modified rank correlation and
the proposed correlation coefficients worked with supreme power than the Pearson
correlation coefficient and the two Gini’s correlation coefficients (rg2 and rg3).

In contaminated distributions, rMM exhibited better performance than the
modified rank correlation coefficient. The Gini’s correlation coefficient (rg1) per-
formed better than the Spearman rank correlation, modified rank correlation,
Kendall’s tau and the proposed correlation coefficie nts in symmetrical, asym-
metrical, low peaked, highly peaked and contaminated distributions.
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Figure 8: Weibull distribution with outliers (n = 30).
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Figure 9: Gamma distribution with outliers (n = 30).
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Figure 10: Halfnormal distribution (n = 8).
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Figure 11: Uniform distribution (n = 8).
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Figure 12: Mixed Normal distribution (n = 8).

Acknowledgments

The authors are thankful to the anonymous reviewers for their valuable com-
ments on the previous version of the article. The author Muhammad Riaz is
indebted to King Fahd University of Petroleum and Minerals, Dhahran, Saudi
Arabia for providing excellent research facilities under project #IN111059.

Revista Colombiana de Estadística 37 (2014) 1–24



16 Muhammad Riaz, Shahzad Munir & Zahid Asghar

0.80

1.00 rP

rM

rS

rT

rMS

rMM

Laplace distribution (n=8)

0.00

0.20

0.40

0.60

0.00 0.25 0.50 0.75

P
ow

er

Population correlation

rMM

rg2

rg1

rg3

τ

Figure 13: Laplace distribution (n = 8).
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Appendix

Table A1: Probability of rejecting the null hypothesis of independence for N(0, 1).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0478 0.0476 0.0431 0.0461 0.0528 0.0525 0.059 0.0589 0.0526 0.054
0.25 0.1236 0.1131 0.104 0.1126 0.1206 0.1234 0.1366 0.1362 0.1264 0.0761
0.5 0.2772 0.2262 0.2211 0.2343 0.246 0.2511 0.2894 0.292 0.274 0.0755
0.75 0.6096 0.4606 0.4917 0.5049 0.5219 0.5264 0.5681 0.5653 0.5669 0.161

8 0 0.0457 0.046 0.0489 0.0498 0.0521 0.0511 0.0555 0.0597 0.0528 0.0603
0.25 0.1458 0.1315 0.1354 0.1409 0.1414 0.1402 0.1639 0.1667 0.1595 0.0974
0.5 0.3795 0.3067 0.3278 0.3328 0.3345 0.333 0.3866 0.3893 0.3813 0.2339
0.75 0.7702 0.6406 0.6723 0.6752 0.6745 0.6751 0.75 0.7429 0.7509 0.5562

10 0 0.0489 0.0524 0.0512 0.0503 0.0522 0.0523 0.0619 0.0631 0.0584 0.0496
0.25 0.1773 0.1711 0.1669 0.1693 0.1674 0.1669 0.1958 0.1946 0.188 0.0889
0.5 0.4613 0.4096 0.4115 0.412 0.4118 0.4109 0.4585 0.4607 0.4544 0.2577
0.75 0.8633 0.7992 0.7995 0.8014 0.8001 0.7991 0.8508 0.8508 0.8548 0.637

12 0 0.0503 0.0475 0.0485 0.0474 0.0476 0.0478 0.0565 0.0568 0.0519 0.0653
0.25 0.1909 0.1805 0.184 0.1826 0.1822 0.1826 0.2129 0.2148 0.2086 0.1274
0.5 0.5395 0.473 0.487 0.4876 0.4829 0.483 0.5405 0.5401 0.5393 0.3742
0.75 0.9262 0.8691 0.8795 0.8816 0.8794 0.8801 0.9121 0.9119 0.9139 0.8003

16 0 0.0493 0.0514 0.0507 0.0502 0.0511 0.0496 0.0585 0.0599 0.056 0.0536
0.25 0.2448 0.2208 0.2257 0.2235 0.2238 0.2247 0.2519 0.2495 0.2424 0.1333
0.5 0.6613 0.6 0.6129 0.6114 0.6081 0.607 0.654 0.6561 0.6551 0.4614
0.75 0.9753 0.9478 0.9528 0.9541 0.952 0.9508 0.9708 0.9715 0.9739 0.9039

20 0 0.0518 0.0532 0.0534 0.0526 0.0535 0.0532 0.0573 0.0561 0.0526 0.0553
0.25 0.2937 0.2635 0.268 0.2684 0.2686 0.2682 0.2964 0.2956 0.2923 0.1778
0.5 0.7562 0.6942 0.7088 0.709 0.7066 0.7061 0.7399 0.7384 0.7396 0.5822
0.75 0.994 0.9797 0.9839 0.9838 0.9832 0.9829 0.9889 0.9893 0.9886 0.965

