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Abstract

We introduce the censored bimodal symmetric-asymmetric alpha-power
models to adjust censored data with bimodality and high levels of skewness
and kurtosis. The moments corresponding are computed, the maximum like-
lihood estimation for the model parameters is considered and the observed
information matrix is derived. We show the appropriateness of the proposed
models through two applications with censored real data related to HIV-1
RNA measurement.
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Resumen

Se introducen los modelos potencia alfa simétricos asimétricos bimodales
censurados con el fin de ajustar datos censurados con bimodalidad y altos
niveles de sesgo y curtosis. Los momentos correspondientes son calculados,
se considera la estimación máximo verosímil para los parámetros del modelo
y se deriva la matriz de información observada. Se muestra la utilidad de los
modelos propuestos a través de dos aplicaciones con datos censurados reales
relacionados con la medición de HIV-1 RNA.
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1. Introduction

In epidemiological studies where biomarkers are the main outcomes, it is com-
mon to have detection limits below which it is not possible to determine the specific
values. For instance, in highly active antiretroviral therapy (HAART), the number
of viral load measurements in patients with HIV has a lower detection limit when
using ultrasensitive tests.

The quantitative measurements in people with HIV may be highly left cen-
sored with a high percentage below the detection limit, depending on the method
used for each measurement. For example, in Bucaramanga City, Colombia, the
viral load measurements are conducted by different laboratories, and the HIV-1
RNA quantification is performed by three different methods: Versant bDNA 3.0 R©

(Bayer), LCx HIV R© (Abbott) and Amplicor HIV Monitor v1.5 R© (Roche), all of
which have a detection limit of 50 copies per mL. In order to model the percent-
age of individuals below the detection limit, an asymmetric bimodal model may
be necessary for this type of variable.

The analysis of viral load, HIV-RNA, (scale log10) is used to measure the
effectiveness of HAART therapy which suppresses HIV-1 RNA to undetectable
levels, thereby reducing the morbidity and mortality rates of HIV. Li, Chu, Gal-
lant, Hoover, Mack, Chmiel & Muñoz (2006) found that log10(HIV-1 RNA) has
two modal values in its distribution, corresponding to the optimal and suboptimal
response to HAART, and it can be modeled with a mixture of two normal dis-
tributions in the presence of left censoring. In other cases, the bimodal behavior
is also considered as the variable has a high (or low) degree of asymmetry and
kurtosis in at least some partial distributions that compose the bimodal behavior.

In general a random variable Y , which has a part of its probability at discrete
points and the rest spread over several intervals, has a mixture distribution.

When data are censored, the observed variable Y is a mixture of a continuous
latent process Y ∗ and a selection mechanism (censoring or truncation) modeling in
binary form. This idea was popularized by Tobin (1958) and the resulting model
is known as the Tobit model, which is defined in terms of the latent variable
Yi = Y ∗i I(Y ∗i > c), for some constant c, where I(·) is the indicator function and
Y ∗ has a certain distribution, e.g., normal Tobin (1958) or Student-t of Arellano-
Valle, Castro, González-Farías & Muñoz-Gajardo (2012) or generalized normal of
Martínez-Flórez, Bolfarine & Gómez (2013).

Until the last two decades of the twentieth century, the inferential processes
assumed the normality of the data under study. This assumption is unrealistic for
many variables, and the inferential processes are inadequate. In these situations
many authors choose to transform the variables in order to attain data symmetry
or normality. This transformation leads to unsatisfactory results because the in-
terpretation of results becomes cumbersome. The data becomes more difficult to
interpret when there are several variables with different types of transformations.
In view of these deficiencies, more flexible models have been developed that are
able to accommodate different degrees of asymmetry and kurtosis. Previous work
in this area include Azzalini (1985), Henze (1986), Durrans (1992), Fernández &
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Steel (1998), Mudholkar & Hutson (2000), Pewsey (2000), Eugene, Lee & Famoye
(2002), Jones (2004), Gómez, Venegas & Bolfarine (2007) and Arnold, Gómez &
Salinas (2009).