30 0 0.0533 0.0517 0.0527 0.0528 0.0524 0.0514 0.056 0.0575 0.0549 0.0533
0.25 0.3839 0.3523 0.3583 0.3572 0.3564 0.3567 0.3938 0.3916 0.3935 0.251
0.5 0.8999 0.8576 0.861 0.8602 0.8598 0.8601 0.8875 0.885 0.8884 0.776
0.75 0.9998 0.9992 0.9992 0.999 0.999 0.9991 0.9988 1 1 0.9969
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Table A2: Probability of rejecting the null hypothesis of independence for W (0.5, 3).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0513 0.0477 0.043 0.0482 0.051 0.0531 0.0494 0.0531 0.0448 0.0538
0.25 0.16 0.1933 0.1878 0.1989 0.2049 0.2115 0.1997 0.14 0.16 0.1427
0.5 0.2837 0.2925 0.3121 0.3219 0.3288 0.335 0.3131 0.2249 0.2487 0.2388
0.75 0.4355 0.3752 0.4311 0.44 0.4507 0.4552 0.4286 0.3268 0.3453 0.3585

8 0 0.0509 0.0489 0.0522 0.0536 0.0519 0.0527 0.0565 0.0576 0.0538 0.0597
0.25 0.1791 0.2545 0.2605 0.2648 0.265 0.269 0.265 0.1812 0.2199 0.2032
0.5 0.3244 0.3951 0.411 0.4169 0.4143 0.4202 0.4513 0.3266 0.3798 0.3473
0.75 0.5048 0.5342 0.5671 0.5674 0.569 0.5745 0.6195 0.4865 0.5286 0.5164

10 0 0.0499 0.0492 0.0473 0.0483 0.0494 0.0507 0.0556 0.0547 0.0494 0.0508
0.25 0.2027 0.3144 0.3017 0.3032 0.3022 0.3058 0.3513 0.2109 0.2713 0.2189
0.5 0.3684 0.4996 0.4978 0.4953 0.494 0.4969 0.5685 0.3771 0.4472 0.3948
0.75 0.578 0.6709 0.6759 0.6731 0.6777 0.6819 0.7339 0.563 0.6126 0.5753

16 0 0.0521 0.052 0.0517 0.0521 0.0529 0.0527 0.0571 0.0513 0.0455 0.0536
0.25 0.2435 0.4444 0.4507 0.4471 0.4517 0.4545 0.5226 0.2223 0.3333 0.3853
0.5 0.4877 0.6849 0.7042 0.6982 0.6984 0.703 0.7755 0.4373 0.5523 0.6457
0.75 0.7283 0.8592 0.8723 0.8696 0.8738 0.877 0.9175 0.6653 0.7432 0.8446

Table A3: Probability of rejecting the null hypothesis of independence for mixed
Weibull distribution (i.e. W (0.5, 3) with probability 0.95 and W (1, 2) with
probability 0.05.

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0568 0.0499 0.0474 0.0506 0.052 0.0549 0.0502 0.0521 0.0451 0.0534
0.25 0.1611 0.1856 0.1833 0.193 0.1998 0.2051 0.202 0.1383 0.165 0.1368
0.5 0.2867 0.2952 0.3147 0.3227 0.3284 0.3348 0.315 0.2318 0.254 0.2413
0.75 0.4322 0.3732 0.4342 0.4438 0.4533 0.4578 0.4361 0.334 0.3576 0.3584

8 0 0.0471 0.0448 0.0497 0.05 0.05 0.0497 0.0553 0.0555 0.0533 0.0611
0.25 0.1673 0.2466 0.2534 0.2537 0.2548 0.2589 0.279 0.1857 0.2342 0.1969
0.5 0.3305 0.3914 0.4054 0.4104 0.4095 0.4144 0.4315 0.3224 0.3663 0.3437
0.75 0.5141 0.5437 0.5708 0.5739 0.5767 0.5808 0.6135 0.4904 0.5297 0.52

10 0 0.05 0.0526 0.0506 0.0528 0.0515 0.0541 0.0527 0.0543 0.0465 0.0483
0.25 0.1983 0.3191 0.3127 0.3103 0.3117 0.3176 0.3426 0.2051 0.2635 0.2139
0.5 0.3854 0.4847 0.4867 0.4837 0.4885 0.4932 0.5607 0.369 0.4396 0.396
0.75 0.5862 0.6624 0.6711 0.6672 0.6728 0.676 0.7339 0.5531 0.6077 0.5861

16 0 0.051 0.0457 0.0472 0.0466 0.0462 0.0456 0.0583 0.0547 0.046 0.0519
0.25 0.2387 0.4488 0.4536 0.4503 0.4486 0.4547 0.5263 0.2328 0.3441 0.3707
0.5 0.4906 0.6933 0.7076 0.7015 0.7045 0.7093 0.7749 0.428 0.5459 0.6325
0.75 0.7362 0.8507 0.8655 0.8603 0.8626 0.8643 0.9175 0.6653 0.7331 0.8411

Revista Colombiana de Estadística 37 (2014) 1–24



On the Performance Evaluation of Different Measures of Association 19

Table A4: Probability of rejecting the null hypothesis of independence for LG(5, 4).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0513 0.0521 0.0468 0.0539 0.0523 0.0555 0.0561 0.0531 0.0554 0.0555
0.25 0.1927 0.2067 0.2043 0.2131 0.2184 0.2252 0.2488 0.1686 0.2066 0.1519
0.5 0.3033 0.3 0.3196 0.3316 0.3356 0.436 0.3476 0.2504 0.2833 0.2481
0.75 0.4154 0.3758 0.4358 0.4405 0.4431 0.449 0.4375 0.336 0.358 0.3553

8 0 0.0515 0.0452 0.0473 0.0487 0.0485 0.0484 0.0537 0.0483 0.05 0.0597
0.25 0.2235 0.2651 0.2705 0.2753 0.2762 0.28 0.279 0.1882 0.2371 0.2179
0.5 0.3433 0.3946 0.4118 0.4135 0.4135 0.4171 0.4406 0.31 0.3635 0.3604
0.75 0.4882 0.5165 0.545 0.5473 0.5492 0.5551 0.5666 0.4393 0.4736 0.4992

10 0 0.0549 0.0514 0.0513 0.0523 0.0512 0.0514 0.0523 0.0503 0.0504 0.0457
0.25 0.2565 0.3379 0.3316 0.3321 0.3294 0.3338 0.3494 0.217 0.2853 0.2351
0.5 0.4089 0.5066 0.5015 0.4991 0.5056 0.5062 0.5136 0.3543 0.419 0.4072
0.75 0.5591 0.6546 0.6476 0.6455 0.6548 0.6576 0.665 0.496 0.5441 0.5821

16 0 0.0538 0.0495 0.0495 0.0501 0.0499 0.0487 0.0511 0.0526 0.0475 0.0478
0.25 0.2884 0.4856 0.4827 0.4785 0.4807 0.4872 0.544 0.2385 0.3549 0.4272
0.5 0.4801 0.696 0.6899 0.6898 0.6959 0.7022 0.7388 0.3854 0.4914 0.6813
0.75 0.6492 0.8412 0.8389 0.838 0.8424 0.8457 0.867 0.567 0.6269 0.844

Table A5: Probability of rejecting the null hypothesis of independence for Exp(0.5).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0502 0.0504 0.0464 0.0492 0.0539 0.0555 0.0573 0.057 0.0496 0.0572
0.25 0.1162 0.1328 0.1245 0.1327 0.1414 0.1458 0.1617 0.1477 0.1407 0.0869
0.5 0.2613 0.2611 0.262 0.2714 0.2849 0.2929 0.3047 0.2758 0.2761 0.1777
0.75 0.5209 0.4224 0.4594 0.4731 0.4895 0.493 0.5205 0.4753 0.486 0.361

8 0 0.0508 0.0493 0.0507 0.0516 0.0541 0.0549 0.0533 0.0563 0.0535 0.0614
0.25 0.1488 0.1613 0.1671 0.1702 0.1729 0.1725 0.1852 0.163 0.1664 0.1174
0.5 0.3574 0.3521 0.3675 0.3731 0.3737 0.3779 0.4103 0.3471 0.367 0.2724
0.75 0.6692 0.6099 0.6427 0.6435 0.6456 0.6465 0.6928 0.6325 0.6553 0.5422

10 0 0.0507 0.0564 0.0543 0.0544 0.0548 0.0552 0.0537 0.0571 0.0492 0.0472
0.25 0.1535 0.2072 0.2001 0.2003 0.1969 0.1996 0.2165 0.1814 0.1891 0.1163
0.5 0.3948 0.4487 0.4491 0.4479 0.4443 0.4472 0.5066 0.4201 0.4526 0.3124
0.75 0.6721 0.7347 0.7431 0.7436 0.7427 0.7447 0.8005 0.718 0.7495 0.6182