For bimodal data, extensions for asymmetric cases have been studied by Kim
(2005), Gómez et al. (2007) and Arnold et al. (2009), among others. Kim (2005)
introduces the bimodal skew-normal called the two-pieces skew-normal model. An
asymmetric extension of this model was presented by Arnold et al. (2009) who
defined the extended two-pieces skew-normal model. Gómez, Elal-Olivero, Salinas
& Bolfarine (2009) also studied a bimodal skew-normal model for certain values
of the shape parameter, and this distribution is called skew-flexible-normal. Other
works in this area have been published by Elal-Olivero, Gómez & Quintana (2009)
and Bolfarine, Gómez & Rivas (2011).

In this paper, we present a new distribution for adjusted censored data with
bimodality and high levels of skewness and kurtosis. The paper is structured as
follows. In Section 2, we introduce the censored bimodal symmetric alpha-power
distribution, moments, estimation and inference for model parameters. In Sec-
tion 4, we introduce the censored bimodal asymmetric alpha-power distribution,
moments, estimation and inference for model parameters; we derive the informa-
tion matrix and discuss likelihood ratio tests for some hypotheses of interest. In
Section 6, the appropriateness of this model is illustrated using two applications
involving real data. Finally, some concluding remarks are presented in Section 7.

2. Censored bimodal symmetric alpha-power model

Based on the works by Durrans (1992) and Kim (2005), Bolfarine, Martínez-
Flórez & Salinas (2012) introduced the bimodal symmetric alpha-power model,
whose probability density is

ϕ(z;α) = αcαf(z) {F (|z|)}α−1 , −∞ < z <∞ (1)

where α ∈ R+, F is an absolutely continuous density function with density function
f = dF symmetric around zero and cα = 2α−1

2α−1 is the normalizing constant. We
use the notation Z ∼ BSP (α).

Now, consider a random variable Y ∗ ∼ BSP (α) where (Y ∗1 , Y
∗
2 , . . . , Y

∗
n ) is a

random sample of size n and point of censorship equal to c. Values of Y ∗ greater
than the constant c are mapped to themselves, whereas values of Y ∗ less than or
equal to the constant c are mapped to c. Then, without loss of generality for c = 0,
the observed value is Yi = DiY

∗
i , i = 1, 2, . . . , n, where Di = I(Y ∗i > 0). Here

we have a random sample that is left censored. We say that Y follows a censored
BSP distribution. We denote this variable by Y ∼ CBSP (α). The generalization
to right censoring or when the point of censorship is different from zero is trivial.

For a random variable Y ∼ CBSP (α) with α ∈ R+, the location-scale exten-
sion is defined as the distribution of the random variable X = ξ + ηY for ξ ∈ R
and η > 0. We use the notation X ∼ CBSP (ξ, η, α).
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From equation (1), when f = φ and F = Φ are the standard normal density
and cumulative distribution functions, respectively, we obtain the bimodal power-
normal density function and use the notation Z ∼ BPN(α). Similarly, we obtain
the censored bimodal power-normal density function Y ∼ CBPN(α) and the
location-scale extension X ∼ CBPN(ξ, η, α). The density function of the random
variable Y ∼ CBPN(α) is symmetric and unimodal for 0 < α ≤ 1 and bimodal
for α > 1. Figure 1 depicts plots for the random variable Y ∼ CBPN with a
point of censorship c 6= 0 and two values of α.
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Figure 1: Densities of CBPN(0, 1, α) censored at the left (grey color): (a) α = 1.75
and (b) α = 0.75.

The moments of the random variable CBSP are given as functions of the in-
complete moments of the alpha-power model which are defined as

µr(x) =

∫ ∞
x

αzrf(z) {F (z)}α−1dz, r = 0, 1, 2, . . . ,

The r-th moment of the random variable X ∼ CBSP (ξ, η, α) is then given by

E(Xr) = cα

r∑
k=0

(
r

k

)
ξr−kηkµk(0)

3. Inference to CBSP Model

The contribution of the censored and uncensored observations to the log-
likelihood function is as follows: if Yi = 0, then P(Yi = 0) = P(Xi ≤ 0) =

cα

[
1−

{
F
(
ξ
η

)}α]
, and for the non-nulls Yi’s we have that they are distributed

as the respective Xi’s.
Assume that n independent and identically distributed observations x1, x2, . . .,

xn are available from BSP (ξ, η, α). We denote by
∑

0 the sum over the censored
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observations and by
∑