16 0 0.05 0.0523 0.0505 0.051 0.0527 0.0522 0.0566 0.0556 0.0478 0.0479
0.25 0.2296 0.294 0.2957 0.2947 0.2932 0.2942 0.3348 0.2438 0.2771 0.1943
0.5 0.5962 0.6413 0.6595 0.6576 0.6527 0.652 0.7324 0.5731 0.6404 0.535
0.75 0.9189 0.9106 0.9218 0.9212 0.9188 0.919 0.9565 0.8875 0.9179 0.877
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Table A6: Probability of rejecting the null hypothesis of independence for G(1, 2).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.049 0.0514 0.0461 0.0495 0.0545 0.0565 0.0563 0.0554 0.0484 0.0569
0.25 0.1209 0.131 0.1251 0.1327 0.1417 0.1455 0.1436 0.1318 0.1268 0.0912
0.5 0.2666 0.259 0.2619 0.2729 0.72874 0.295 0.298 0.2684 0.2701 0.187
0.75 0.5131 0.4271 0.4703 0.4823 0.4977 0.502 0.5074 0.4661 0.4753 0.3585

8 0 0.0513 0.0509 0.0547 0.0577 0.0574 0.0571 0.0585 0.0582 0.0543 0.0612
0.25 0.139 0.1581 0.1613 0.1659 0.1702 0.1708 0.195 0.1695 0.1703 0.1182
0.5 0.3385 0.3423 0.3597 0.3649 0.3647 0.3689 0.4033 0.3493 0.3651 0.2536
0.75 0.6598 0.6051 0.6343 0.6392 0.6444 0.6426 0.7066 0.6459 0.6688 0.5309

10 0 0.0508 0.055 0.0524 0.0528 0.0522 0.0527 0.0518 0.0538 0.0476 0.0468
0.25 0.1611 0.2048 0.2035 0.2033 0.2017 0.2032 0.2199 0.1862 0.1938 0.117
0.5 0.4018 0.4441 0.4442 0.4457 0.4464 0.4499 0.5049 0.4112 0.449 0.3078
0.75 0.7492 0.7305 0.742 0.7394 0.7406 0.7393 0.8061 0.7278 0.7601 0.6269

16 0 0.0516 0.0496 0.0477 0.0483 0.0484 0.0494 0.0553 0.0546 0.0486 0.0514
0.25 0.2193 0.2928 0.3009 0.2967 0.2894 0.2953 0.3199 0.2348 0.2646 0.1985
0.5 0.5849 0.6523 0.6738 0.6679 0.664 0.667 0.7193 0.5561 0.6167 0.5366
0.75 0.9017 0.9074 0.9162 0.9165 0.9153 0.9153 0.9505 0.8787 0.9076 0.8734

Table A7: Probability of rejecting the null hypothesis of independence for contaminated
Exponential (i.e. exp(0.5) with 5% outliers from exp(4)).

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0512 0.0536 0.0458 0.05 0.0545 0.0569 0.0517 0.0528 0.0476 0.0519
0.25 0.1461 0.1431 0.135 0.1392 0.1483 0.1546 0.1565 0.1315 0.1367 0.0996
0.5 0.2881 0.2621 0.2681 0.2754 0.2905 0.2962 0.3026 0.2638 0.2725 0.1905
0.75 0.5212 0.429 0.4658 0.4762 0.4919 0.4964 0.497 0.4505 0.4626 0.3647

8 0 0.0507 0.0497 0.0499 0.0498 0.053 0.0535 0.0507 0.052 0.0521 0.0607
0.25 0.1676 0.17 0.1767 0.182 0.1801 0.1804 0.1985 0.1638 0.1766 0.1253
0.5 0.3504 0.3496 0.3652 0.3704 0.3694 0.3722 0.4112 0.3493 0.3758 0.2796
0.75 0.6112 0.5953 0.6266 0.6275 0.6269 0.6277 0.6665 0.5978 0.6231 0.5418

10 0 0.0509 0.052 0.0496 0.0504 0.0502 0.0506 0.0533 0.0523 0.0478 0.0436
0.25 0.1998 0.2257 0.2239 0.2208 0.2189 0.2208 0.2563 0.1967 0.2222 0.1264
0.5 0.4251 0.4579 0.4588 0.4582 0.4541 0.4566 0.5209 0.4263 0.4615 0.3227
0.75 0.7097 0.7281 0.7339 0.7323 0.7322 0.7346 0.777 0.6866 0.7178 0.621