1 the sum over uncensored observations. The log-likelihood
function of (ξ, η, α) based on x = (x1, x2, . . . , xn) is given by

`(ξ, η, α;x) =
∑
0

(
log(cα) + log

[
1−

{
F

(
ξ

η

)}α])
+
∑
1

[log(α) + log(cα)− log(η) + log(f(zi)) + (α− 1) log(F (|zi|))]

where zi = xi−ξ
η . Hence, assuming that f ′ exists, the score function defined as

the first derivative of the log-likelihood function, with respect to all parameters is
given by:

U(ξ) = −α
η

∑
0

{
F
(
ξ
η

)}α−1
f
(
ξ
η

)
1−

{
F
(
ξ
η

)}α − 1

η

∑
1

{
f ′(zi)

f(zi)
+ (α− 1)sgn(zi)

f(|zi|)
F (|zi|)

}

U(η) =
αξ

η2

∑
0

{
F
(
ξ
η

)}α−1
f
(
ξ
η

)
1−

{
F
(
ξ
η

)}α − 1

η

∑
1

{
1 + zi

f ′(zi)

f(zi)
+ (α− 1)|zi|

f(|zi|)
F (|zi|)

}

and

U(α) =
∑
0

− log(2)

2α − 1
−

{
F
(
ξ
η

)}α
log
[
F
(
ξ
η

)]
1−

{
F
(
ξ
η

)}α


+
∑
1

{
1

α
− log 2

2α − 1
+ log[F (|zi|)]

}

The score equations are obtained by equating the derivatives presented above to
zero. The maximum likelihood estimators are the solutions of the score equations,
and clearly depend on the functions f and F . Model parameters are estimated
using iterative algorithms that can be implemented in any statistical package. The
elements of the observed information matrix are given in Appendix.

4. Censored Bimodal Asymmetric Alpha-Power
model

The CBPN model is an alternative when data are censored and have a bimodal
and symmetrical distribution; however, in case that the asymmetrical distributions
are not adequate, we introduce another model for censored data whose distribution
function is bimodal and asymmetric. The following lemma given by Azzalini (1985)
will be essential to achieve this model.
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Lemma 1. Let f0 be a probability density function symmetric about zero and G
be a distribution function such that G′ exists and is a probability density func-
tion symmetric about zero. Then fZ(z;β) = 2f0(z)G(βz) is a probability density
function for z, β ∈ R.

Based on this lemma and given that the density function of a random variable
BSP (α) is symmetric about zero, then for G, which is a distribution function such
that G′ is a probability density function symmetric about zero, then

ϕ(z;α, β) = 2αcαf(z) {F (|z|)}α−1G(βz), −∞ < z <∞ (2)

is a probability density function, such that α ∈ R+ and β ∈ R. The parameter β
controls asymmetric behavior. We denote by Z ∼ BAsP (α, β).

The location-scale extension for a random variable Z ∼ BAsP (α, β) is defined
as the distribution of the random variable X = ξ+ηZ, where ξ ∈ R is the location
parameter and η > 0 for the scale parameter. We denote by X ∼ BAsP (θ) where
θ = (ξ, η, α, β). Thus, redefining the random variable latent Yi = XiI(Xi > 0) we
obtain a censored random variable, which we denote by Y ∼ CBAsP (θ).

When F = G = Φ in equation (2) naturally follows the censored bimodal
asymmetric alpha-power normal model, which we denote by CBAsN(θ), this dis-
tribution is bimodal for α > 1 and unimodal for 0 < α ≤ 1, while the parameter
β controls asymmetric behavior.

Figure 2 depicts plots for the random variable Y ∼ CBAsN(θ) with point of
censorship c 6= 0 and two values of β.
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Figure 2: Density of CBAsN(0, 1, 1.75, β) censored at the left (grey color). (a) β = 0.25
and (b) β = −0.45.

5. Inference to CBAsN Model

Let Y1, Y2, . . . , Yn be a random sample of size n obtained from the CBAsN(θ)
distribution with unknown parameter vector θ. The contribution of the i-th
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observation to the likelihood is given by P(Y = 0) = P(X ≤ 0) = αcαAc(θ)
where Ac(θ) =

∫∞
ξ
η
φ(z){Φ(z)}α−1{1− Φ(βz)}dz.

The log-likelihood function of θ based on y = (y1, y2, . . . , yn) is given by

`(θ;y) =
∑
1

[log(2αcα)− log(η) + log(φ(zi)) + (α− 1) log(Φ(|zi|)) + log(Φ(βzi))]

+
∑
0

[log(αcα) + logAc(θ)]

where zi = yi−ξ
η . The first derivatives of the log-likelihood function with respect

to the parameters are given by:

U(ξ) = −n0rc(θ)

ηAc(θ)
− 1

η

∑
1

{
−zi + (α− 1)sgn(zi)

φ(|zi|)
Φ(|zi|)

+ β
φ(βzi)

Φ(βzi)

}
U(η) =

n0rc(θ)ξ

η2Ac(θ)
− 1

η

∑
1

{
1− z2i + (α− 1)|zi|

φ(|zi|)
Φ(|zi|)

+ βzi
φ(βzi)

Φ(βzi)

}
U(α) = n

{
1

α
− log 2

2α − 1

}
+
n0Bc(θ)

Ac(θ)
+
∑
1

{log[Φ(|zi|)]}

and

U(β) =
n0Dc(θ)

Ac(θ)
+
∑
1

zi
φ(βzi)

Φ(βzi)

where

Bc(θ) =

∫ ∞
ξ
η

φ(z){Φ(z)}α−1 log(Φ(z)){1− Φ(βz)}dz,

rc(θ) = φ

(
ξ

η

){
Φ

(
ξ

η

)}α−1{
1− Φ

(
βξ

η

)}
,

Dc(θ) =

∫ ∞
ξ
η

zφ(z){Φ(z)}α−1{1− Φ(βz)}dz

The maximum likelihood estimate θ̂ = (ξ̂, η̂, α̂, β̂) of θ is obtained by setting
U(ξ) = U(η) = U(α) = U(β) = 0 and solving these equations numerically using
iterative techniques. The elements of the observed information matrix are given
in Appendix.

6. Illustrations

In this section we illustrate the usefulness of the proposed models by fitting
a CBAsP distribution to some data sets. We use two real data sets to compare
the fit of this model with censored normal (CN), censored skew-normal (CSN)
and censored bimodal skew-normal (CBSN) distributions and with the parent
distribution itself.
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6.1. HIV-1 RNA Data Obtained from the Secretariat
of Health of Bucaramanga City

The database was provided by Secretariat of Health, Department of Santander,
Colombia, and corresponds to persons who are reported to the SIVIGILA system.
This database maintains the absolute confidentiality of patient identification and
contains the age, gender, date of admission to the SIVIGILA system, presence or
absence of HAART treatment, CD-4 count and HIV-1 RNA plasma levels (viral
load) of some patients. The database corresponds to 1275 persons infected with
HIV, and who have been officially reported to the Surveillance and Epidemiology
Service of Bucaramanga City. Tests used for the diagnosis of HIV infection in
a particular person require a high degree of both sensitivity and specificity. In
Colombia, this is achieved using an algorithm combining two tests for HIV anti-
bodies. If antibodies are detected by an initial test based on the ELISA method,
then a second test using the Western blot procedure is performed. The combina-
tion of these two methods is highly accurate. Patients are at different stages of
treatment, 681 patients in the sample have had HAART therapy since 2007 and
HIV-1 RNA plasma level (viral load) measurement, and there were 206 women
and 475 men.