12 0 0.0526 0.0527 0.0521 0.0522 0.0535 0.0555 0.0545 0.0578 0.0521 0.0606
0.25 0.2149 0.242 0.2507 0.252 0.2477 0.2461 0.2975 0.2045 0.2445 0.1945
0.5 0.483 0.5151 0.5264 0.5275 0.5234 0.5285 0.5991 0.4666 0.5158 0.4561
0.75 0.7649 0.7929 0.8016 0.7998 0.7979 0.8005 0.8574 0.7445 0.7793 0.7668

16 0 0.0544 0.0484 0.0509 0.0512 0.0497 0.049 0.0547 0.0567 0.0506 0.053
0.25 0.258 0.3191 0.321 0.3197 0.3157 0.3191 0.3685 0.2446 0.2998 0.215
0.5 0.5678 0.6474 0.6584 0.6582 0.6532 0.6545 0.7273 0.5415 0.611 0.556
0.75 0.8368 0.903 0.9067 0.9052 0.9066 0.91 0.941 0.8103 0.849 0.8692

20 0 0.0562 0.0523 0.051 0.0514 0.0514 0.0518 0.0583 0.0587 0.0518 0.0571
0.25 0.3111 0.373 0.3759 0.3729 0.3728 0.3772 0.4473 0.2821 0.3508 0.2895
0.5 0.6519 0.7378 0.7458 0.7445 0.7415 0.7459 0.8176 0.5943 0.677 0.6702
0.75 0.8862 0.9577 0.958 0.959 0.9574 0.9593 0.9776 0.8673 0.905 0.903

30 0 0.0523 0.0494 0.0488 0.0504 0.048 0.0493 0.0579 0.0561 0.0483 0.0512
0.25 0.3965 0.5011 0.508 0.5059 0.4997 0.5081 0.5882 0.314 0.4378 0.4151
0.5 0.7544 0.8872 0.8899 0.8895 0.8835 0.8889 0.935 0.6925 0.7935 0.8559
0.75 0.9281 0.993 0.9931 0.9931 0.9926 0.9936 0.9976 0.9129 0.9506 0.9927
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Table A8: Probability of rejecting the null hypothesis of independence for contaminated
Weibull (i.e. W (0.5, 3) with 5% outliers from W (50, 100)).

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0563 0.0495 0.046 0.0507 0.05 0.054 0.0546 0.0595 0.0515 0.0536
0.25 0.1961 0.2037 0.2032 0.2134 0.216 0.224 0.2388 0.155 0.1866 0.1477
0.5 0.3217 0.2982 0.3185 0.3313 0.334 0.3422 0.3358 0.2338 0.265 0.246
0.75 0.4379 0.377 0.4256 0.4351 0.4491 0.4536 0.4303 0.3343 0.3538 0.3604

8 0 0.053 0.0472 0.0537 0.0558 0.055 0.0559 0.052 0.0513 0.051 0.0621
0.25 0.2091 0.2595 0.2674 0.2699 0.2681 0.2715 0.2878 0.1903 0.2486 0.2158
0.5 0.3449 0.3958 0.4105 0.412 0.4158 0.4193 0.4391 0.3224 0.3734 0.3559
0.75 0.4918 0.5282 0.5584 0.5593 0.562 0.5642 0.5971 0.4593 0.5004 0.5103

10 0 0.056 0.0529 0.0543 0.0545 0.0536 0.0542 0.0546 0.05 0.0468 0.0439
0.25 0.2245 0.3157 0.3159 0.3144 0.3178 0.3194 0.348 0.2076 0.278 0.2278
0.5 0.3897 0.4948 0.4944 0.4923 0.4935 0.499 0.5287 0.3585 0.4245 0.4066
0.75 0.5662 0.6507 0.6523 0.649 0.6548 0.6575 0.6933 0.52 0.5715 0.5827

12 0 0.0543 0.047 0.0494 0.0486 0.0485 0.0487 0.0541 0.0526 0.0499 0.0616
0.25 0.2444 0.3695 0.3706 0.3651 0.3703 0.3758 0.4141 0.2037 0.291 0.3282
0.5 0.4294 0.5665 0.5735 0.5709 0.5747 0.5803 0.6293 0.3733 0.458 0.5457
0.75 0.632 0.7293 0.7405 0.7376 0.7445 0.7495 0.7476 0.542 0.573 0.7277

16 0 0.0551 0.0473 0.0486 0.048 0.046 0.0465 0.0583 0.0556 0.0466 0.051
0.25 0.2573 0.474 0.4759 0.4675 0.4748 0.4796 0.5768 0.2373 0.3601 0.403
0.5 0.4808 0.6826 0.6908 0.6864 0.6938 0.6978 0.7853 0.427 0.5396 0.6537
0.75 0.6946 0.8457 0.8518 0.8478 0.8587 0.8609 0.909 0.617 0.595 0.8397