Because the measurements were performed at different laboratories, the HIV-
1 RNA quantification could be performed by three different methods: Versant
bDNA 3.0 R© (Bayer), LCx HIV R© (Abbott) and Amplicor HIV Monitor v1.5 R©

(Roche), all of which have a detection limit of 50 copies per mL. Descriptive
statistics for log10(HIV-1 RNA) observations above the detection limit of 475 men
in the example are mean=1.7350 and variance=1.7397. The skewness=0.5258 and
kurtosis=2.1346 correspond to sample values above log10(50). These statistics
show that the data have a high positive bias and a low kurtosis compared to the
normal model, which is an indication that the censored normal model is not an
alternative to adjusting for viral loads. In addition to these characteristics, the
histogram of Figure 3 shows that the behavior of the log10(HIV-1 RNA) variable
is bimodal, and therefore the censored bimodal skew-normal model can be used to
adjust log10(HIV-1 RNA) data. Furthermore, we adjust the censored normal (CN),
censored skew-normal (CSN), censored bimodal symmetric skew-normal (CBPN)
and censored bimodal asymmetric skew-normal (CBAsPN) models.

As can be seen in Figure 3-(a), the CSN model can accommodate to some
degree the asymmetry that occurs in the observations, but it fails to explain the
bimodality of the variable if it is adjusted for the CBPN and CBAsPN models.

To compare between the models considered above, we use the Akaike Infor-
mation Criterion (AIC; Akaike 1974) and Bayesian Information Criterion (BIC;
Schwarz 1978). Table 1 shows maximum likelihood estimates for the four adjusted
models. According to the AIC and BIC criterions, the CBAsPN is a better fit for
log10(HIV-1 RNA) data.

A parametric test to prove the bimodality hypothesis is given by H0 : α =
1 versusH1 : α 6= 1, which compares the CSN model with the CBAsPNmodel using
the likelihood ratio statistics based on the ratio Λ1 = LCSN (ξ̂, η̂, β̂)/LCBAsPN (ξ̂, η̂,
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α̂, β̂). Substituting the estimated values, we obtain −2 log(Λ1) = −2(−414.79 +
405.05) = 19.48 which, when compared with the 95% critical value of χ2

1 = 3.84,
indicate that the null hypotheses is clearly rejected. Then, the CBAsPN model is
a good alternative for modeling log10(HIV-1 RNA) data.

Table 1: Maximum likelihood parameter estimates (Standard derivation in brackets)
for CN, CSN, CBPN and CBAsPN models.

Model CN CSN CBPN CBAsPN
ξ̂ 0.477(0.137) 1.689(1.147) 0.431(0.186) 1.692(0.085)
η̂ 1.978(0.121) 2.362(0.767) 2.139(0.226) 1.549(0.120)
α̂ 0.396(0.576) 4.007(0.629)
β̂ –0.861 (1.013) –0.595(0.100)

AIC 833.615 835.587 834.337 818.108
BIC 854.268 848.076 846.826 834.761

Additionally, we carry out the parametric test: H0 : (α, β) = (1, 0) versusH1 :
(α, β) 6= (1, 0), which compares the CN model with the CBAsPN model. Using
the statistic likelihood of ratio, Λ2 = LCN (ξ̂, η̂)/LCBAsPN (ξ̂, η̂, α̂, β̂) leading to
−2 log(Λ2) = −2(−414.81 + 405.05) = 19.52, which is greater than the value of
the chi-square with a 5% significance, χ2

1 = 3.84. This confirms that the best
model to fit log10(HIV-1 RNA) data is the CBAsPN model. We can also observe
that to some degree, the model adjusts the bimodality, but cannot adjust the
asymmetry present in the observations of the viral load.
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Figure 3: (a) Histogram for log10(HIV-1 RNA): CBAsPN (solid line), CBPN (dashed
line), CSN (dotted line) and CN (dashed line with points), (b) CBAsPN
(solid line) CMN (dashed line).

Another model widely applied in such situations is the mixture model of two
normal distributions (see Teck-Onn, Bakri, Morad & Hamid (2002), Chu, Moulton,
Mack, Passaro, Barroso & Muñoz (2005), Li et al. (2006), Schneider, Margolick,
Jacobson, Reddy, Martinez-Maza & Muñoz (2012), among others). The normal
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mixture model is given by

ρ(x;µ1, σ1, µ2, σ2, p) = pf1(x, µ1, σ1) + (1− p)f2(x;µ2, σ2)

where fj is a normal distribution with parameters (µj , σj), j = 1, 2 and 0 < p < 1.
For data with detection limits, we denote them using the CMN(µ1, σ1, µ2, σ2, p)
model. Now we compare the CBAsPN with CMN(µ1, σ1, µ2, σ2, p).

The estimated model is CMN(1.48, 0.90, 4.48, 0.92, 0.71) with AIC=819.9 and
BIC=840.7. This model has AIC and BIC greater than that of the CBAsPN
model, so the CBAsPN model fits the data log10(HIV-1 RNA) better than the
CMN model. Figure 3-(b) shows the estimated CBAsPN and CMN models. Fur-
thermore, we studied the goodness of fit of the CBAsPN model getting the QQ-plot
and cumulative distribution function from the MLE’s.

The QQ-plot and the cumulative distribution function obtained from the esti-
mated model are given in Figure 4(a)-(b): these show the good fit obtained in the
estimated model. The total censored data corresponds to 39.92% of the sample
under study, and the estimated percentage with the CBAsPN model is 39.50%,
while in the CBPN model, it is 40.43%, which confirms the good fit of the CBAsPN
model.
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Figure 4: (a) QQ-plot men, (b) cumulative distribution function for men and (c) QQ-
plot women.

These results indicate that the CBAsPN model is a suitable option for ad-
justing this type of information. In the case of HIV-infected women (n = 106)
under HAART, 33.96% are below the detection limit. The estimated model was
CBAsPN(1.6306, 1.8201, 2.8874, –0.5936), which estimated 32.95% of women be-
low the detection limit. The QQ-plot given in Figure 4-(c) illustrates the good
behavior of the CBAsPN model.

6.2. HIV-1 RNA Measuring by COBAS TaqMan

Plasma HIV-1 RNA was measured in 306 samples which were collected from
273 men in highly active antiretroviral therapy, with both Roche COBAS TaqMan
(whose detection limit is 20 copies per mL) and Roche Amplicor (whose detection
limit is 50 copies per mL) assays. See Schneider et al. (2012) for details.
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The data used in this paper to illustrate the model are measurements made with
the Roche TaqMan assay with log10(HIV-1 RNA). The non-censored information
has a mean y = 1.3235 and variance s2 = 1.5849. Quantities

√
b1 = 0.7012 and

b2 = 2.0054 correspond to sample asymmetry and kurtosis coefficients for values
above log10(20), respectively. These statistics show that the data displays a high
positive bias and a low kurtosis over the normal model. Figure 5 shows that the
behavior of the variable under study is bimodal. Therefore, a censored bimodal
asymmetric power-normal model may be used to adjust the log10(HIV-1 RNA)
data. We adjusted the CSN and CBAsPN models.

Table 2 shows maximum likelihood estimates of the proposed model. According
to the AIC criterion, the model that best fits the log10(HIV-1 RNA) data is the
CBAsPN normal model. The CSN model fails to capture the bimodality of the
log10(HIV-1 RNA) data.

Table 2: Maximum likelihood parameter estimates (with (SD)) for CSN and CBAsPN
models.

Model ξ̂ η̂ α̂ β̂ AIC
CSN 4.355(0.379) 11.121(1.371) –9.637(3.274) 685.373

CBAsPN 1.531(0.090) 1.729(0.174) 6.400(0.901) –1.175(0.148) 585.669

We can see that the estimate of α in the CSN model is significantly different
from zero, which verifies the high degree of asymmetry present in the observations.
Figure 5 shows that the CSN model adjusts to some extent the asymmetry present
in the observations, but fails to explain the natural bimodality of the variable under
study.

Again, we can prove the bimodality hypothesis H0 : α = 1 versusH1 : α 6= 1.
Then, using the statistic likelihood of ratios, Λ3 = LCSN (ξ̂, η̂, β̂)/LCBAsPN (ξ̂, η̂, α̂,

β̂) and substituting the estimated values, we obtain −2 log(Λ3) = −2(−339.69 +
288.83) = 101.72, which is greater than the value of the chi-square with 5% signi-
ficance, χ2

1 = 3.84. Then the CBAsPN model is a good alternative for modelling
log10(HIV-1 RNA) data.
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Figure 5: (a) Histogram for log10(HIV-1 RNA), models: CBAsPN (solid line), CSN
(dotted line) and CMN (dashed line), (b) QQ-plot and (c) cumulative distri-
bution function for uncensored values.
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We also obtained the estimate for the CMN(0.577, 0.903, 4.15, 0.706, 0.897)
model with AIC=585.27 (see Figure 5-(a)). There is no statistical difference be-
tween the AIC of the two models, and therefore, the two models have a similar fit.
However, the CBAsPN model has fewer parameters, and is therefore less suitable
than the CMN model.