20 0 0.0564 0.0494 0.0478 0.0467 0.0483 0.0478 0.0561 0.0553 0.0421 0.0524
0.25 0.2922 0.5503 0.5525 0.5436 0.5526 0.5592 0.6545 0.2324 0.3813 0.5066
0.5 0.5422 0.7837 0.7879 0.783 0.7933 0.7966 0.855 0.4396 0.5745 0.7711
0.75 0.7668 0.9111 0.9201 0.914 0.921 0.9232 0.9549 0.6459 0.7369 0.9212

30 0 0.0536 0.0489 0.0514 0.0507 0.0506 0.0508 0.0587 0.0591 0.0471 0.0526
0.25 0.3259 0.7257 0.7253 0.7191 0.7315 0.7364 0.8438 0.2616 0.4875 0.6984
0.5 0.6594 0.9165 0.919 0.9132 0.9253 0.9272 0.9643 0.5166 0.7088 0.925
0.75 0.8675 0.9824 0.9837 0.9825 0.9862 0.9868 0.9944 0.751 0.8554 0.9874
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Table A9: Probability of rejecting the null hypothesis of independence for contaminated
Gamma (i.e. G(0.5, 3) with 5% outliers from G(4, 10)).

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0558 0.0511 0.0441 0.0488 0.0517 0.0532 0.058 0.0566 0.0505 0.059
0.25 0.19 0.1675 0.1591 0.1692 0.1753 0.1797 0.1523 0.1316 0.129 0.125
0.5 0.3134 0.273 0.282 0.2907 0.2992 0.3073 0.2931 0.2613 0.2716 0.2153
0.75 0.4823 0.3927 0.444 0.4511 0.459 0.4694 0.5315 0.5214 0.522 0.3621

8 0 0.0529 0.0468 0.0469 0.0508 0.0511 0.0513 0.052 0.0484 0.049 0.0568
0.25 0.2071 0.2201 0.2256 0.2268 0.2282 0.2306 0.2465 0.181 0.2228 0.1691
0.5 0.3542 0.3778 0.3964 0.4007 0.3973 0.3997 0.4075 0.3271 0.361 0.3331
0.75 0.5516 0.5551 0.5834 0.5872 0.5885 0.5828 0.604 0.5069 0.5346 0.5147

10 0 0.05 0.0516 0.0511 0.0506 0.0505 0.0506 0.0542 0.0567 0.055 0.0451
0.25 0.2311 0.2757 0.2692 0.2698 0.2682 0.2727 0.3208 0.2124 0.2766 0.1862
0.5 0.4032 0.4814 0.4774 0.4768 0.4736 0.4796 0.5083 0.3796 0.4294 0.3687
0.75 0.6091 0.6786 0.683 0.6836 0.6855 0.6884 0.7269 0.5859 0.6264 0.5994

12 0 0.0537 0.0492 0.0497 0.0523 0.0488 0.0495 0.0567 0.0563 0.056 0.0608
0.25 0.2629 0.3188 0.3159 0.3134 0.312 0.3142 0.3794 0.2291 0.3031 0.2638
0.5 0.4416 0.534 0.5377 0.533 0.5336 0.5404 0.6092 0.4245 0.4915 0.5029
0.75 0.6671 0.7588 0.7627 0.7605 0.7649 0.7715 0.8115 0.63 0.6743 0.7449

16 0 0.0512 0.048 0.0465 0.0475 0.0473 0.047 0.0583 0.0577 0.0549 0.0557
0.25 0.3053 0.4014 0.3947 0.391 0.3895 0.3965 0.4578 0.2491 0.3418 0.3181
0.5 0.5198 0.6707 0.6731 0.6677 0.6677 0.6781 0.7086 0.4612 0.5372 0.613
0.75 0.7337 0.8729 0.8735 0.8728 0.8705 0.878 0.909 0.686 0.7425 0.8595

20 0 0.0543 0.0529 0.0525 0.054 0.053 0.052 0.0552 0.058 0.05 0.0533
0.25 0.3422 0.4829 0.472 0.4699 0.4691 0.4771 0.517 0.2521 0.3698 0.4049
0.5 0.5784 0.7569 0.7588 0.7547 0.752 0.7604 0.7905 0.4822 0.578 0.7328
0.75 0.7558 0.9349 0.9339 0.9332 0.932 0.9371 0.9521 0.7193 0.7757 0.9307