Figure 5-(b)-(c) illustrate the QQ-plot and cumulative distribution function
from the estimated model for uncensored data: these show the good fit of the
estimated model. The total censored data corresponds to 70.58% of the study
population, and the percentage estimated with the CBAsPN model is 70.69%,
while with the CMN model, it is 70.74%, which illustrates the good fit of the
CBAsPN model.

7. Concluding Remarks

We proposed two new distributions called the censored bimodal symmetric
alpha-power and censored bimodal asymmetric alpha-power distributions. These
distributions can adjust the skewness and bimodality of censored data. The inclu-
sion of a new parameter can explain the asymmetric and bimodal behavior of an
extended family of distributions, allowing a more flexible model than the censored
normal, censored skew-normal models and censored mixture normal. The param-
eter estimation is approached by the maximum likelihood ratio and the observed
information matrix is derived. Two real applications using data from HIV-infected
persons illustrate the usefulness of the new models. The first application compares
the censored normal, censored skew-normal and censored mixture normal with the
two proposed models. The second application compares the censored skew-normal
model and censored mixture normal with the CBAsPN model. The results show
that the CBAsPN model fits much better to the viral load. The usefulness of the
new models is tested with the likelihood ratio statistics and formal goodness-of-
fit tests. The CBAsPN model has the potential to attract wider applications for
censored data.
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Appendix

Appendix A. Observed Information Matrix for
CBSP Model

As is well known, the elements of the observed information matrix are computed
as minus the second partial derivatives with respect to all parameters and are
denoted by jξξ, jξη, . . . , jαα. Assuming that f ′′ exists and making wi = f(|zi|)

F (|zi|) ,

si = f ′(|zi|)
F (|zi|) , ti = f ′′(zi)

f(zi)
, vi = f ′(zi)

f(zi)
, wc =

f( ξη )
F( ξη )

, sc =
f ′( ξη )
F( ξη )

,

pc =
{F( ξη )}α

1−{F( ξη )}α , qc =
f( ξη )

1−{F( ξη )}α and uc = log
(
F
(
ξ
η

))
.
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The elements of the observed information matrix are given by

jξξ =
αn0pc
η2

[
αpcw

2
c + (α− 1)w2

c + sc
]

+
1

η2

∑
1

{
(v2i − ti) + (α− 1)

[
w2
i − si

]}
jηξ = −αn0

η3
[
w2
c (αξ(pc + 1)− ξ) + ηwc + αξsc

]
+

1

η2

∑
1

{
(vi + ti − v2i ) + (α− 1)

[
sgn(zi)|zi|w2

i − sgn(zi)|zi|si − sgn(zi)wi
]}

jηη =
αξn0
η4

[
w2
c (αξ(pc + 1)− ξ) + 2ηwc + αξsc

]
− 1

η2

∑
1

{
1 +

1

η2
[
2zivi + z2i ti − z2i v2i

]
+ (α− 1)

[
2|zi|wi + z2i si − z2iw2

i

]}
jαξ = −n0pcwc

η
[αuc(1 + pc) + 1]− 1

η

∑
1

sgn(zi)wi,

jαη =
n0pcwcξ

η2
[αuc(1 + pc) + 1] +

1

η

∑
1

|zi|wi

and

jαα = n
[
α−2 − 2α(2α − 1)−2(log 2)2

]
+ n0pcu

2
c(1 + pc)

The elements of the expected (Fisher information matrix) are computed as n−1
times the expectation of the corresponding elements of the observed information
matrix. This matrix clearly depends on the function f , and it is important in the
sense that the asymptotic distribution of the maximum likelihood estimators is
asymptotically normal with the asymptotic variance as the inverse of the Fisher
information matrix.

Appendix B. Observed Information Matrix for
CBAsN Model

Similarly, as done before, it follows that the elements of the observed informa-
tion matrix are given by

jξξ =
n0rc(θ)

η2Ac(θ)

{
rc(θ)

Ac(θ)
− ξ

η
+ (α− 1)wc

}
− β

ηn0Ac(θ)
φ

(
ξ

η

)
φ

(
βξ

η

)
{

Φ

(
ξ

η

)}α−1
+

1

η2

∑
1

{
1 + (α− 1)

[
w2
i − sgn(zi)ziwi

]
+ β2

[
βziw1i + w2

1i

]}
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jηξ = − n0rc(θ)

η2A2
c(θ)

[
Ac(θ) +

ξ

η
rc(θ)

]
− n0ξEc(θ)

η2Ac(θ)
+

1

η2

∑
1

β
[
β2z2iw1i + βziw

2
1i

− w1i

]
,+

1

η2

∑
1

{
2zi + (α− 1)

[
−ziw2

i − sgn(zi)z
2
iwi + sgn(zi)wi

]}

jβξ = −n0ξ
η2

φ
(
ξ
η

)
φ
(
βξ
η

){
Φ
(
ξ
η

)}α−1
Ac(θ)

− n0
η

rc(θBc(θ))

A2
c(θ)

+
1

η2

∑
1

{
ηw1i − β

[
βz2iw1i + ziw

2
1i

]}
jαξ = −n0rc(θ)

η A2
c(θ)

[
Bc(θ)−Ac(θ) log

(
Φ

(
ξ

η

))]
− 1

η

∑
1

sgn(zi)wi

jηη =
n0rc(θ)

ξη4Ac(θ)

[
2η − ξ

(
ξ

η
− (α− 1)wc

)
+ ξ

rc(θ)

Ac(θ)

]
− n0βξ

2

η4Ac(θ)
φ

(
ξ

η

)
φ

(
βξ

η

){
Φ

(
ξ

η

)}α−1
+

1

η2

∑
1

{
−1 + 3z2i + (α− 1)

[
−2|zi|wi + z2iw

2
i + |zi|3wi

]
− βηziw1i

}
+
β

η2

∑
1

[
β2z3iw1i + βz2iw

2
1i − 2ziw1i

]
jβη =

n0ξ

η3Ac(θ)

[
ηrc(θ)Dc(θ) + ξφ

(
ξ

η

)
φ

(
βξ

η

){
Φ

(
ξ

η

)}α−1]

+
1

η

∑
1

[ziw1i − β2z3iw1i − βz2iw2
1i]

jαη =
n0ξrc(θ)

η2A2
c(θ)

[
Bc(θ)−Ac(θ) log

(
Φ

(
ξ

η

))]
+

1

η

∑
1

|zi|wi

jββ =
n0

A2
c(θ)

[
D2
c (θ)−Ac(θ)Mc(θ)

]
+
∑
1

[βz3iwi + z2iw
2
1i]

jαβ =
n0

A2
c(θ)

[Bc(θ)Dc(θ)−Ac(θ)Hc(θ)]

jαα = n
[
α−2 − 2α(2α − 1)−2(log 2)2

]
+

n0
A2
c(θ)

[
B2
c (θ)−Ac(θ)Nc(θ)

]
where w1i = φ(βzi)/Φ(βzi),

Ec(θ) =
rc(θ)

η2
[−ξ + (α− 1)ηwc]−

β

η
φ

(
ξ

η

)
φ

(
βξ

η

){
Φ

(
ξ

η

)}α−1
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Hc(θ) = −
∫ ∞
ξ
η

zφ(z){Φ(z)}α−1 log(Φ(z))φ(βz) dz

Mc(θ) = β

∫ ∞
ξ
η

z3φ(z){Φ(z)}α−1φ(βz) dz

Nc(θ) =

∫ ∞
ξ
η

φ(z){Φ(z)}α−1 log2(Φ(z)){1− Φ(βz)} dz

The elements of the expected information matrix are computed numerically
and depend on the functions φ and Φ. The MLE distribution is asymptotically
normal with the variance as the inverse of the Fisher information matrix.
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