30 0 0.0537 0.0476 0.0516 0.0505 0.0522 0.0513 0.0578 0.0599 0.0436 0.0503
0.25 0.4102 0.6268 0.6133 0.6109 0.6127 0.6239 0.6714 0.2853 0.4545 0.581
0.5 0.6641 0.9085 0.9049 0.9024 0.9024 0.9096 0.9171 0.5486 0.6815 0.9059
0.75 0.8317 0.9894 0.9891 0.9887 0.9886 0.9909 0.992 0.769 0.8385 0.9898
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Table A10: Probability of rejecting the null hypothesis of independence for HN(0, 1).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0527 0.055 0.0474 0.05 0.0572 0.0569 0.0547 0.0587 0.0502 0.0489
0.25 0.1081 0.1107 0.1053 0.1129 0.1219 0.1241 0.1279 0.1255 0.1125 0.0719
0.5 0.2726 0.2383 0.2354 0.245 0.2601 0.2619 0.2794 0.2628 0.2608 0.1603
0.75 0.5664 0.4319 0.4686 0.4788 0.4972 0.5033 0.5393 0.5163 0.518 0.3526

8 0 0.0501 0.0476 0.0477 0.0488 0.0507 0.0502 0.0523 0.0556 0.049 0.062
0.25 0.1431 0.1374 0.1417 0.1429 0.1478 0.1473 0.1498 0.1439 0.14 0.1034
0.5 0.3078 0.3244 0.3394 0.3422 0.35 0.3526 0.3495 0.3381 0.332 0.2437
0.75 0.7315 0.6296 0.6601 0.6632 0.6649 0.6655 0.7133 0.6879 0.7012 0.5427

10 0 0.0513 0.0565 0.0545 0.0541 0.056 0.0549 0.0538 0.0501 0.0481 0.0498
0.25 0.16 0.1748 0.1704 0.1715 0.1682 0.1666 0.1784 0.1693 0.1661 0.0946
0.5 0.4419 0.4141 0.4185 0.4176 0.4165 0.4168 0.455 0.4234 0.4336 0.2748
0.75 0.8075 0.7678 0.7817 0.7811 0.781 0.7791 0.8225 0.7998 0.8116 0.6435

16 0 0.0553 0.0483 0.0463 0.0465 0.0467 0.0475 0.0585 0.057 0.0535 0.0491
0.25 0.2478 0.2443 0.2473 0.2468 0.2452 0.2443 0.2796 0.2526 0.2591 0.1532
0.5 0.6544 0.6136 0.633 0.6339 0.624 0.6253 0.695 0.6351 0.6625 0.4969
0.75 0.9678 0.9398 0.9496 0.9486 0.9462 0.9465 0.9681 0.952 0.9603 0.896

Table A11: Probability of rejecting the null hypothesis of independence for U(0, 1).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0504 0.0472 0.0433 0.0452 0.0513 0.0503 0.0657 0.0623 0.0572 0.0607
0.25 0.1215 0.1108 0.1071 0.1127 0.1216 0.1228 0.1418 0.1389 0.1287 0.0726
0.5 0.2433 0.2029 0.2059 0.2118 0.2259 0.2276 0.2719 0.258 0.2523 0.1367
0.75 0.602 0.4506 0.4673 0.4821 0.5034 0.5062 0.5819 0.569 0.5703 0.3385

8 0 0.0472 0.0455 0.0458 0.0472 0.049 0.0492 0.058 0.0591 0.0577 0.0602
0.25 0.1422 0.127 0.1331 0.1344 0.1376 0.1375 0.1646 0.1541 0.1524 0.1009
0.5 0.3514 0.2906 0.3082 0.3103 0.3123 0.3136 0.3572 0.3501 0.3472 0.2165
0.75 0.7977 0.6619 0.6967 0.7004 0.7025 0.6989 0.766 0.7746 0.7777 0.5501

10 0 0.048 0.0502 0.0491 0.0506 0.0493 0.0481 0.0532 0.0546 0.0502 0.0464
0.25 0.1683 0.1614 0.1581 0.1577 0.1561 0.1564 0.1838 0.1834 0.1773 0.0844
0.5 0.4359 0.389 0.3944 0.3956 0.3928 0.3905 0.4428 0.4507 0.4433 0.244
0.75 0.9033 0.8261 0.8388 0.8403 0.8367 0.836 0.8745 0.8883 0.8876 0.6622

16 0 0.0494 0.0501 0.0469 0.0485 0.0492 0.0479 0.0542 0.0544 0.0529 0.0522
0.25 0.2319 0.2183 0.2167 0.2163 0.2135 0.2129 0.2358 0.2358 0.2308 0.1308
0.5 0.6541 0.585 0.605 0.604 0.5972 0.5959 0.6205 0.6535 0.6394 0.4423
0.75 0.9904 0.9732 0.9779 0.978 0.9759 0.9761 0.9818 0.9874 0.9871 0.9407
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Table A12: Probability of rejecting the null hypothesis of independence for Mixed Nor-
mal (i.e. N(0, 1) with probability 0.95 and N(0, 400 with probability 0.05).

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0522 0.0512 0.0471 0.0499 0.0537 0.0543 0.0662 0.0675 0.0628 0.0575
0.25 0.1265 0.1104 0.1037 0.1106 0.121 0.1222 0.1382 0.1362 0.1287 0.0784
0.5 0.2723 0.2205 0.2197 0.2307 0.2459 0.2487 0.2811 0.2837 0.2702 0.1593
0.75 0.611 0.4506 0.471 0.4927 0.5139 0.5145 0.5607 0.5623 0.5584 0.3533

8 0 0.0463 0.0468 0.0476 0.0493 0.0499 0.0499 0.0591 0.0607 0.0539 0.0586
0.25 0.142 0.1262 0.1309 0.135 0.1365 0.1361 0.168 0.1717 0.1606 0.0984
0.5 0.3834 0.3081 0.3226 0.3296 0.3326 0.3328 0.3867 0.3871 0.3852 0.2378
0.75 0.7721 0.6394 0.6697 0.6769 0.6762 0.6756 0.7445 0.7452 0.7473 0.558

10 0 0.0472 0.0517 0.0491 0.0485 0.0484 0.049 0.0587 0.0615 0.0564 0.0484
0.25 0.1734 0.1606 0.1589 0.1594 0.1623 0.1609 0.1949 0.1946 0.1868 0.0929
0.5 0.4634 0.4077 0.4045 0.408 0.4086 0.4062 0.4658 0.4627 0.4564 0.2627
0.75 0.8661 0.7901 0.7991 0.8016 0.7986 0.7944 0.8536 0.8557 0.8569 0.6404

16 0 0.05 0.0528 0.053 0.0533 0.0538 0.0544 0.0582 0.0595 0.0561 0.0502
0.25 0.238 0.2148 0.2168 0.2158 0.216 0.2146 0.2521 0.2513 0.247 0.1399
0.5 0.6723 0.6033 0.6161 0.6174 0.6122 0.6135 0.6501 0.6524 0.6528 0.4655
0.75 0.9775 0.951 0.9569 0.9568 0.9552 0.9549 0.9709 0.971 0.9731 0.9109

Table A13: Probability of rejecting the null hypothesis of independence for L(0.5, 3).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0503 0.0515 0.0435 0.0503 0.0536 0.0548 0.0628 0.065 0.0575 0.0588
0.25 0.1396 0.1259 0.1141 0.1252 0.1335 0.1362 0.1661 0.1534 0.1452 0.0853
0.5 0.3145 0.2439 0.2422 0.2604 0.2753 0.2768 0.3361 0.3201 0.317 0.1764
0.75 0.6045 0.4345 0.4734 0.4919 0.5058 0.5058 0.5602 0.5498 0.5543 0.3735

8 0 0.0528 0.0481 0.0465 0.0497 0.0506 0.0514 0.0652 0.0646 0.0559 0.0602
0.25 0.1712 0.152 0.1567 0.165 0.1668 0.1681 0.209 0.1898 0.1914 0.1151
0.5 0.4058 0.3317 0.3469 0.3542 0.3566 0.3558 0.4487 0.4065 0.4192 0.2589
0.75 0.7375 0.6085 0.641 0.6483 0.6479 0.6473 0.7465 0.7065 0.723 0.5538

10 0 0.0495 0.0487 0.0447 0.047 0.0468 0.0462 0.0666 0.0682 0.0585 0.0467
0.25 0.1904 0.1895 0.1845 0.1904 0.1899 0.1892 0.2397 0.2089 0.21 0.1074
0.5 0.4806 0.4303 0.4328 0.4359 0.4363 0.4359 0.5409 0.4761 0.5031 0.2983
0.75 0.8313 0.7533 0.7566 0.7561 0.7583 0.7573 0.8397 0.8053 0.8213 0.6283

16 0 0.0491 0.0458 0.0438 0.0445 0.0455 0.046 0.0667 0.0661 0.059 0.0515
0.25 0.2535 0.2572 0.2585 0.2588 0.259 0.263 0.3378 0.2773 0.2969 0.174
0.5 0.656 0.6127 0.6236 0.6223 0.625 0.6227 0.7213 0.6377 0.7661 0.5104
0.75 0.9504 0.9197 0.9225 0.9234 0.9235 0.9234 0.9602 0.9386 0.9495 0.8766
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